An Experimental Estimation of Latency Sensitivity in Multiplayer Quake 3

Grenville Armitage
garmitage@swin.edu.au

Introduction

• This talk reports on an estimation of latency sensitivity using real-world Quake 3 servers in 2001

• Why?
 • Game designer: What do I need from the network?
 • Game hosting company: Where (realistically) will my regular customers be located?
 • ISP: What are my performance objectives?
 • “Latency is bad” just isn't enough of a guideline

Background

• Hypothesis
 • Server usage patterns will reflect topological locality of players (and relate to latency tolerance)

• Methodology
 • Establish two non-colocated QuakeIII servers that appear identical to client-side selection process
 • Log players, their IP addresses, and in-game ‘ping’ samples over period of months
 • Assess topological locality of players, and distribution of observed ping values.

Test Environment

• Well connected servers
 • Californian server: 600MHz Celeron, 128MB, FreeBSD4.2, T1 link to PAIX (hosted in Palo Alto)
 • London server: 900MHz Athlon, 128MB, Linux kernel 2.4.2, 10Mb link to UK net (hosted at University College London)

• Both servers advertised their location as "Palo Alto, California" (to GameSpy3d and other master-server game selection clients)
Test conditions

Duration of Trials:
- **Californian server:**
 - May 17 to Aug 18, 2001
 - 5290 unique clients
 - 338 clients played >= 2hrs each
 - 164 ‘days’ aggregate played time
- **London server:**
 - May 29 to Sep 12, 2001
 - 4232 unique clients
 - 131 clients played >= 2hrs each
 - 77 ‘days’ aggregate played time

Common server details:
- Quake III version 1.17 (linux binary)
- Same 6 maps, fixed cycle sequence
- 20 minutes per map
- Up to 6 remote players
- 2 permanent ‘bots’ to attract players
- Identical registration with master server (clients see latency as only difference)
- Server-side ‘ping’ sampled everytime player runs over an object, dies, or kills another player

Median Latency results
- Each player’s ‘ping’ sampled > 10 times per game
- Median values per player per game
- Cumulative plot reflects most frequently appearing median ping values
- California and London curves similar

Reading the curve...
- Players who picked up at least 1 item per minute (minimal activity)
 - California 1: 80% of player.games < ~196ms
 - London 1: 80% of player.games < ~210ms
- Players who picked up at least 10 items per minute (reasonably active)
 - California 10: 80% < ~158ms
 - London 10: 80% < ~182ms

Don’t forget why they play...
- Skill and response time influence a player’s ability to frag (kill) others in the game
- Response time has human and network components
- Average frag rate vs median ping hints at the negative impact of high latency
 - 45ms ping averages 1 frag/min better than 200ms ping
But what does this prove?

• Perhaps nothing!
 • Maybe “the Internet” is only 250ms wide?

• Unless there’s evidence of regional/topological locality in the usage of each server....

Regional locality - Daily pattern

• Usage peaks around afternoon/evening in their respective time zones
 • (London 8 hours ahead of Palo Alto)

• Servers attract regional players
 • Supports hypothesis that clients prefer ‘closer’ server, other things being equal

Weekly pattern

• Pattern consistent with daily curve

• Geographic locality ~ topological locality

Locality based on IP addresses

• Reverse lookups:
 Californian server: mostly North America
 London server: mostly Europe and US East Coast

• Given otherwise identical servers, latency seems plausible as the client-observable metric on which a player chooses their server

Table above shows origins of top 11 players on each server. Outside the top 11, the Californian server also saw dedicated players from “.jp” while the London server saw dedicated “.nl” and “.uk” players. There is also cross-over by players equidistant from either server.
Conclusions

- Players self-selected based on topological locality of servers, even though servers lied about their actual location
 - Latency was the visible metric by which this selection occurred (typical players unlikely/unable to check IP address)
- Thus the median-ping per player-game stats seem reasonably likely to reflect player preference
- Open question: High latency \(\approx\) high hop count paths, thus could be correlated with high jitter and loss rates.... research ongoing