Using Machine Learning to Identify Realtime Traffic Classes

Philip Branch
Centre for Advanced Internet Architectures
Swinburne University of Technology
Melbourne, Australia

Background of Philip Branch

- Mix of industry R&D and academia
- Software engineer in Tasmania and NSW during the 80s
- University of Tasmania and Research Data Networks CRC (based at Monash University) early to mid-90s
- Late 90s, early 2000s worked for an Internet startup as a Business Analyst and for a large trans-national telecommunications equipment supplier as Development Manager for Lawful Interception systems
- PhD (Monash, 1999) Computer Systems Engineering
 - Interactive networked multimedia
Current Research Interests

- First person shooter game traffic
- Wireless networks
- Skype over WLAN
- Covert channels
- Software evolution
- Machine learning to identify realtime traffic classes

Machine learning to identify realtime traffic classes

- Goal is to identify in a reliable and robust manner traffic class
 - Motivation is Lawful Interception
 - Agencies often only interested in the fact that two parties are communicating, not the content of communication
- Has applications elsewhere
 - Quality of Service provisioning
 - Internet application statistics gathering
- Technique is to segment training flows into short (a few seconds) of sub-flows
 - Use statistics calculated on training sub-flows to train a classifier
 - Test on sub-flows extracted from other flows of the same class
 - Classifier used is Naïve Bayes or J48 to produce a classifier tree
Successes so far

- We have shown that it is possible to identify Skype and Bittorrent using machine learning techniques by observing only a part (a few seconds) of the flow
 - Better than 98% reliability in both cases
 - Use the characteristics of the traffic flow (packet lengths, inter-arrival times) as features for identification
- However there are limitations in the way that we have done this
 - Primarily make use of ‘characteristic packet lengths’
 - These can change very easily with different releases (eg Skype v3.0 to v4.0)

Would like a robust way of identifying traffic classes

- What characteristics of (say) peer to peer VoIP are unlikely to change from release to release?
- Investigating statistics associated with packet lengths and interarrival times as a basis for robust classification of traffic
 - Realtime traffic packet lengths have specific timing requirements
 - Usually a trade-off between packet size efficiency (the larger the better) and delay (the more samples per packet, the greater the delay)
 - Asymmetry
 - Some traffic types, such as games and voice with silence suppression are naturally asymmetric
 - Autocorrelation
 - How self-similar is the traffic?
Some early results …

- Excellent results for classifying Games, G.729, Skype, Data transfer within versions using these statistics

<table>
<thead>
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP (G.729)</td>
<td>0.993</td>
<td>1.000</td>
<td>0.997</td>
</tr>
<tr>
<td>Skype</td>
<td>0.994</td>
<td>0.957</td>
<td>0.975</td>
</tr>
<tr>
<td>Non-Real-Time Data (UoT)</td>
<td>0.997</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td>Game (ETPRO)</td>
<td>0.989</td>
<td>0.997</td>
<td>0.993</td>
</tr>
</tbody>
</table>

- Currently working on distinguishing Skype and Games across versions
 - Train on one game (eg Quake3) and recognise another (eg ETPRO)
 - Train on one version of skype and test on another

Some early results of version independent classification…

- Results for version independent classification using autocorrelation measures only:

Trained on Skype v3, quake3, hl2cs. Tested on Skype v2, hl2dm, etpro

Confusion matrix:

<table>
<thead>
<tr>
<th></th>
<th>Game</th>
<th>Classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skype</td>
<td>0.84</td>
<td>0.16</td>
</tr>
<tr>
<td>Game</td>
<td>0.03</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Trained on Skype v3, quake3, hl2cs. Tested on Skype v4, hl2dm, etpro

<table>
<thead>
<tr>
<th></th>
<th>Game</th>
<th>Classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skype</td>
<td>0.81</td>
<td>0.19</td>
</tr>
<tr>
<td>Game</td>
<td>0.09</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Further work

- Incorporate other statistics into cross-version classification
- Optimal subflow length for training and testing
- Other applications
 - Google talk (gtalk) another VoIP application
- Other traffic classes
 - Interactive video
- Application of technique to other areas
 - Quality of Service provisioning