(Atheros) Wireless in FreeBSD

Adrian Chadd
<adrian@freebsd.org>

Overview

Basic wireless infrastructure overview

How QoS is handled

How the hardware is setup (in general, to do QoS)
How the hardware implements 802.11

Example: TDMA

Transmission: Overheads, Bursting, Aggregation
Transmitting and Receiving Frames

TX Rate Control

11n, Rate Control

Wireless Infrastructure

TCR/IP

—

‘ Met80211 ' ‘

Ath
Stack e Laver

|

Hardusare Abstraction Layer
[HAL)

s

Wireless Infrastructure

Net80211
- Handles 802.11 negotiation, protocol/session handling
Driver (eg ath(4))

- Handles TX/RX, frame completion, DMA, buffer
management, interface management

HAL (eg ath_hal(4))

- Handles radio interfacing — register programming,
calibration etc

Rate control (eg ath_rate, net80211_ratectl)
- Handles TX selection based on feedback from driver

QoS handling

Net80211

- QoS/WME parameters negotiated via beacon frames
ieee80211_classify()

- Determine the WME AC based on IPv4/IPv6 diffserv

Each mbuf has a WME AC (ether_vtag)
The driver then queues the frame to the relevant
hardware queue.

- .. the driver has to put it in the right queue!

- .. the 802.11e settings for the hardware queue have to be
correct!

Hardware Organisation

Host Interface
- PCI, PCle, USB, etc
Radio

- TX and RX of differential signals, handles 2 and 5 GHz
conversions

PHY

- Handles frame encoding/decoding, signal level
determination, “RX busy” for clear channel assessment

MAC — Medium Access Controller
- Implements TX/RX DMA, encryption/decryption

- Implements the 802.11 protocol handling
- .. more to come

Media Access Controller

 Takes care of the 802.11 frames themselves

MAC
Qcu = DCU

Y
| |

Y

QCU —={ DCU

Y

- PCl/Cardbus = QCU = DCU - a
Interface 1 . DataRXto
[acu [bcu |—» Digital PHY
T T P
I 1 £ C
; : u
1 i | DataTXto
= QCU = DCU » L_1 Digital PHY

Figure 2: Atheros AR5212 MAC

Media Access Controller

PCU

- TX/RX scheduling, ACK/RTS/CTS handling, TSF (Timing
synchronisation function — 1.024ms) handling, TU
(beacon interval) handling, encryption/decryption,
DCF/PCF (coordination function), 802.11n aggregation,
Block-Ack handling

* QCU
- Handles TX DMA from the host memory to the PCU
« DCU
- Handles the distributed coordination function
Each DCU “controls” a QCU, allowing it to TX

This implements 802.11e priority queues

Implement 802.11

 The hardware implements 802.11 !

- PCU: global settings such as SIFS, EIFS
- RTS/CTS/ACK duration

- QCU: burst duration, AIFS, contention window min/max,
TX retry limits, back-off handling

* This implements a series of timers and state
engines which implement part of 802.11 itself

R‘?S MPDU MPDU
Node B CTs .

Advantages!

 The hardware provides a lot of fine grained control
over 802.11 “air” timing

- .. making it easy to do experiments with arbitration, frame
spacing, bursting, etc

* The hardware has some very nice QCU/DCU gating
features

- .. which allow traffic to be transmitted at certain times
(based on beacon TSF timestamps)

- .. this is how the TDMA solution works

* Alotis coded up in the HAL, but almost never
actually used by the driver!

Example: TDMA

« TDMA allows..
- a TX/RX pair to own a timeslice of air time
- .. so they don't need to negotiate, do contention backoff,
etc.

e |t uses..
- .. a QCU with a burst time set, where the unit can TX as
much as it can fit in the time window..
- .. a timer which fires after a number of microseconds
following the beacon interval..

- .. a gating method which pauses the TX queue until the
timer fires, then automatically opens the QCU up for

transmit.

Example: TDMA

 The host simply sets it up!

- The hardware handles all of the timing, burst time
handling, contention handling (ie, none), etc

.. all the driver does is keep the clocks in sync.
* |t's likely broken in -HEAD for now, sorry!

TETT 1H1

-u:_!:-l_a- ——

Figure 10 Example TDMA configuration.

Transmission Overheads

802.11 frames have fixed overheads

Contention Avoidance/Backoff
Preamble length

Initial frame header is done as legacy
RTS/CTS rates are done as legacy
ACK frames are done as legacy

Higher density TX encodings only affect the data
portion, not the rest of the frame

So as you increase the TX symbol rate, the amount

of fixed overhead doesn't change

So your real world throughput doesn't increase!

Transmission Overheads

i
f y T | e [
[acx | = [ACK | i
(&) TxOPF Burst
802110
ﬂ T
[D][Dem | [Dem | [BaR] vy ._
= L BA | 1
g | ib] Block Acknowdedgment f
[
| EE]
z g2
|| [o]| om |[o | [eam]i -
= I 2 il
= H = lc) RIFS Burst = Block Acknowledge
o
| [D] D Cirta]JEW! &l i
€ erock Ackee
{d] Data Aggregation + Block Acknowledge
&
| [pam| Dam | Dam &
I =
(2] Data Aggregation + Implicit Block Acknowiedge Reguest

1
Thesa improvements are shown in the first teo rows of Figune (3},
Figure {3) MAC Improvements

A

#802.11m

Improving Transmission

« 802.11e

- Either negotiated between station/AP, or part of the WME
negotiation during association

- If the station wishes to transmit on a higher priority
queue, it uses different contention window parameters
(Cwmin, Cwmax, AIFS, burst time)

e 802.11e + Burst

- Again, can be negotiated as needed

- The transmitter can TX during this period without waiting
for the medium to be “idle” - it is assumed to be 100%
available for it

- Useful for VoIP, etc where latency is to be minimised

Improving Transmission

« A-MPDU — MPDU aggregation
- Part of 802.11e, but is only implemented (these days) in
802.11n

- The transmitter “bursts” many MPDU frames without
contention or waiting for SIFS / ACK

- A“block ACK” is sent at the end, indicating which sub-
frames were successfully received

- The software then retransmits whichever frames weren't
successfully transmitted

- The maximum burst length is 4ms! (due to legacy
restrictions)

Improving Transmission

* However, A-MPDU has some issues

- Tracking the retransmission window is complicated
» But luckily, not a part of this discussion!

- 4ms is a long time, but a lot of data can be squeezed
(close to theoretical maximum throughput)

- Highly noisy environments result in many, many
retransmissions

- .. S0 keeping the “air fair” whilst doing high throughput
aggregation can be quite difficult

» Where do you slot your VolP traffic in when the NIC has been
handed a 4ms frame?

Transmitting frames

* |In FreeBSD-HEAD:

- .. a software queue is maintained per-node and per-TID
.. 16 TIDs for each node;
.. WME AC's map to a single TID.

This is required for handling A-MPDU aggregation
sessions, which is based on TID.

* The hardware then:

- .. is handed a set of frames from the software queue

- The hardware then does its own QoS, based on register
settings

e Software retransmission is done as needed

Frame Recelve

* A lot of useful information is available!

e Per-frame information:

- Signal strength, received rate, CRC errors

- 11n parameters (guard interval, STBC, whether an
aggregate/burst, EVM)

- PHY errors — helps to debug noisy/busy environments
» Global information:
- Amount of time spent TX'ing, RX'ing

- Amount of time the air was “busy”, so the hardware
couldn't try TX'ing

- Useful for determining how congested the air is!

Frame Transmission

 Each frame has a lot of parameters:

- RTS/CTS, plus RTS/CTS duration and rate;

- Whether an ACK is required;

Per-frame TX power level (TODO: not working yet!)
Overriding the duration field, for forcing NAV updates

Multi-rate retry: 4 attempts of ..

* Which TX rate to use

* How many times to try TX'ing

* 11n parameters — guard interval, STBC, 20/40MHz mode
* RTS/CTS enable

- 11n:

* How big the aggregate is; delimiters

Frame transmission completion

* Again, a lot of parameters are available:

- Per frame:

* Which TX rate succeeded

* How many attempts for RTS/CTS negotiation

How many attempts at TX'ing the data (no ACK)

“Virtual collision” with 802.11e (eg going over burst duration)
ACK signal strength

11n block-ack contents, TID

DMA status

Encryption engine status

TX rate control

« TX rate control allows for:
- .. adapting to changing conditions
- .. which may be different for each node
- .. and may change unpredictably

 The API allows:

- Rate selection

» Choose a rate for each frame, based on the node and current
conditions

- Traffic completion

* Analyse the completion data from each frame and update
current conditions

TX rate control

A few exist:

- ath_rate: implements onoe, amrr, sample
- Sample is the only one which supports 11n — and only in
a basic way

* It chooses a TX rate which minimises the average amount of
time a frame takes to TX, given retransmission and backoff

- ieee80211 _ratectl: implements rssiadapt, amrr

» ath(4) currently doesn't use this
» .. the aim is to teach all wifi modules to use this!
e [tisn't 802.11n awarel!

« .. it doesn't factor into TX queue or QoS parameters
- .. it only controls TX rate selection!

11n and rate control?

« 802.11n has a large number of variables:
- MCS encoding type (BPSK, QPSK, QAM)
- Number of spatial streams

STBC (space-time block encoding)

TX power level

Short or long Gl (guard interval)

Maximum aggregate length.

* FreeBSD/Linux only take into account the first two.

* |t may be worthwhile adding in QoS awareness and
gueue management to the rate control API

- .. since queue management influences TX performance!

What could be done?

 The hardware is powerful..
» .. but nothing (FOSS) really goes in and tries to intelligently
manage per-node frame queuing
.. based on current air conditions, rather than just traditional
queue management techniques (eg RED, WRED, tail-drop, etc)
« Extend the rate control API to include the above?

« .. allow rate control code to tune per-node, per-TID queue
parameters

* .. have the software queue code enforce this behaviour

* .. perhaps export this to userland and allow userland TX
classifiers (eg in python) to dynamically control these TX
parameters?

.. but the big one is this:

The worst case: too much TX?

 The hardware does frame retransmission for you

- .. but the question is: how long is the hardware spending
trying to transmit your frame?
« .. whilst it's doing this, all other TX to nodes is on hold
« .. and whilst it's TX'ing, it isn't RX'ing anything.
e .. SO is one badly behaving node potentially
messing up the entire airtime, for all potential
nodes?

» FreeBSD/Linux doesn't attempt to address this particular issue
» .. either by logging useful data to establish if this is happening..
» .. or dynamically limiting it from occurring

» eg by reducing frame TX retries and doing it in software, allowing
other nodes to TX.

Summary

* The Atheros NICs handle a lot for you:
- 802.11 frame timing, transmission, retransmission
- 802.11e parameters
- Fine-grain control over when to TX frames

« Almost everything for 802.11 frame timing is a
register somewhere..

- .. and happily documented in the existing HAL code, so |
don't have to break NDA to tell you this.

« But only a small part of this is really leveraged in
FreeBSD/Linux!

- .. but | bet commercial AP vendors are using it! :)

Questions?

References

* http://archives.ece.iastate.edu/archive/00000497/01/Thesis_PrateekGangwal.pdf
* http://www.zytrax.com/tech/wireless/802_mac.htm
* http://www.eetimes.com/design/communications-design/4206282/How-throughput-enhancements-dramatically-boost-802-11n-M#

* http://people.freebsd.org/~sam/FreeBSD_TDMA-20090921.pdf

