

SWINBURNE UNIVERSITY OF TECHNOLOGY

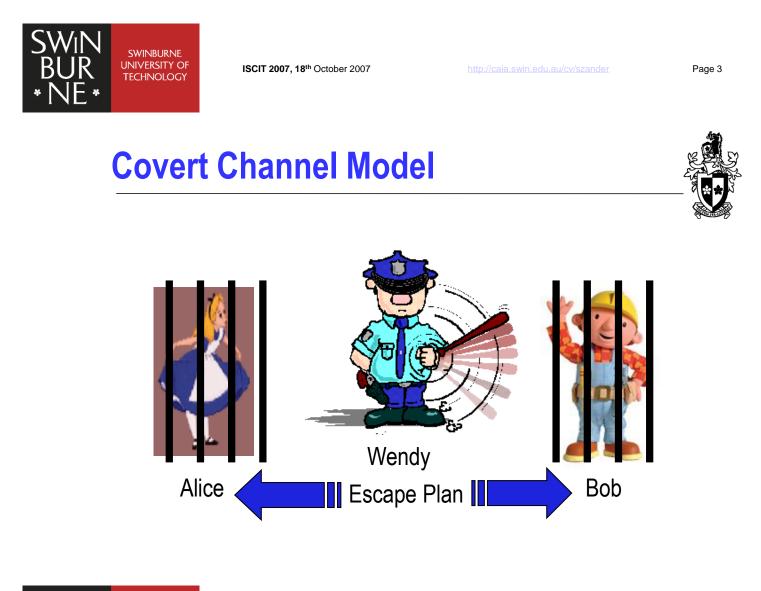
Error Probability Analysis of IP Time To Live Covert Channels

Sebastian Zander, Grenville Armitage, Philip Branch

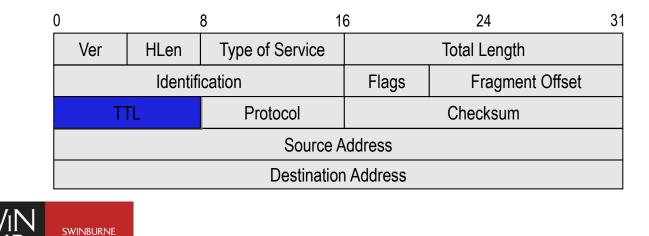
{szander,garmitage,pbranch}@swin.edu.au

http://caia.swin.edu.au/cv/szander

Covert Channels


- Encryption protects communication only from being read by third parties
- Covert channels aim to hide the existence of communication (stealth over capacity)
- Often covert channels use means of communication not intended for communication
- Huge amount of overt network traffic makes Internet ideal for 'high-capacity' covert communication (hidden inside overt traffic)

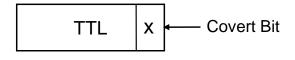
Covert Channel Applications



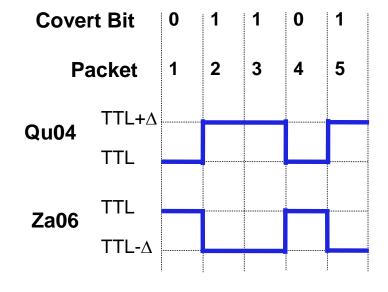
- Government agencies vs. criminals and terrorists hiding communication and coordination
- Hackers ex-filtrating data or controlling systems vs. system administrators hiding management traffic
- Ordinary users circumventing censorship or strong encryption laws (or just bypassing firewalls)
- Distribution and control of malicious software such as viruses, worms, bots

IP Time To Live (TTL)

- TTL limits lifetime of IP packet in network
- Sender sets initial TTL value
- Each router decrements TTL value
- Packet with TTL=0 is discarded


Covert	Channel	Encoding
		Enooding

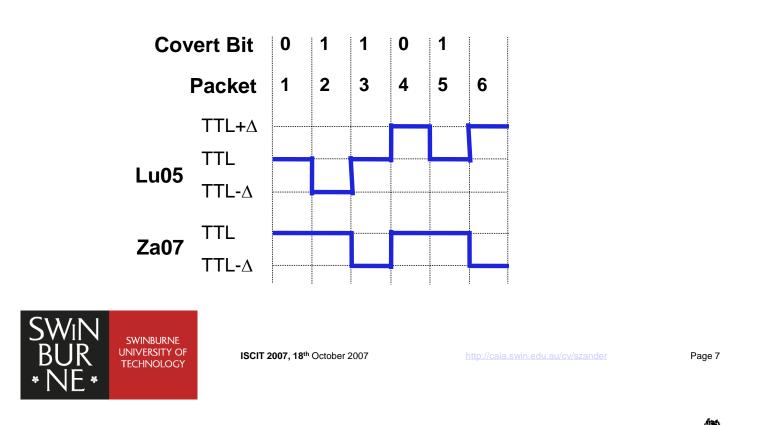
ISCIT 2007, 18th October 2007


Encode covert bit into TTL LSB (Qu '04)

UNIVERSITY OF

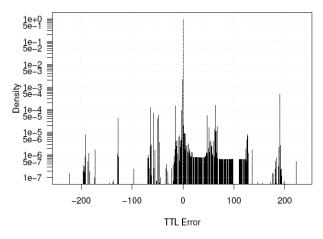
TECHNOLOGY

 Encode covert bits as different TTL values (Qu '04, Zander '06)



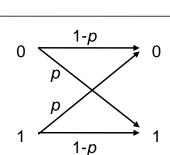
Page 5

Covert Channel Encoding


- Encode covert bits as TTL change between two packets (Lucena '05 and Zander '07)

Covert Channel Noise

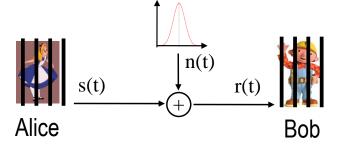
- TTL is modified by routers and packets take different paths from sender to receiver
- Also middleboxes (e.g. firewalls) change TTL



Covert Channel Capacity

- Model TTL channel as Binary (A)Symmetric Channel (BSC/BAC)
- Capacity can be computed based on error probability
- Error probabilities derived (see paper)

$$C = 1 + p \cdot \log_2(p) + (1 - p) \cdot \log_2(1 - p)$$


$$p = \sum_{k=-128}^{127} P(X = 2k+1)$$

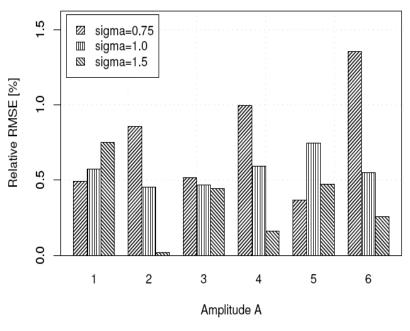
SWIN BUR * NE *

ISCIT 2007, 18th October 2007

Simulation Environment

- Developed framework for simulating network protocol covert channels
- Implemented different TLL covert channel encoding schemes
- Compare analytical error probabilities with simulation (modelled TTL variation as additive Gaussian noise)

Page 9



Error between Simulation and Analysis

- 42 million packets
- Different std. dev.
 of noise (σ)
- Different amplitudes (∆)
- 20 runs each
- Relative Root Mean Squared Error (RMSE)

Y OF

CGY

Result for Za06 (others in paper)

SWIN	SWINBUF
BUR	UNIVERSIT
* NE *	TECHNOL

ISCIT 2007, 18th October 2007

Conclusions & Future Work

Page 11

- Derived error probabilities for different TTL covert channel encodings
- Developed covert channel simulation environment (http://caia.swin.edu.au/cv/szander/cc/cchef/)
- Analytical error probabilities and simulation results are good match
- Future: extend channel model & simulation environment

 \Box Include overt packet loss and reordering

□ Use real TTL error based on packet traces (emulation)

Questions?

SWINBURNE UNIVERSITY OF TECHNOLOGY

ISCIT 2007, 18th October 2007

http://caia.swin.edu.au/cv/szande

Page 13