Online Games – what are they?

- Virtual worlds: Many people playing roles beyond their day to day experience
- Entertainment, escapism, community… many reasons

World of Warcraft Second Life Quake 4

(Some) Types of games

- FPS: First Person Shooter
 - 3D virtual environment from 1st person visual perspective
 - Primarily combat based (team or individual)
- RTS: Real time strategy
 - E.g. Control a large number of troops fighting enemy players
- RPG: Role playing game
 - Play a detailed character solving quests and interacting with other player and non-player characters
- MMORPG: Massively multiplayer online RPG
 - Thousands of players (or more) interact simultaneously in the game world

First person shooter (…first person view)

Most often these are fast-paced and frantic ‘twitch games’

Unreal Tournament 2007 Wolfenstein Enemy Territory

(Also Counterstrike Source, Quake 4, Halo/Halo2 on Xbox Live, etc….)

Associate Professor Grenville Armitage
Centre for Advanced Internet Architectures
Immersion – illusion of presence

Quake III Arena

Around the world and an arms length away...

Achieving a common, shared reality

- Shared reality
 - What one player perceives, all players must perceive
 - A central game server acts as umpire to game clients

Each game client continuously tells the game server what their player is doing, and hears what other players have done

Updates 20 – 40 times per second

Game server as umpire

- Every virtual world has its own ‘laws’
 - How fast players can move, shoot, reload...
 - How well players can aim, see, recover their health...
- Would you trust your opponent to decide if they hit you?
- The game server calculates every move
 - A sanity check on what a client claims its player is doing
 - Arbitrates when two or more players attempt something and only one can succeed (e.g. picking up scarce ammunition)
 - Every event goes through the game server

And then real reality gets in the way

Server in San Francisco

12826 km as the crow flies

8645 km as the crow flies

You cannot beat the laws of physics...
Distance... Equals delay...

- We typically measure delay in milliseconds (ms)
 - Round trip time (RTT) is combined delay in both directions, sometimes also known as ping, lag or latency
- Speed of light in air ~299792km/sec
 - Melbourne to San Francisco: 12626km path -~42ms (RTT -84ms)
 - London to San Francisco: 8645km path -~28ms (RTT -56ms)
- Internet rarely goes "as the crow flies" (usually a longer, convoluted physical path which equates to higher delay)
- Speed of light is ~30% slower in optical fiber (which makes the path seem longer - even more delay)

Does delay matter?

- Latency introduces timeline discrepancy between each client's view of the virtual world
 - Game server: 'official' view of events in timeline
 - Game clients: at varying 'distances' from server
 - Everyone has slightly different perception of when events happen (relative to each other)
- Latency affects reaction times
 - And may be hard to adapt to variation in delays

Did you hit or miss?

- 100ms is a long time when your target is running

FPS ‘success’ vs delay

- Success (measured in 'frags' per minute) seen to decay with increasing network delay
 - E.g. Experimental trials in 2001, Quake III Arena online FPS, two servers – one in California, one in London

![Graph showing frag rate vs median ping]
Where does the delay come from?

- Aside from physical distance vs speed of light, there is:
 - **Serialisation delay**
 - Finite time to send a packet bit-by-bit (e.g. dial-up, DSL or optical)
 - E.g. A 128Kbit/sec link takes ~94ms to transmit 1500 byte packet
 - **Queuing delay**
 - Packets can be temporarily delayed as they criss-cross the Internet
 - (Like people queuing at different airports while traveling)
 - Your home broadband router, your local/domestic ISP, and International Internet links

Broadband, ISPs and convoluted paths

- **Trivia:** On 23Aug07 the path between a home ADSL link in Melbourne to a San Francisco area website:
 - Home LAN to local ISP over ADSL: ~16ms to RTT
 - (mostly my ADSL modem)
 - Melbourne to Sydney inside ISP: ~15ms to RTT
 - Sydney to Los Angeles: ~155ms to RTT
 - International link
 - Los Angeles to San Francisco: ~13ms to RTT
 - Total of ~198ms RTT (using 64-byte packets)

Solutions from game developers

- Use smallest packets possible in each direction
 - Minimise serialisation delays
 - 50 – 80 bytes client to server, 80 to ~250+ bytes server to client
- **Client-side prediction**
 - For smoother graphical experience
- **Server-side roll-back**
 - Because only the server is trusted to decide crucial events

Predicting the future (client-side)

- Every client is rendering a real-time, graphical view of the player’s virtual world
 - The player must see the consequences of their own actions, and the actions of others, in real-time
- Imagine if a client’s command (move, shoot, etc) went to the server for confirmation before the consequences are shown on screen?
 - Perhaps okay on a LAN (with < 10ms delay)
 - Shockingly jerky experience if you’re on an Internet server
Predicting the future #2 (client-side)

- Instead, client does two things at once:
 - Renders the most likely consequence of a local movement command (prediction)
 - Sends command to server
- Approximately one RTT later, server updates everyone
 - Client now knows the official consequences of its previous action (and any additional actions of others)
 - If previous prediction was accurate, continue smoothly
 - If prediction was wrong, re-render the scene (‘snap-back’)

Remembering the past (server-side)

- Game server ‘remembers’ recent past events
- Rolls back time (internally) to decide where all players were when you ‘pulled the trigger’

Unavoidable consequences

- Reality is unavoidable in multiplayer games
- Communication delays introduce tiny timeline errors, most evident in fast-paced ‘twitch’ games
- Clients and servers can smooth out, but never entirely eliminate, the consequences of communication delay

Game players – pick closer servers!
Solutions from network engineers

- Engineers utilise various approaches to reduce delays
- Increase bandwidths
 - Reduce serialisation delays
- Optimise routes (paths)
 - Shorter physical paths, avoid places where queuing occurs
- Establish ‘priority’ traffic handling
 - Where queues occur, try to allow game or VoIP (voice over IP) traffic to ‘jump the queue’

Priority in your broadband router

- Consumer broadband routers often now support priority classes of traffic
- Typically manually configured through QoS (Quality of Service) menus

And your career relates how?

- Innovation starts with problem solvers … is that you?
- Engineers build systems to produce desirable outcomes
- Whether for entertainment or serious work, virtual worlds are emerging whose participants span the globe
- Telecommunications and electronic engineers are needed to re-engineer the Internet’s infrastructure
- Computer software engineers are needed to create more sophisticated & realistic virtual worlds

So I have a suggestion....

- Come to Swinburne after high school 😊
 - Bachelor of Engineering (Telecommunication and Network Engineering)
 - Bachelor of Engineering (Electronics and Computer Systems)
 - Bachelor of Multimedia (Games and Interactivity)/Bachelor of Science (Computer Science and Software Engineering)
 - Bachelor of Engineering (Telecommunications and Network Engineering)/Bachelor of Science (Computer Science and Software Engineering)

 - (see the Faculty of ICT website for other combinations...)