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• Recent advances in mathematical modeling.

• Implicit approximations made to enable analytic tractability.

• Directly testing these hypotheses with test-bed data.

• Summary, an epilogue and conclusions.
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The 802.11 MAC flow diagram
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Figure: Saturated 802.11 MAC operation
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• Mean-field Markov models: seminal work by Bianchi (IEEE
Comms L. 1998, IEEE JSAC 2000).
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Bianchi’s approach

Observation: each individual station’s impact on overall network
access is small.
Mean field approximation: assume a fixed probability of collision at
each attempted transmission p, irrespective of the past.
Each station’s back-off counter then a Markov chain.



Mean-field Markov Model’s Chain
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Figure: Individual’s Markov Chain if p known
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Telecomm. Sys., 2006; K.D. and Ganesh, IEEE Comm. Lett.,
2007.

• 802.11e, Saturated: Kong, Tsang, Bensaou and Gao, IEEE
JSAC, 2004; Robinson and Randhawa, IEEE JSAC, 2004.
Unsaturated: Zhai, Kwon and Fang, WCMC, 2004. Chen,
Xhai, Tian and Fang, IEEE Trans. W. Commun., 2006.

• 802.11s, unsaturated: K.D., Leith, Li and Malone, IEEE
Comm. Lett., 2006.
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Standard approach to model verification

ASK: Do the model throughput and delay predictions match well
with results from simulated system?
NOT: Make the approximations explicit hypotheses and check
them directly.

A warning from hydrology

”The modelling technology has far outstripped the level of our

understanding of the physical processes being modeled. Making

use of this technology then requires that the gaps in the factual

knowledge be filled with assumptions which, although often

appearing logical, have not been verified and may sometimes be

wrong”.

Vit Klemes, WCP-98, WHO, 1985.



Test bed

Figure: PC as AP, 1 PC and 9 PC-based Soekris Engineering net4801 as
clients. All with Atheros AR5215 802.11b/g PCI cards. Modified
MADWiFi wireless driver for fixed 11 Mbps transmissions and specified
queue-size.
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All models:
• Ck = 1 if kth transmission results in collision.
• Ck = 0 if kth transmission results in success.
Assumptions:

• (A1) {Ck} is an independent sequence;

• (A2) {Ck} are identically distributed with P(Ck = 1) = p.

Testing (A1): {Ck} independent
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Figure: Saturated C1, . . . ,CK normalized auto-covariances. Experimental
data, N = 2, 5, 10, K = 2500k, 1200k, 711k.



Testing (A1): {Ck} independent
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Figure: Unsaturated, big buffer C1, . . . ,CK normalized auto-covariances.
Experimental data, N = 2, 5, 10, K = 1800k, 750k, 380k.
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Testing (A2): {Ck} identically distributed

Record the backoff stage at which the attempt was made.
Probability pi of collision given backoff stage i .
Assumption (A2): pi = p for all i .
MLE

p̂i =
#collisions at back-off stage i

#transmissions at back-off stage i
.

Hoeffding’s inequality (1963):

P(|p̂i − pi | > x) ≤ 2 exp (−2x(#transmissions at back-off stage i)) .

To have 95% confidence that |p̂i − pi | ≤ 0.01 requires 185
attempted transmissions at backoff stage i .

Testing (A2): {Ck} identically distributed
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Figure: Saturated collision probabilities. Experimental data.



Testing (A2): {Ck} identically distributed
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Figure: Unsaturated, big buffer collision probabilities. Experimental data.

What are the big-buffer hypotheses?

Big-buffer models:
• Qk = 1 if packet waiting after kth successful transmission.



What are the big-buffer hypotheses?

Big-buffer models:
• Qk = 1 if packet waiting after kth successful transmission.
• Qk = 0 if no packet waiting after kth successful transmission.

What are the big-buffer hypotheses?

Big-buffer models:
• Qk = 1 if packet waiting after kth successful transmission.
• Qk = 0 if no packet waiting after kth successful transmission.
Assumptions:

• (A3) {Qk} is an independent sequence;



What are the big-buffer hypotheses?

Big-buffer models:
• Qk = 1 if packet waiting after kth successful transmission.
• Qk = 0 if no packet waiting after kth successful transmission.
Assumptions:

• (A3) {Qk} is an independent sequence;

• (A4) {Qk} are identically distributed with P(Qk = 1) = q.

Testing (A3): {Qk} independent
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Figure: Unsaturated, big buffer queue-non-empty sequence normalized
auto-covariances. Experimental data. K = 1700k, 720k, 360k.



Testing (A4): {Qk} identically distributed
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Figure: Unsaturated, big buffer queue-non-empty probabilities.
Experimental data. (Note the large y-range!)
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What are the 802.11e hypotheses?

Models with different AIFS values:
• Hk is length of kth stuck in a hold-state.
Assumptions:

• (A5) {Hk} is an independent sequence;

• (A6) {Hk} are identically distributed with a distribution that
can be determined from a stopping time problem.



Testing (A5): {Hk} independent
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stations, D = 2, 4 &8. K = 1700k, 1200k, 850k. ns-2 data

Testing (A6): {Hk} specific distribution
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Figure: Hold state distributions, D = 2, 12. ns-2 data.
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Kolmogorov-Smirnov test accepts fit for K of the order 10, 000;
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Kolmogorov-Smirnov test accepts fit for K of the order 10, 000;
rejects it for K of the order 1, 000, 000.
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What are the 802.11s hypotheses?

Mesh model(s) assume:
• Dk is kth inter-departure time.
Assumptions:

• (A7) {Dk} is an independent sequence;

• (A8) {Dk} are exponentially distributed.

Summary

Assumption Sat. Small buf. Big buf.

(A1) {Ck} indep. X X X

(A2) {Ck} i. dist. X X X/×

(A3) {Qk} indep. - - X/×

(A4) {Qk} i. dist. - - ×

(A5) {Hk} indep. X/× - -

(A6) {Hk} dist. X - -

(A7) {Dk} indep. X X X

(A8) {Dk} exp. dist. × X X

Table: {Ck} collision sequence; {Qk} queue-occupied sequence; {Hk}
hold sequence; {Dk} inter-departure time sequence.
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K. D. Huang, K.D & D. Malone, Tech. Report.
(Preliminary report: K. D. Huang, K.D, D. Malone & D. Leith,
IEEE PIMRC 2008.)

Epilogue: Impact of erroneous hypotheses?
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Figure: Theory & ns-2 data.

K. D. Huang & K.D, IEEE Comms Letters 2009.

Conclusions

Assumption Sat. Small buf. Big buf.

(A1) {Ck} indep. X X X

(A2) {Ck} i. dist. X X ×

(A3) {Qk} indep. - - ×

(A4) {Qk} i. dist. - - ×

(A5) {Hk} indep. X/× - -

(A6) {Hk} dist. X - -

(A7) {Dk} indep. X X X

(A8) {Dk} exp. dist. × X X



Conclusions

Assumption Sat. Small buf. Big buf.

(A1) {Ck} indep. X X X

(A2) {Ck} i. dist. X X ×

(A3) {Qk} indep. - - ×

(A4) {Qk} i. dist. - - ×

(A5) {Hk} indep. X/× - -

(A6) {Hk} dist. X - -

(A7) {Dk} indep. X X X

(A8) {Dk} exp. dist. × X X

Reports available at:

http://www.hamilton.ie/ken duffy


