A Renaissance in Network Measurement

- Not just monitoring
 - Traffic patterns: link, path, node, applications, management
 - Quality of Service: delay, loss, reliability
 - Protocol dynamics: TCP, VoIP, ..
 - Network infrastructure: routing, security, DNS, bottlenecks, latency..

- Knowing, understanding, improving network performance

- Data centric view of networking
 - Must arise from real problems, or observations on data
 - Abstractions based on data
 - Results validated by data
 - In fact: the scientific method in networking
 - Not just getting numbers, *Discovery*
THE RISE OF MEASUREMENT

- Papers between 1966-87 (P.F. Pawlita, ITC-12, Italy)
 - Queueing theory: several thousand
 - Traffic measurement: around 50

- Now have dedicated conferences:
 - Passive and Active Measurement Conference (PAM) 2000 …
 - ACM Internet Measurement Conference (IMC) 2001 …

IMC 2010 : MELBOURNE!

- Conference: ~ Nov 1-3
- Deadline: ~ May 1
- Venue: BMW Edge at Federation Square
IMC 2010 : MELBOURNE!

- Conference: ~ Nov 1-3
- Deadline: ~ May 1
- Venue: BMW Edge at Federation Square

ACTIVE VERSUS PASSIVE MEASUREMENT

- Typical Passive Aims
 - “At-a-point” or “Network Core”
 - Link utilisation, Link traffic patterns, Server workloads
 - Long term monitoring:
 - Dimensioning, Capacity Planning, Source modelling
 - Engineering view: Network performance

- Typical Active Aims
 - “End-to-End” or “Network edge”
 - End-to-End Loss, Delay, Connectivity, “Discovery” ….
 - Long/short term monitoring: Network health; Route state
 - Internet view: Application performance and robustness
TOMO - GRAPHY

Tomos section

Graphia writing
EXAMPLES OF TOMOGRAPHY

- Atom probe tomography (APT)
- Computed tomography (CT) (formerly CAT)
- Cryo-electron tomography (Cryo-ET)
- Electrical impedance tomography (EIT)
- Magnetic resonance tomography (MRT)
- Optical coherence tomography (OCT)
- Positron emission tomography (PET)
- Quantum tomography
- Single photon emission computed tomography (SPECT)
- Seismic tomography
- X-ray tomography

COMPUTED TOMOGRAPHY
Network Tomography

Began with Vardi [1996]

"Network Tomography: estimating source-destination traffic intensities from link data"

Classes of Inversion Problems

- End-to-end measurements \rightarrow internal metrics
- Internal measurements \rightarrow path metrics

The Metrics

- Link Traffic (volume, variance) (Traffic Matrix estimation)
- Link Loss (average, temporal)
- Link Delay (variance, distribution)
- Link Topology
- Path Properties (network "kriging")
- Joint problems (use loss or delay to infer topology)

The Early Literature (Incomplete!)

- Traffic Matrix Tomography
 - AT&T (Zhang, Roughan, Donoho et al.)
 - Sprint ATL (Nucci, Taft et al.)

- Loss/Delay/Topology Tomography
 - AT&T (Duffield, Horowitz, Lo Presti, Towsley et al.)
 - Rice (Coates, Nowak et al.)

- **Evolution:**
 - loss, delay \rightarrow topology
 - Exact MLE \rightarrow EM MLE \rightarrow Heuristics
 - Multicast \rightarrow Unicast (striping)
Active Probing versus Network Tomography

- **Active Probing**
 - Typically over a *single path*
 - Use tandem FIFO queue model
 - Exploit discrete packet effects in *semi-heuristic queueing analysis*
 - Typical metrics: link capacities, available bandwidth

- **Network Tomography**
 - Typically “network wide”: multiple destinations and/or sources
 - Simple black box node/link models, *strong assumptions*
 - Classical inference with twists
 - Typical metrics: per link/path loss/delay/throughput

Broader Vision of Network Inference

- **Active Probing**
 - solving formal problems in inverse queueing
 - seeking optimal probing methods and methodologies

- **Network Tomography**
 - black box models -> queueing compatible models
 - trees -> general network topologies

- **Pathways to Impact**
 - unimplementable research analysis -> tools for consumer watchdogs
 - specialist software -> smart phone apps

- **Networks/Measurement Disconnect**
 - measurement friendly networks (building tomography into the NBN)
 - underlying timing infrastructure (RADclock project)
TWO PROBLEMS IN LOSS TOMOGRAPHY OVER TREES

• Removing the temporal independence assumption
 Arya, Duffield, Veitch, 2007

• Exploiting Sparsity
 Arya, Veitch, 2009 (ongoing)

LOSS TOMOGRAPHY USING MULTICAST PROBING
The Loss Model

Stochastic loss process on link k acts deterministically on probes arriving to $f(k)$

Node and Link Processes

- $\{X_k(i) : i \in Z\}$: loss process on link k
- $\{Z_k(i) : i \in Z\}$: probe 'bookkeeping' process for node k

\[
\begin{array}{c}
\text{f(k)} \quad X_{f(k)} \quad 1 \quad 0 \quad 0 \quad 1 \quad \ldots \\
\text{Z_k} \quad 1 \quad 1 \quad 0 \quad 0 \quad \ldots \\
\text{X_k} \quad 1 \quad 0 \quad 0 \quad 0 \quad \ldots \\
\end{array}
\]

- Link loss process
- Bookkeeping process

\[X_k(i) = Z_k(i)X_{f(k)}(i)\]

\[
\begin{align*}
\Pr[X_k(i) = b | X_{f(k)}(i) = 1] &= \Pr[Z_k(i) = b], & b \in \{0, 1\} \\
\Pr[X_k(i) = 0 | X_{f(k)}(i) = 0] &= 1
\end{align*}
\]

Adding Probability: Loss Dependencies

Independent Probes

- Spatial:
 - loss processes on different links independent
- Temporal:
 - losses within each link independent

Model reduces to a single parameter per link, the

\[\text{passage or transmission probabilities } \{\alpha_k\}\]
FROM LINK PASSAGE TO PATH PASSAGE PROBABILITIES

Path probabilities: only ancestors matter

\[X_k(i) = Z_k(i)X_f(k)(i) = \prod_{j \in \alpha(k)} Z_j(i) \]

Let \[A_k = \Pr[X_k(i) = 1] \]

\[A_k = \alpha_kA_f(k) = \prod_{j \in \alpha(k)} \alpha_j \]

Sufficient to estimate path probabilities

ACCESSING INTERNAL PATHS

Aim: estimate \(A_k(i) \)

\[Y_k(i) = X_b(i) \lor X_c(i) \]

Let \[\gamma_k(i) = \Pr[Y_k(i) = 1] \]

\[\beta_b(i) = \Pr[X_b(i) = 1 | X_k(i) = 1] = \frac{A_b(i)}{A_k(i)} \]

\[\gamma_k(i) = A_k(i)\{1 - (1 - \beta_a(i))(1 - \beta_b(i))\} \]

Obtain a quadratic in \(A_k(i) \)

Original MINC loss estimator for binary tree

[Cáceres, Duffield, Horowitz, Towsley 1999]
Temporal Independence: How Far to Relax?

Before
- Spatial: link loss processes independent
- Temporal: link loss processes Bernoulli
- Parameters: link passage probabilities $\{\alpha_k\}$

After
- Spatial: link loss processes independent
- **Temporal:** link loss processes stationary, ergodic
- **Parameters:** joint link passage probabilities $\{\alpha_k(I)\}$ over index sets $I = \{i_1, i_2, \ldots, i_s\}$
 - Full characterisation/identification possible!
TARGET LOSS CHARACTERISTIC

- Loss run-length distribution (density, mean)

\[\text{Loss-run length} \]

• Importance
 • Impacts delay sensitive applications like VoIP (FEC tuning)
 • Characterizes bottleneck links

ACCESSING TEMPORAL PARAMETERS: GENERAL PROPERTIES

- Sufficiency of joint link passage probabilities

 \[\Pr[Z_k(i) = 0, Z_k(i + 1) = 1] = \Pr[Z_k(i) = 1] - \Pr[Z_k(i) = 1, Z_k(i + 1) = 1] \]

• Mean Loss-run length

\[E[L_k] = \frac{\Pr[Z_k(i) = 0]}{\Pr[Z_k(i) = 0, Z_k(i + 1) = 1]} = \frac{1 - \Pr[Z_k(i) = 1]}{\Pr[Z_k(i) = 1] - \Pr[Z_k(i) = 1, Z_k(i + 1) = 1]} \]

• Loss-run distribution

\[\Pr[L_k \geq j] = \frac{\Pr[Z_k(i) = 1, \ldots, Z_k(i + j - 1) = 1] - \Pr[Z_k(i) = 1, \ldots, Z_k(i + j) = 1]}{\Pr[Z_k(i) = 1] - \Pr[Z_k(i) = 1, Z_k(i + 1) = 1]} \]
Joint Passage Probabilities

- Joint **link** passage probability
 \[\alpha_k(I) = \text{Pr}[Z_k(I) = 1] \]
 e.g. \(\alpha_k(\{1, 2\}) = \alpha_k(\{i, i+1\}) \)

- Joint **path** passage probability
 \[A_k(I) = \text{Pr}[X_k(I) = 1] = A_{f(k)}(I)\alpha_k(I) \]

Estimation: Joint Path Passage Probability

\[Y_k(I) = \bigvee_{\gamma_r \in R_k} X_r(I) \]
\[\gamma_k(I) = \text{Pr}[Y_k(I) = 1] \]
\[\beta_k^1(I, B) = \text{Pr}[\gamma_k^1(I) = B | X(k)(I) = 1] \]
\[\gamma_k^1(I) = A_k(I) \beta_k^1(I, 1) \]
\[\gamma_k^2(I) = A_k(I) \beta_k^2(I, 1) \]
\[\gamma_k(I) = A_k(I) \left\{ 1 - (1 - \beta_k^1(I, 1)) \cdot (1 - \beta_k^2(I, 1)) \right\} + \sum_{B_1 \neq 1, B_2 \neq 1 \atop B_1 \lor B_2 = 1} \beta_k^1(I, B) \beta_k^2(I, B) \]
\[\Rightarrow \tilde{A}_k(I) = g(\gamma_k(I), \tilde{\gamma}_k^1(I'), \tilde{\gamma}_k^2(I')) , \quad I' \subseteq 1 \]
Estimation: Joint Path Passage Probability

- Estimation of $A_k(I)$ in general trees
 - Requires solving polynomials with degree equal to the degree of node k
 - Numerical computations for trees with large degree
 - Recursion over smaller index sets

- Simpler variants
 - Subtree-partitioning
 - Requires solutions to only linear or quadratic equations
 - No loss of samples
 - Also simplifies existing MINC estimators
 - Avoid recursion over index sets by considering only subsets of receiver events which imply $X_k(I) = 1$

Simulation Experiments

- Setup
 - Loss process
 - Discrete-time Markov chains
 - On-off processes: pass-runs geometric, loss-runs truncated Zipf
 - Estimation
 - Passage probability $\alpha_k(\{1\}) = \alpha_k[1]$
 - Joint passage probability for a pair of consecutive probes $\alpha_k(\{1,2\}) = \alpha_k[11]$
 - Mean loss-run length: $\mu_k = E[L_k] = \frac{1 - \alpha_k[1]}{\alpha_k[1] - \alpha_k[11]}$
 - Relative error: $\left| \hat{\theta} - \theta \right| / \theta$
EXPERIMENTS

• Estimation for shared link in case of two-receiver binary tree

\[\alpha[1] \quad \alpha[11] \]

Relative Error vs. Mean loss-run length

Markov chain

On-off process

EXPERIMENTS

• Estimation for shared link in case of two-receiver binary tree, continued..

\[\mu \]

Relative Error vs. Mean loss-run length

\[\alpha[1] = 5\%, \mu = 3.5 \]

Markov chain

On-off process
EXPERIMENTS

- Estimation of μ for larger trees

Trees taken from router-level map of AT&T network produced by Rocketfuel (2253 links, 731 nodes)

Random shortest path multicast trees with 32 receivers. Degree of internal nodes from 2 to 6, maximum height 6

VARIANCE

- Estimation for shared link in case of tertiary tree

GM: general temporal
GS: subtree version
SM: simplified OR
SS: subtree version
SE: subtree & AND
CONCLUSIONS

• Estimators for temporal loss parameters, in addition to loss rates
 • Estimation of any joint probability possible for a pattern of probes

• Class of estimators to reduce computational burden
 • Subtree-partition: simplifies existing MINC estimators

• Future work
 • Asymptotic variance
 • MLE for special cases (Markov chains)
 • Hypothesis tests
 • Experiments with real traffic

TWO PROBLEMS IN LOSS TOMOGRAPHY OVER TREES

• Removing the temporal independence assumption
 Arya, Duffield, Veitch, 2007

• Exploiting Sparsity
 Arya, Veitch, 2009 (ongoing)
CONCLUSIONS

- Network Tomography has many guises and flavours
- Many interesting problems remain!

Thank you