

(Atheros) Wireless in FreeBSD

Adrian Chadd
<adrian@freebsd.org>

Overview
� Basic wireless infrastructure overview
� How QoS is handled
� How the hardware is setup (in general, to do QoS)
� How the hardware implements 802.11
� Example: TDMA
� Transmission: Overheads, Bursting, Aggregation
� Transmitting and Receiving Frames
� TX Rate Control
� 11n, Rate Control

Wireless Infrastructure

Wireless Infrastructure

� Net80211
� Handles 802.11 negotiation, protocol/session handling

� Driver (eg ath(4))
� Handles TX/RX, frame completion, DMA, buffer

management, interface management
� HAL (eg ath_hal(4))

� Handles radio interfacing � register programming,
calibration etc

� Rate control (eg ath_rate, net80211_ratectl)
� Handles TX selection based on feedback from driver

QoS handling
� Net80211

� QoS/WME parameters negotiated via beacon frames
� ieee80211_classify()

� Determine the WME AC based on IPv4/IPv6 diffserv
� Each mbuf has a WME AC (ether_vtag)
� The driver then queues the frame to the relevant

hardware queue.
� .. the driver has to put it in the right queue!
� .. the 802.11e settings for the hardware queue have to be

correct!

Hardware Organisation
� Host Interface

� PCI, PCIe, USB, etc
� Radio

� TX and RX of differential signals, handles 2 and 5 GHz
conversions

� PHY
� Handles frame encoding/decoding, signal level

determination, �RX busy� for clear channel assessment
� MAC � Medium Access Controller

� Implements TX/RX DMA, encryption/decryption
� Implements the 802.11 protocol handling
� .. more to come

Media Access Controller
� Takes care of the 802.11 frames themselves
�

Media Access Controller
� PCU

� TX/RX scheduling, ACK/RTS/CTS handling, TSF (Timing
synchronisation function � 1.024ms) handling, TU
(beacon interval) handling, encryption/decryption,
DCF/PCF (coordination function), 802.11n aggregation,
Block-Ack handling

� QCU
� Handles TX DMA from the host memory to the PCU

� DCU
� Handles the distributed coordination function

� Each DCU �controls� a QCU, allowing it to TX
� This implements 802.11e priority queues

Implement 802.11
� The hardware implements 802.11 !

� PCU: global settings such as SIFS, EIFS
� RTS/CTS/ACK duration
� QCU: burst duration, AIFS, contention window min/max,

TX retry limits, back-off handling
� This implements a series of timers and state

engines which implement part of 802.11 itself

Advantages!
� The hardware provides a lot of fine grained control

over 802.11 �air� timing
� .. making it easy to do experiments with arbitration, frame

spacing, bursting, etc
� The hardware has some very nice QCU/DCU gating

features
� .. which allow traffic to be transmitted at certain times

(based on beacon TSF timestamps)
� .. this is how the TDMA solution works

� A lot is coded up in the HAL, but almost never
actually used by the driver!

Example: TDMA
� TDMA allows..

� a TX/RX pair to own a timeslice of air time
� .. so they don't need to negotiate, do contention backoff,

etc.
� It uses..

� .. a QCU with a burst time set, where the unit can TX as
much as it can fit in the time window..

� .. a timer which fires after a number of microseconds
following the beacon interval..

� .. a gating method which pauses the TX queue until the
timer fires, then automatically opens the QCU up for
transmit.

Example: TDMA
� The host simply sets it up!

� The hardware handles all of the timing, burst time
handling, contention handling (ie, none), etc

� .. all the driver does is keep the clocks in sync.
� It's likely broken in -HEAD for now, sorry!

Transmission Overheads
� 802.11 frames have fixed overheads

� Contention Avoidance/Backoff
� Preamble length
� Initial frame header is done as legacy
� RTS/CTS rates are done as legacy
� ACK frames are done as legacy

� Higher density TX encodings only affect the data
portion, not the rest of the frame

� So as you increase the TX symbol rate, the amount
of fixed overhead doesn't change

� So your real world throughput doesn't increase!

Transmission Overheads

Improving Transmission
� 802.11e

� Either negotiated between station/AP, or part of the WME
negotiation during association

� If the station wishes to transmit on a higher priority
queue, it uses different contention window parameters
(Cwmin, Cwmax, AIFS, burst time)

� 802.11e + Burst
� Again, can be negotiated as needed
� The transmitter can TX during this period without waiting

for the medium to be �idle� - it is assumed to be 100%
available for it

� Useful for VoIP, etc where latency is to be minimised

Improving Transmission
� A-MPDU � MPDU aggregation

� Part of 802.11e, but is only implemented (these days) in
802.11n

� The transmitter �bursts� many MPDU frames without
contention or waiting for SIFS / ACK

� A �block ACK� is sent at the end, indicating which sub-
frames were successfully received

� The software then retransmits whichever frames weren't
successfully transmitted

� The maximum burst length is 4ms! (due to legacy
restrictions)

Improving Transmission
� However, A-MPDU has some issues

� Tracking the retransmission window is complicated
� But luckily, not a part of this discussion!

� 4ms is a long time, but a lot of data can be squeezed
(close to theoretical maximum throughput)

� Highly noisy environments result in many, many
retransmissions

� .. so keeping the �air fair� whilst doing high throughput
aggregation can be quite difficult

� Where do you slot your VoIP traffic in when the NIC has been
handed a 4ms frame?

Transmitting frames
� In FreeBSD-HEAD:

� .. a software queue is maintained per-node and per-TID
� .. 16 TIDs for each node;
� .. WME AC's map to a single TID.
� This is required for handling A-MPDU aggregation

sessions, which is based on TID.
� The hardware then:

� .. is handed a set of frames from the software queue
� The hardware then does its own QoS, based on register

settings
� Software retransmission is done as needed

Frame Receive
� A lot of useful information is available!
� Per-frame information:

� Signal strength, received rate, CRC errors
� 11n parameters (guard interval, STBC, whether an

aggregate/burst, EVM)
� PHY errors � helps to debug noisy/busy environments

� Global information:
� Amount of time spent TX'ing, RX'ing
� Amount of time the air was �busy�, so the hardware

couldn't try TX'ing
� Useful for determining how congested the air is!

Frame Transmission
� Each frame has a lot of parameters:

� RTS/CTS, plus RTS/CTS duration and rate;
� Whether an ACK is required;
� Per-frame TX power level (TODO: not working yet!)
� Overriding the duration field, for forcing NAV updates
� Multi-rate retry: 4 attempts of ..

� Which TX rate to use
� How many times to try TX'ing
� 11n parameters � guard interval, STBC, 20/40MHz mode
� RTS/CTS enable

� 11n:
� How big the aggregate is; delimiters

Frame transmission completion
� Again, a lot of parameters are available:

� Per frame:
� Which TX rate succeeded
� How many attempts for RTS/CTS negotiation
� How many attempts at TX'ing the data (no ACK)
� �Virtual collision� with 802.11e (eg going over burst duration)
� ACK signal strength
� 11n block-ack contents, TID
� DMA status
� Encryption engine status

TX rate control
� TX rate control allows for:

� .. adapting to changing conditions
� .. which may be different for each node
� .. and may change unpredictably

� The API allows:
� Rate selection

� Choose a rate for each frame, based on the node and current
conditions

� Traffic completion
� Analyse the completion data from each frame and update

current conditions

TX rate control
� A few exist:

� ath_rate: implements onoe, amrr, sample
� Sample is the only one which supports 11n � and only in

a basic way
� It chooses a TX rate which minimises the average amount of

time a frame takes to TX, given retransmission and backoff
� ieee80211_ratectl: implements rssiadapt, amrr

� ath(4) currently doesn't use this
� .. the aim is to teach all wifi modules to use this!
� It isn't 802.11n aware!

� .. it doesn't factor into TX queue or QoS parameters
� .. it only controls TX rate selection!

11n and rate control?
� 802.11n has a large number of variables:

� MCS encoding type (BPSK, QPSK, QAM)
� Number of spatial streams
� STBC (space-time block encoding)
� TX power level
� Short or long GI (guard interval)
� Maximum aggregate length.

� FreeBSD/Linux only take into account the first two.
� It may be worthwhile adding in QoS awareness and

queue management to the rate control API
� .. since queue management influences TX performance!

What could be done?
� The hardware is powerful..

� .. but nothing (FOSS) really goes in and tries to intelligently
manage per-node frame queuing

� .. based on current air conditions, rather than just traditional
queue management techniques (eg RED, WRED, tail-drop, etc)

� Extend the rate control API to include the above?
� .. allow rate control code to tune per-node, per-TID queue

parameters
� .. have the software queue code enforce this behaviour
� .. perhaps export this to userland and allow userland TX

classifiers (eg in python) to dynamically control these TX
parameters?

� .. but the big one is this:

The worst case: too much TX?
� The hardware does frame retransmission for you

� .. but the question is: how long is the hardware spending
trying to transmit your frame?

� .. whilst it's doing this, all other TX to nodes is on hold
� .. and whilst it's TX'ing, it isn't RX'ing anything.

� .. so is one badly behaving node potentially
messing up the entire airtime, for all potential
nodes?

� FreeBSD/Linux doesn't attempt to address this particular issue
� .. either by logging useful data to establish if this is happening..
� .. or dynamically limiting it from occurring
� eg by reducing frame TX retries and doing it in software, allowing

other nodes to TX.

Summary
� The Atheros NICs handle a lot for you:

� 802.11 frame timing, transmission, retransmission
� 802.11e parameters
� Fine-grain control over when to TX frames

� Almost everything for 802.11 frame timing is a
register somewhere..
� .. and happily documented in the existing HAL code, so I

don't have to break NDA to tell you this.
� But only a small part of this is really leveraged in

FreeBSD/Linux!
� .. but I bet commercial AP vendors are using it! :)

Questions?

References

� http://archives.ece.iastate.edu/archive/00000497/01/Thesis_PrateekGangwal.pdf

� http://www.zytrax.com/tech/wireless/802_mac.htm

� http://www.eetimes.com/design/communications-design/4206282/How-throughput-enhancements-dramatically-boost-802-11n-MAC-efficiency-Part-II

� http://people.freebsd.org/~sam/FreeBSD_TDMA-20090921.pdf

