

SWINBURNE UNIVERSITY OF TECHNOLOGY Literature Review Series: Delay/Rate based Congestion Avoidance in TCP

David Hayes

dahayes@swin.edu.au

Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology

Outline

Introduction Background Current TCP congestion avoidance Base measurements Quick early work overview Algorithm outlines CARD Packet pair flow control TCP-LP Vegas FAST Compound TCP DUAL Hamilton Other Conclusions Bibliography

Caia Seminar

http://www.caia.swin.edu.au

Introduction

- Promise low latency zero loss¹
- Delay based intuition:
 - delay \uparrow = queue \uparrow \implies indicates congestion
- Rate based intuition:
 - Send rate > receive rate \implies indicates congestion
- Basic questions:
 - How is congestion determined?
 - and if congested, how should cwnd be adjusted
- Issues:
 - Noise of measurements
 - Correlation of measurements with congestion

http://www.caia.swin.edu.au

Compatibility with existing TCP algorithms

¹congestion related

Caia Seminar

Background: TCP NewReno congestion avoidance

29 October, 2009

- Congestion is indicated by packet loss
- The congestion window, cwnd, is adjusted with every ack as follows:

$$w_{j+1} = \begin{cases} \beta w_j & \text{packet loss} \\ w_j + 1/w_j & \text{otherwise} \end{cases}$$

where in this case w is in packets.

- Multiplicative decrease
- Additive increase

Background: Base timing measurements

Background: Base timing measurements

- Note: Queueing at FIFO network nodes can increase or decrease the interpacket times

Background: Base rate measurements

Quick early work overview

- [Clark et al., 1985]&[Clark et al., 1987] NETBLT RFCs 996&998
- [Jacobson, 1988]^a footnote on connectionless rate based AIMD.
- [Jain, 1989]^b normalised delay gradient.
- [Wang and Crowcroft, 1992]^c DUAL algorithm.
- [Brakmo and Peterson, 1995]^d TCP Vegas.

^aV. Jacobson, "Congestion avoidance and control," in *SIGCOMM '88: Symposium proceedings on Communications architectures and protocols.* New York, NY, USA: ACM, 1988, pp. 314–329

^bR. Jain, "A delay-based approach for congestion avoidance in interconnected heterogeneous computer networks," *SIGCOMM Comput. Commun. Rev.*, vol. 19, no. 5, pp. 56–71, 1989

^cZ. Wang and J. Crowcroft, "Eliminating periodic packet losses in the 4.3-Tahoe BSD TCP congestion control algorithm," *SIGCOMM Comput. Commun. Rev.*, vol. 22, no. 2, pp. 9–16, Apr. 1992

^dL. S. Brakmo and L. L. Peterson, "TCP Vegas: end to end congestion avoidance on a global internet," *IEEE J. Sel. Areas Commun.*, vol. 13, no. 8, pp. 1465–1480, Oct.

Algorithms: CARD [Jain, 1989]

D

- CARD Congestion Avoidance using RTT Delay
- Uses queueing theory to determine knee of throughput graph
- Delay gradient, drtt/dw
- Conditional increase/decrease of window based on Normalised Delay Gradient:

$$\mathsf{NDG} = \left(\frac{\mathsf{rtt}_j - \mathsf{rtt}_{j-1}}{\mathsf{rtt}_j + \mathsf{rtt}_{j-1}}\right) \left(\frac{w_j + w_{j-1}}{w_j - w_{j-1}}\right)$$

and

$$w_{j+1} = egin{cases} eta_j w_j & \mathsf{NDG} > 0 \ w_j + lpha & \mathsf{otherwise} \end{cases}$$

Algorithm derived using D/D/1 queues
Use in stochastic networks require enhancements

Algorithms: TCP-LP [Kuzmanovic and Knightly 2006]

http://www.caia.swin.edu.au AAAD dahayes@swin.edu.au

Caia Seminar

Algorithms: FAST [Wei et al., 2006]

- Enhanced Vegas type algorithm
- MIMD AIMD to slow for high BDP networks
- Uses delay as a rich (non binary) congestion indicator
- Cwnd is updated at regular time intervals (Δt) :

$$w_{t+\Delta t} = \min\left\{2w_t, \ \gamma\left(\frac{\mathsf{rtt}_{\min,i}}{\overline{\mathsf{rtt}}_i}w_t + \alpha\right) + (1-\gamma)w_t\right\}$$

For MIMD, $\alpha(w_t, q_i)$

Caia Seminar

 increase is proportional to the size of cwnd and the network queueing delay.

Algorithms: Compound TCP [Tan et al., 2006]

http://www.caia.swin.edu.au

- efficiency
- RTT fairness and TCP fairness
- In MSW Vista and 7
- Uses Vegas' rates: diff = (expected actual)rtt_{min}
- Provides NewReno+ performance throughput
 - The send window, win_j, is calculated as: win_i = min(w_i + dwnd_i, awnd_i)
 - where *w_j* is NewReno's cwnd
 - and dwnd, is the delay based window.
 - and awnd_j is the receivers advertised window.

dahayes@swin.edu.au

29 October, 2009

13

Algorithms: Compound TCP continued

The delay window is calculated as follows:

$$\mathsf{dwnd}_{j+1} = \begin{cases} \mathsf{dwnd}_j + \alpha \left((\mathsf{win}_j)^k - 1 \right)^+ & \mathsf{diff} < \gamma \\ \left(\mathsf{dwnd}_j - \zeta \mathsf{diff} \right)^+ & \mathsf{diff} \ge \gamma \\ \left(\mathsf{win}_j (1 - \beta) - \frac{\mathsf{cwnd}}{2} \right)^+ & \mathsf{on} \mathsf{loss} \end{cases}$$

- Increase rule, where $\alpha = \frac{1}{8}$ is the multiplicative increase factor relative to window size (*k* = 0.75)
- Delay decrease rule, relative to diff (the queued data)
- Loss decrease rule, $\beta = 0.5$

Caia Seminar

requires accurate estimate of rtt_{min}

note: win_j = min(w_j + dwnd_j, awnd_j)

dahayes@swin.edu.au

29 October, 2009

Algorithms: DUAL [Wang and Crowcroft, 1992]

http://www.caia.swin.edu.au

- Designed to supplement loss based congestion control
- Delay based measurements provide "slow tuning" of cwnd every 2nd RTT

$$m{w} \leftarrow egin{cases} eta m{w} & \mathsf{rtt} > rac{(\mathsf{rtt}_{\mathsf{min}} + \mathsf{rtt}_{\mathsf{max}})}{2} \ m{w} & \mathsf{otherwise} \end{cases}$$

where $\beta = \frac{7}{8}$

- Attempts to keep network buffers half full
- Smaller multiplicative decrease
- Relies on accurate estimates of rtt_{min} and rtt_{max}

Designed for coexistence with loss based TCP
Inspired by Active Queueing techniques (as was PERT [Kotla and Reddy, 2008])

Algorithms: Others of Interest

- [King et al., 2005] TCP-Africa
 - Two modes: Fast delay based, and slow NewReno based.
 - Compound TCP is based on some of Africa's ideas
- [Baiocchi et al., 2007] YeAH-TCP
 - Yet Another Highspeed TCP
 - Two modes like Africa
 - Provides performance improvements on lossy paths.
- A number of schemes propose traffic shaping TCP's send rate
 - [Karandikar et al., 2000] ABR like
 - [Wu et al., 2002] leaky bucket
 - [Abendroth et al., 2002] improved leaky bucket for network burstiness.

Conclusions

- Delay can provide an earlier indication of congestion than loss
- As such it will become important in high BDP networks:
 - Even aggressive loss based protocols have very long cwnd oscillations and cannot use the available bandwidth.
- Issues:
 - Compatibility with existing TCPs
 - Inaccurate estimates of rtt_{min} and rtt_{max}
- Send and receive rates are hard to measure (except in FQing networks)
 - Rate based flow control?
- CAIA's work in the next seminar

Bibliography I

Caia Seminar

29 October, 2009

[Clark et al., 1985] D. Clark, M. Lambert, and L. Zhang, "NETBLT: A bulk data transfer protocol," RFC 969, Dec. 1985, obsoleted by RFC 998. [Online]. Available:

http://www.caia.swin.edu.au

http://www.ietf.org/rfc/rfc969.txt

[Clark et al., 1987] D. Clark, M. Lambert, and L. Zhang, "NETBLT: A bulk data transfer protocol," RFC 998 (Experimental), Mar. 1987. [Online]. Available: http://www.ietf.org/rfc/rfc998.txt

[Jacobson, 1988] V. Jacobson, "Congestion avoidance and control," in *SIGCOMM '88: Symposium proceedings on Communications architectures and protocols*. New York, NY, USA: ACM, 1988, pp. 314–329

Bibliography II

[Jain, 1989] R. Jain, "A delay-based approach for congestion avoidance in interconnected heterogeneous computer networks," *SIGCOMM Comput. Commun. Rev.*, vol. 19, no. 5, pp. 56–71, 1989

[Wang and Crowcroft, 1992] Z. Wang and J. Crowcroft, "Eliminating periodic packet losses in the 4.3-Tahoe BSD TCP congestion control algorithm," *SIGCOMM Comput. Commun. Rev.*, vol. 22, no. 2, pp. 9–16, Apr. 1992

[Keshav, 1994] S. Keshav, "Packet-pair flow control," Only available on web http:

//www.cs.cornell.edu/skeshav/doc/94/2-17.ps, 1994

Bibliography III

Caia Seminar

29 October, 2009

[Brakmo and Peterson, 1995] L. S. Brakmo and L. L. Peterson "TCP Vegas: end to end congestion avoidance on a global internet," *IEEE J. Sel. Areas Commun.*, vol. 13, no. 8, pp. 1465–1480, Oct. 1995

http://www.caia.swin.edu.au

[Wei et al., 2006] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, "FAST TCP: Motivation, architecture, algorithms, performance," *IEEE/ACM Trans. Netw.*, vol. 14, no. 6, pp. 1246–1259, Dec. 2006

[Kuzmanovic and Knightly, 2006] A. Kuzmanovic and E. Knightly, "TCP-LP: low-priority service via end-point congestion control," *IEEE/ACM Trans. Netw.*, vol. 14, no. 4, pp. 739–752, Aug. 2006

Bibliography IV

[Tan et al., 2006] K. Tan, J. Song, Q. Zhang, and M. Sridharan "A compound TCP approach for high-speed and long distance networks," in *INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings*, Apr. 2006, pp. 1–12

[Budzisz et al., 2009] L. Budzisz, R. Stanojevic, R. Shorten, and F. Baker, "A strategy for fair coexistence of loss and delay-based congestion control algorithms," *IEEE Commun. Lett.*, vol. 13, no. 7, pp. 555–557, Jul. 2009

[Kotla and Reddy, 2008] K. Kotla and A. Reddy, "Making a delay-based protocol adaptive to heterogeneous environments,"

Bibliography V

Caia Seminar

23

29 October, 2009

in *Quality of Service, 2008. IWQoS 2008. 16th International Workshop on*, Jun. 2008, pp. 100–109

http://www.caia.swin.edu.au

[King et al., 2005] R. King, R. Baraniuk, and R. Riedi, "TCP-africa: An adaptive and fair rapid increase rule for scalable TCP," in *IEEE INFOCOM 2005*, 2005, pp. 1838–1848

[Baiocchi et al., 2007] A. Baiocchi, A. P. Castellani, and F. Vacirca, "YeAH-TCP: Yet another highspeed TCP," in *PFLDnet* 2007, Feb. 2007. [Online]. Available: http: //infocom.uniromal.it/~vacirca/yeah/yeah.pdf

[Karandikar et al., 2000] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, "TCP rate control," *SIGCOMM Comput. Commun. Rev.*, vol. 30, no. 1, pp. 45–58, Jan. 2000

Bibliography VI

[Wu et al., 2002] C.-S. Wu, M.-H. Hsu, and K.-J. Chen, "Traffic shaping for tcp networks: Tcp leaky bucket," in *TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering*, vol. 2, Oct. 2002, pp. 809–812

[Abendroth et al., 2002] D. Abendroth, K. Below, and U. Killat, "The interaction between TCP and traffic shapers - clever alternatives to the leaky bucket," in *Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE*, vol. 2, Nov. 2002, pp. 1507–1511

Caia Seminar

http://www.caia.swin.edu.au

dahayes@swin.edu.au

29 October, 2009 25