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Performance Issues

m Processing Performance m Accuracy and Stability

m Scalability m Timeliness
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Scalability

m Built into the design

m Difficult to test without deployment

SWI N SWINBLIRME

BUR UNIVERSITY OF NetGames'07 httoz/A ia.swin.ed jout@swin.ed September 2007 4
TECHMOLOGY ietGames p//www.cala.swin.edu.au ] ut@swin.edu.au eptember

* NE *



http://www.caia.swin.edu.au
mailto:jbut@swin.edu.au
http://www.caia.swin.edu.au
mailto:jbut@swin.edu.au

Classification Techniques

m Possible Approaches

m Port based
m Stateful reconstruction
m Machine Learning algorithms

m ANGEL deliberately separates flow classification from
prioritisation

m Extensible to support different traffic types
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Classification — ANGEL

m Machine Learning based
m Naive Bayes Algorithm

m Classification based on probabalistic knowledge
m Real-time classification

m Must classify using a small portion of flow
m Should continuously classify
m We use a sliding window of 25 packets per unique flow

m Classification Model

m Constructed as stated here’

m Game Traffic — Wolfenstein Enemy Territory (ET) traffic of a
month-long trace collected at a public server in Australia

m Non Game Traffic — From a 24-hour trace collected by the
University of Twente, Germany, at an aggregated 1Gbps link

! T. Nguyen and G. Armitage. "Training on multiple sub-flows to optimise the use of machine learning classifiers in
real-world IP networks". Proceedings of the IEEE 31st Conference on Local Computer Networks, Florida, USA, 2006

SWI N SWINBLIRME

B U R L-JIPEI‘I;HENF::{(BE: NetGames’07 http://www.caia.swin.edu.au jout@swin.edu.au September 2007 6

* NE *



http://www.caia.swin.edu.au
mailto:jbut@swin.edu.au
http://www.caia.swin.edu.au
mailto:jbut@swin.edu.au

ANGEL Testbed
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M (Packets)

m Where M is the number of packets missed from the
beginning of a flow
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Performance — Stability

m Classification accuracy is relatively high
m Repeated classification on a 25 packet sliding window leads
to fluctuating classifications for the duration of the flow
m This leads to:
m Extra processing load as the client needs to re-deploy
prioritisation rules
m Extra network load as classification changes are
communicated to ANGEL devices
m Poor performance as game traffic may lose prioritisation for
short periods of time
m To improve classification statibility we developed the
"Confirmed Classification” algorithm
m Essentially deploys a low-pass filter to the output of the
classifier
m Classification changed when two consecutive,
non-overlapping windows of packets generate the new
classification
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Performance — Stability
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m Flows exhibiting m Other traffic types tested
classification changes - similar results
dropped from 15 1o 1 m Significant improvement
m This flow only changed in both the number of
state once flows and the number of

classification changes
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Performance — Timeliness

m ANGEL - Initial classification for a new flow is non-game N

m With the "Confirmed Classification” algorithm we need to
capture two windows (50 packets) of a flow before it can be
classified as game traffic

m Classification timeliness is dependent on (bi-directional)
packet rate generated by the game

m Observations for ET show classification typically occurs
between 0.5 and 1 second(s) after flow begins

SWI N SWINBLIRME

B U L-JIPEJ‘I;HENF:L:I;E: NetGames’07 http://www.caia.swin.edu.au jout@swin.edu.au September 2007 1

* NE *

Processing Performance — Flow Meter

m Captures packets and forwards statistics to Classifier
m Need to capture and process traffic with negligible loss
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m Compares with performance of underlying capture library
m Supported by memory (5MB) and CPU (30%) usage rates for
all input packet rates
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Processing Performance — Flow Classifier

m Tested under a worst case scenario - Single process
classifying all flows

m Generated trace file consisting of multiple flows by
duplicating and combining a source trace file

m Replayed trace file to a Flow Meter and then onto Classifier

m Packet rate limited to 25,000pps - Flow Meter limit
m Equivalent of 500 concurrent flows

m Classifier able to correctly classify all flows
m Memory footprint (< 5SMB)
m CPU usage (< 0.2%)

m Suggests the bottleneck is the Flow Meter rather than the
classifier
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Demonstration
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Conclusions

m We have built a working ANGEL System
m Separate modules
m Scalable - multiple Metering points

m Game traffic classified with >96% accuracy

m "Confirmed Classification" technique improves classification
stability

m System bottleneck is the Flow Meter - limited by
performance of underlying packet capture facility

m Machine Learning approach can scale to large numbers of

flows
m User-perceived performance
m Game flows typically classified and prioritisation rules
established within 1 second
m Successful classification when traffic captured after flow has
started

m Modular system - can grow to support other traffic flow types
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