

802.11e, QoS-supporting WLANs standard

Suong Hong Nguyen
Centre for Advanced Internet Architectures

Overview

- Why WLANs?
- Why 802.11e?
- Features of 802.11e
- Modelling 802.11e
- Example of optimizing 802.11e

Why 802.11e

 802.11 can not provide different QoS for different types of traffic.

802.11e

- An QoS extension to 802.11
 - □ QoS guarantee
 - ☐ HCCA (HCF-controlled channel access):
 - □ Polling based
 - ☐ rarely implemented
 - □ QoS classification
 - □ EDCA (Enhanced Distributed Channel Access):
 - □ Contention-based
 - □ Common implementation

AIFS differentiation

■ Reserve channel slot for high priority flow: protected slot

- Network congestion increases -> percentage of protected slots increases
- Hard for modeling because of non-homogeneous slot

http://caia.swin.edu.au hsnouven@swin.edu.au 29 August 2009 Page

AIFS differentiation

- Scenario
 - □ Number of stations: N 802.11b DCF and N EDCA
 - ☐ AIFS EDCA = 1
 - □ DCF can approximated as using AIFS = 3
 - ☐ Same CWmin = 31
 - ☐ Saturation condition.

AIFS differentiation

■ Bianchi, 2005

Figure . DCF vs. EDCA throughput with AIFS differentiation.

http://caia.swin.edu.au hsnguyen@swin.edu.au 29 August 2009 Page 1

TXOP differentiation

■ The max amount of time a STA can transmit once gaining channel access

- Large TXOP: more throughput, less delay
- Doubling TXOP roughly double throughput
- Modeling: different packet sizes.

EDCA parameters

http://caia.swin.edu.au hsnguyen@swin.edu.au 29 August 2009 Page 1

Modeling EDCA

- Input: 4 types of traffic with AIFS, CW, and TXOP differentiation
- Saturated condition
 - □ Method
 - ☐ Markov chain: L.Xiong, 2007; J.Y.Lee, 2009.
 - ☐ Mean-value: Y.Lin, 2006; D.Xu, 2008.
 - □ Output:
 - □ Throughput
 - □ Access delay

Modeling EDCA

- Non-saturated condition:
 - □ Method:
 - ☐ Markov chain: B.Xiang, 2007; J.Hu, 2008.
 - □ Output:
 - □ Throughput
 - □ Delay
 - □ Loss probability

http://caia.swin.edu.au hsnguyen@swin.edu.au 29 August 2009 Page 15

Example of optimizing 802.11e EDCA

■ Scenario: stations with different access rate

- Objective: stations have the same throughput for the same AC.
- Algorithm: adaptive TXOP which is inversely proportional to access rate.

Fairness

■ Result

http://caia.swin.edu.au hsnguyen@swin.edu.au 29 August 2009 Page 1

Conclusion

- 802.11e can support QoS
- High priority: small AIFS, small CW, and high TXOP
- Fine tuning MAC parameters to achieve an objective

References

- IEEE 802.11 standard, 2007.
- G. Bianchi and etc., "Understanding 802.11e contention-based prioritization mechanisms and their coexistence with legacy 802.11 stations," IEEE Network, pp. 28-34, 2005.
- J. Y. Lee and H. S. Lee, "A Performance Analysis Model for IBEE 802.11e EDCA Under Saturation Condition," IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 57, no. 1, 2009.
- I. Xiong and G. Mao, "Saturated throughput analysis of IEEE 802.11e EDCA," Computer Networks 51, pp. 3047-3068, 2007.
- Y. Lin and V. W. S. Wong, "Saturation Throughput of IEEE 802.11e EDCA based on mean value analysis," IEEE Wireless Communications and Networking Conference 2006, vol. 1, pp. 475-480, 2006.
- D. Xn, T. Sakurai, and H. L. Vu, "An Access Delay Model for IRRE 802.11e EDCA," IRRE transactions on mobile computing, vol. 8, no. 2, pp. 261–275, 2009.
- B. Xiang, M. Yu-Ming, and X. Yun, "Performance Investigation of IEEE 802.11e EDCA under non-saturation condition based on the MG/I/K model," 2007 Second IEEE Conference on Industrial Electronics and Applications (ICIGA 2007), art. no. 4318419, pp. 298-304, 2007.
- [24] J. Hu, G. Min, M. E. Woodward, and W. Jia, "A comprehensive analytical model for IEEE 802.11e QoS differentiation schemes under unsaturated traffic loads," IEEE International Conference on Communications 2008, art. no. 4533088, pp. 241-245, 2008.
- H. Kim, and Y.J. Suh, "ATXOP: An adaptive TXOP based on the data rate to guarantee fairness for IHSB 802.11e wireless LANs," IHSB, pp. 2678-2682, 2004.

