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Modelling of game traffic

 Goals are

 Understanding game traffic 

 Using our understanding to

 Predicting what game traffic will look like for new games

 Predict how game traffic will change as the number of players 

increases

 Main question is

 If we have statistics of 2 and 3 player games, can we predict traffic statistics 

of 4, 5, 6, … player games?

 Knowing the mean, variance and Probability Mass Function (histogram) of 

games with small numbers of players can we predict the same for games 

with larger numbers of players

 Can we model game traffic?
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Why not just look at the source 

code?

 We have for some games

 But usually source code is not available

 Source code (where available) supports our assumptions

 Game traffic highly compressed

 Game engine acts as a linear system that maps player input to output

 In other words, game traffic behaviour is driven by random player 

behaviour suitable for modelling with Stochastic methods
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First Person Shooter Games

Game server

Game clients
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First Person Shooter Games

 FPS Games client-server architecture

 Traffic from the clients transmitted to the server

 Server processes inputs from clients and determines 

consequences

 Eg explosions, game points, character deaths etc

 Random variables of interest include

 Client to server packet rates

 Client to server packet lengths

 Server to client packet rates

 Server to client packet lengths

 Server to client packet lengths of most interest

 Detailed analysis of game traffic from seven different games

 Q3, Q4, ETPro, HLDM, HLCS, HL2DM and HL2CS
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Model of game traffic

 Assumptions

 The nature of game play for individual players does not change significantly 

regardless of the number of players.

 Players have similar behaviour. 

 Game software compresses its output.

 From the assumptions we can make a number of predictions

 N-player game statistics should be predictable from 2 and 3 player game 

statistics, for example

 The probability distribution of packet lengths of a 5-player can be 

predicted from the prob. dist of a 2- and 3-player games

 X5 = X2 + X3

 Statistics to evaluate are the mean, variance and Probability Mass Function

 Mean and Variance should increase linearly as number of players increase

 PMFs should be predictable from X2 and X3

 Eg fx5 should be the convolution of  fx2 and fx3
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Time independent behaviour
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Time varying behaviour

 Autocorrelated nature of game traffic not captured by simple 

probability mass functions

 We would expect game traffic to exhibit some autocorrelation

 Periods of intense actions last for seconds

 Will generate trains of large packets

 Quiet periods also last for seconds

 Will generate trains of short packets

 Would expect that the length of the current packet will be a good predictor 

of successive packets

 In other words we would expect to see some autocorrelation between 

packet lengths

Centre for Advanced Internet Architectures     Philip Branch    http://caia.swin.edu.au/
10

Autocorrelation functions of game 

traffic
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Markov Chain model

 Assume that each player contributes to 

server traffic through generating traffic or 

not generating traffic

 Assume that the behaviour of N players is 

identical, independent regardless of the 

number of players.

 The aggregate behavior of N identical, 

independent Markov chains can be 

described by a matrix A where the 

individual terms are given by:
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Markov Chain model

TABLE 1. 

Five player  Predicted and Empirical Transition Matrices 

ETPRO HL2CS 

Predicted Empirical Predicted Empirical 
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Simulation based on model
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 ns2 simulations based on the 

model

 Provide a reasonably good 

approximation of real traffic

 Very simple to implement

 Can be implemented quickly for 

new games

 Only need traffic statistics for a 

two player game

 Main limitation is that the 

traffic generator produces 

“quantized” payload sizes
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Conclusion and further research

 Some work on modelling with ARMA(1,1) models

 Perhaps more accurate but much more complex to implement

 Other game genres

 Do other games possess similar properties?

 Some indications that they might

 Implementation and application of simulator models based on 

this work


