

SWINBURNE UNIVERSITY OF TECHNOLOGY

A Markov Model of Server to Client IP traffic in First Person Shooter Games

Philip Branch, Grenville Armitage, Antonio L Cricenti

Centre for Advanced Internet Architectures Swinburne University of Technology Melbourne, Australia

Outline

- Modelling of traffic
- First Person Shooter games
- Assumptions used in modelling game traffic
- Comparisons of predictions with empirical results
 - □ Time independent behaviour
 - □ Time dependent behaviour
- Results from First Person Shooter traffic simulator

Modelling of game traffic

- Goals are
 - □ Understanding game traffic
 - □ Using our understanding to
 - □ Predicting what game traffic will look like for new games
 - Predict how game traffic will change as the number of players increases
- Main question is
 - □ If we have statistics of 2 and 3 player games, can we predict traffic statistics of 4, 5, 6, … player games?
 - Knowing the mean, variance and Probability Mass Function (histogram) of games with small numbers of players can we predict the same for games with larger numbers of players
- Can we model game traffic?

Centre for Advanced Internet Architectures Philip Branch http://caia.swin.edu.au/

Why not just look at the source code?

- We have for some games
 - □ But usually source code is not available
- Source code (where available) supports our assumptions
 - □ Game traffic highly compressed
 - □ Game engine acts as a linear system that maps player input to output
- In other words, game traffic behaviour is driven by random player behaviour suitable for modelling with Stochastic methods

First Person Shooter Games

Centre for Advanced Internet Architectures Philip Branch http://caia.swin.edu.au/

First Person Shooter Games

- FPS Games client-server architecture
- Traffic from the clients transmitted to the server
- Server processes inputs from clients and determines consequences
 - □ Eg explosions, game points, character deaths etc
- Random variables of interest include
 - □ Client to server packet rates
 - Client to server packet lengths
 - Server to client packet rates
 - □ Server to client packet lengths
- Server to client packet lengths of most interest
- Detailed analysis of game traffic from seven different games □ Q3, Q4, ETPro, HLDM, HLCS, HL2DM and HL2CS

Model of game traffic

Assumptions

- □ The nature of game play for individual players does not change significantly regardless of the number of players.
- □ Players have similar behaviour.
- □ Game software compresses its output.
- From the assumptions we can make a number of predictions
 - N-player game statistics should be predictable from 2 and 3 player game statistics, for example
 - □ The probability distribution of packet lengths of a 5-player can be predicted from the prob. dist of a 2- and 3-player games
 - \Box X5 = X2 + X3
 - □ Statistics to evaluate are the mean, variance and Probability Mass Function
 - □ Mean and Variance should increase linearly as number of players increase
 - □ PMFs should be predictable from X2 and X3
 - \Box Eg f_{x5} should be the convolution of f_{x2} and f_{x3}

Centre for Advanced Internet Architectures Philip Branch http://caia.swin.edu.au/

Time independent behaviour

Time varying behaviour

- Autocorrelated nature of game traffic not captured by simple probability mass functions
- We would expect game traffic to exhibit some autocorrelation
 - Periods of intense actions last for seconds
 - □ Will generate trains of large packets
 - Quiet periods also last for seconds
 - □ Will generate trains of short packets
 - Would expect that the length of the current packet will be a good predictor of successive packets
 - In other words we would expect to see some autocorrelation between packet lengths

Centre for Advanced Internet Architectures Philip Branch http://caia.swin.edu.au/

Autocorrelation functions of game

- FPS Game traffic is strongly autocorrelated
- Autocorrelation function modelled reasonably well with exponential distributions
- Indicates that a Markov model of game traffic may be appropriate
- We have developed a Markov Chain model to predict game traffic behaviour

SWIN BUR * NE *

Markov Chain model

- Assume that each player contributes to server traffic through generating traffic or not generating traffic
- Assume that the behaviour of N players is identical, independent regardless of the number of players.
- The aggregate behavior of N identical, independent Markov chains can be described by a matrix A where the individual terms are given by:

$$a(n_1, n_2) = \sum_{k=0}^{n_1} \left[\binom{n_1}{k} (1 - p_{11})^k p_{11}^{n_1 - k} \binom{N - n_1}{n_2 - n_1 + k} (1 - p_{00})^{n_2 - n_1 + k} p_{00}^{N - n_2 - k} \right]$$

Centre for Advanced Internet Architectures Philip Branch http://caia.swin.edu.au/

Markov Chain model

ΤΑΡΙΕ 1				
Five player Predicted and Empirical Transition Matrices				
ETPRO		HL2CS		
Predicted	Empirical	Predicted	Empirical	
$(0.71 \ 0.25 \ 0.04 \ 0.00 \ 0.00)$	$(0.79 \ 0.19 \ 0.01 \ 0.00 \ 0.00)$	$(0.72 \ 0.24 \ 0.03 \ 0.00 \ 0.00)$	(0.74 0.24 0.01 0.00 0.00)	
0.06 0.72 0.20 0.02 0.00	0.05 0.79 0.15 0.01 0.00	0.06 0.73 0.19 0.02 0.00	0.05 0.85 0.09 0.00 0.00	
0.00 0.11 0.72 0.15 0.01	0.00 0.16 0.71 0.11 0.01	0.01 0.12 0.72 0.14 0.01	0.01 0.56 0.39 0.03 0.00	
0.00 0.01 0.17 0.72 0.10	0.00 0.03 0.34 0.57 0.05	0.00 0.02 0.18 0.71 0.09	0.04 0.39 0.39 0.15 0.01	
0.00 0.00 0.03 0.22 0.70	0.01 0.04 0.21 0.45 0.26	$(0.00 \ 0.00 \ 0.03 \ 0.24 \ 0.68)$	0.11 0.48 0.26 0.11 0.04	
HL2DM		Quake 3		
Predicted	Empirical	Predicted	Empirical	
$(0.68 \ 0.27 \ 0.04 \ 0.00 \ 0.00)$	$(0.62 \ 0.34 \ 0.03 \ 0.01 \ 0.00)$	(0.54 0.35 0.09 0.01 0.01)	$(0.54 \ 0.39 \ 0.04 \ 0.00 \ 0.00)$	
0.06 0.69 0.22 0.03 0.00	0.07 0.75 0.15 0.02 0.00	0.09 0.57 0.28 0.05 0.00	0.01 0.66 0.27 0.05 0.00	
0.01 0.12 0.70 0.16 0.01	0.01 0.32 0.55 0.10 0.01	0.02 0.18 0.57 0.21 0.03	0.03 0.40 0.47 0.18 0.03	
0.00 0.02 0.18 0.69 011	0.01 0.16 0.47 0.31 0.05	0.03 0.05 0.27 0.55 0.13	0.00 0.30 0.47 0.17 0.02	
(0.00 0.00 003 0.24 0.68)	(0.01 0.14 0.31 0.32 0.17)	$(0.00 \ 0.01 \ 0.09 \ 0.34 \ 0.50)$	$(0.00 \ 0.40 \ 0.48 \ 0.08 \ 0.04)$	

Simulation based on model

Centre for Advanced Internet Architectures Philip Branch http://caia.swin.edu.au/

Conclusion and further research

Some work on modelling with ARMA(1,1) models

□ Perhaps more accurate but much more complex to implement

- Other game genres
 - □ Do other games possess similar properties?
 - □ Some indications that they might
- Implementation and application of simulator models based on this work

