

SWINBURNE UNIVERSITY OF TECHNOLOGY

Covert Channels in the IP Time To Live TTL Field

<u>Sebastian Zander</u>, Grenville Armitage, Philip Branch

{szander,garmitage,pbranch}@swin.edu.au

http://caia.swin.edu.au

ATNAC 2006

Outline

- What are covert channels?
- What is the IP Time to Live (TTL) field?
- Covert channel encoding in IP TTLs
- 'Natural' TTL variation in Internet
- Countermeasures: detection and elimination
- Conclusions and future work

Covert Channels Motivation

- Encryption protects communication only from being read by third parties
- Covert channels **aim to hide the existence** of communication (information hiding)
- Often covert channels use means of communication not intended for communication (stealth over capacity)
- Introduced as mechanism to leak information between different processes on one computer
- Huge amount of network traffic makes Internet ideal for 'high-capacity' covert communication

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 3

Covert Channels Applications

- Government agencies, criminals, terrorists etc. hiding communications
- Hackers ex-filtrating data or controlling systems
- Users circumventing censorship, encryption laws
- Spreading of computer viruses, worms
- Attacking anonymisation techniques
- Authentication ('port knocking')

The Prisoner Problem

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 5

The Prisoner Problem cont'd

Alice sends covert information to Bob. Wendy can be passive, active, malicious.

ATNAC 2006, 5th December

Communication Scenarios

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 7

IP Covert Channels

- Type of Service field [Handel96]
- Don't Fragment flag [Kundur03]
- IP Identification field [Rowland97], [Ahsan02], [Cauich05]
- Fragment Offset field [Cauich05]
- Time to Live [Qu04]
- Modulate source/destination address and packet length fields [Girling87]

IP Time To Live Field

- TTL limits lifetime of IP packet in network
- Sender sets initial TTL value
- Each network element decrements TTL value
- Packet with TTL=0 is discarded

0 8		16		24	31		
Ver	HLen	Type of Service	Total Length				
Identification			Flags Fragment Offse				
TTL		Protocol	Checksum				
Source Address							
Destination Address							

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 9

TTL Covert Channel

- Naïve approach: Encode covert data directly in TTLs
 - ☐ Initial TTL values? Routing loops?
 - ☐ Bob needs to know (or guess) path length
 - ☐ Abnormal TTL distribution looks very suspicious to Wendy
- Real-world constraints
 - ☐ Initial TTL values: **64**, **128**, **255** (Windows, Linux, FreeBSD)
 - ☐ Path length in Internet typically less than 32 hops
 - ☐ If TTL changes in flows mostly only **2 distinct TTL** values **differing by 1** (our empirical findings)

TTL Covert Channel cont'd

- Encode 1-bit as 'high TTL' (TTL of overt traffic)
- Encode 0-bit as 'low TTL' (high TTL minus 1)
 - ☐ Bob does not need to know path length
 - ☐ Bob needs to see both zeros and ones before decoding
- No negative side-effects on IP protocol
 - □ No TTL increase ⇒ no risk of looping packets
 - □ Very small decrease ⇒ given typical initial TTL and Internet path length risk of TTL=0 drops negligible
- Encrypt covert information before sending

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 11

TTL Covert Channel cont'd

- Channel capacity is 1 bit per packet (if no noise)
- TTL channel is noisy
 - □ 'Natural' TTL changes ⇒ only in few flows (our empirical findings); Alice and Bob can probe channel before sending
 - □ TCP takes care of packet reordering/loss, but UDP does not
 ⇒ retransmission and/or error correction required
 - ☐ More elaborate channel model and error handling is work in progress

'Natural' TTL Variation

- Characteristics of 'natural' TTL variation occurring in Internet caused by effects such as path changes?
- Datasets
 - ☐ Public game/web servers (CAIA, Grangenet)
 - ☐ 1Gbit/s aggregated ADSL uplink (Twente)
- Group packet into unidirectional flows according to source/destination IP addresses and ports
- Only consider flows with ≥4 packets and ≥1 packet per second on average

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 13

'Natural' TTL Variation

- Flow has TTL change if at least two different TTLs
- Number of flows and volume in GB with and without TTL changes

Dataset	Flows w/o TTL change	Flows with TTL change	Volume w/o TTL change	Volume with TTL change
CAIA	128,617	2766 (2.1 %)	114.5 GB	6.0 GB (5.0 %)
Grangenet	282,898	8582 (2.9 %)	28.1 GB	0.9 GB (3.1 %)
Twente	1,354,585	24,603 (1.8 %)	62.0 GB	1.8 GB (2.8 %)

'Natural' TTL Variation - Levels

Number of distinct TTL values per flow

Number of different TTLs

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 15

'Natural' TTL Variation - Amplitude

 $amplitude = TTL_{max} - TTL_{min}$

'Natural' TTL Variation

Average Frequency of TTL Changes per Packet Pair

frequency = # TTL changes / (packets – 1)

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 17

Countermeasures

- Elimination (active warden)
 - ☐ Wendy sets all TTLs of packet flow to same value
 - ☐ If Wendy can intercept only subset of packets elimination is impossible but additional 'noise' reduces capacity
- Detection (passive warden)
 - ☐ TTL covert channel looks similar to 'natural' TTL variation (amplitude, number of TTLs)
 - ☐ High change frequency uncommon but Alice can slow down
 - ☐ More detailed analysis reveals channel but computational effort could be high for large traffic volume

Conclusions

- Analysis of 'natural' TTL variation in Internet Flows: TTL changes only for small percentage of flows, but too common to be suspicious
- Proposed covert channel in IP TTL field that looks similar to 'natural' TTL variation
- IPv6 compatible (Hop Limit)
- Capacity depends on overt channel
- Capacity likely up to few 100bit/s for flows with hundreds packets/s; use of multiple flows possible

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 19

Future Work

- Extend TTL analysis towards more traces and more indepth study of TTL change patterns
- Determine channel capacity in presence of noise (packet loss/reordering, 'natural' TTL variation)
- Improve channel encoding and error handling
- Implementation
- Evaluate efficiency of detection methods

Questions?

ATNAC 2006, 5th December

http://caia.swin.edu.au

szander@swin.edu.au

Page 21

Countermeasures

- General measures
 - ☐ Eliminate use of the covert channel
 - ☐ Limit capacity of the covert channel
 - □ Audit covert channel
 - □ Document covert channel
- Elimination/detection of TTL covert channel is harder than for most previously proposed covert channels in IP header fields but possible

