

SWINBURNE UNIVERSITY OF TECHNOLOGY

ANGEL - Automated Network Games Enhancement Layer

Jason But, Nigel Williams, Sebastian Zander, Lawrence Stewart and Grenville Armitage

> Centre for Advanced Internet Architectures Swinburne University of Technology

> > jbut@swin.edu.au

(Presented by Grenville Armitage) October 2006

Outline

- The issues
- The Queuing Problem
- Benefits of Priority Queuing of Game Traffic
- ANGEL
 - Requirements
 - Stakeholders
 - Basic Architecture
- Flow Classification
- Machine Learning

- Highly interactive network games have different network requirements compared to other applications
- Users ability to play successfully is highly dependent on network QoS
- With the increase in broadband popularity
 - Internet connections being shared amongst multiple users
 - Users often run network applications concurrently
- End-to-end QoS solutions are not practical
 - Requirements of application not properly understood by developers
 - Network equipment often does not implement QoS solutions
 - Configuration complex for average home users

The Queuing Problem

- Imagine a low-bandwidth consumer upstream link (128kbps) sharing:
 - TCP upload using as much bandwidth as the network will allow
 - Network game application generates small periodic UDP packets
- TCP is bursty each burst will be queued by the gateway for transmission
- The game packet is queued behind the TCP burst
 - Priority queueing of game traffic should improve performance at minimal cost to TCP throughput

Priority Queuing Game Traffic

		Game Traffic	
	Best	Priority	
Parameter	Effort	Queued	CDF
U/stream TCP Thruput	\sim 170kb/s	\sim 150kb/s	No − best effort
D/stream TCP Thruput	\sim 580kb/s	\sim 380kb/s	
U/stream Game PLR	28%	0.06%	0 1000 2000 3000 4000
<u> </u>	•	•	Queuing Delay [ms]

Game Packets Queuing Delay CDF

NetGames2006

jbut@swin.edu.au

(Presented by Grenville Armitage)

October 2006 Page 4

ANGEL - Requirements

- A prototype system to identify game flows within the ISP and forward this information to CPE devices for prioritisation purposes
 - Scalability Potentially support all ISP customers
 - Access Technology Independence Must work at IP layer
 - Transparency Transparent to end-host network applications
 - Flexible Prioritisation CPE device chooses prioritisation means
 - Heterogeneous Networks Not all users may be running ANGEL
 - Minimal CPE requirements CPE processing capabilities

ANGEL - Potential Stakeholders

End Users

• Improved perceived performance in network gaming applications

Internet Service Providers

• Better customer service - both users and game service providers

Game Service Providers

• Improved online gaming performance will increase user base

Network Equipment Manufacturers

- Deploy ANGEL into CPE and/or ISP side network equipment
- Potential early adopter relationships between manufacturers and ISPs as preferred suppliers

ISP Side components

- Flow Meter Monitors network traffic at a location, filters into flows, forward packet and flow information to Flow Classsifier
- Flow Classifier Classifies flows into gaming or non gaming classes. Change in classification of a flow is forwarded to Client Manager
- Client Manager Manages database of registered users/CPE devices. Forward flows to be prioritised information to CPE and other network devices

Key ANGEL Advantages

- Flow detection moved into ISP network
- Minimal resources required in CPE equipment
- New classification models easier to propagate
- Choice of classification technique independent of ANGEL architecture


```
NetGames2006
```

jbut@swin.edu.au

(Presented by Grenville Armitage)

October 2006

Page 8

Flow Classification

- ANGEL does not specify how to classify flows
 - Architecture specifies how packets are captured and passed to the Flow Classifier
 - Classifier can use any means to perform classification
- Traditional Classification Techniques packet inspection
 - Port numbers new applications, dynamic allocation
 - Stateful Flow Reconstruction not scalable, encrypted flows
- Our prototype will use Machine Learning
 - System trained using representative flow data
 - Flows classified from commonly available features (eg. packet size, inter-arrival times)
 - No payload information required privacy issues

ML for Real-time Classification

- Problems
 - Build accurate models Need to create training data that allows
 classifier to quickly/accurately identify flows
 - **Processing** Need to classify potentially tens of thousands of flows, each within a short timeframe
 - Two commonly used algorithms are able to quickly and accurately identify these flows

• Other work¹ shows that Enemy Territory can be accurately separated from non-game traffic using a sliding window of 25 packets

¹T.T.T. Nguyen, G. Armitage, **"Training on Multiple Sub-flows to Optimise the use of Machine Learning in Real-World IP Networks"**, IEEE Local Computer Networks Conference LCN2006 *(to be presented)*


```
NetGames2006 jbut@sw
```

jbut@swin.edu.au (Presented by Grenville Armitage)

Summary

Page 10

October 2006

- Networked games are typically played within a local topological region
 - Which often leads to geographical locality performance
- Majority of bottlenecks occur at the edge of the network
- Priority queuing of game traffic
 - Improves game traffic QoS player performance
 - Minimal effect on TCP throughput
- ANGEL:
 - Does not attempt to solve end-to-end QoS issues
 - System to detect network game flows in the ISP network
 - Forward information to ANGEL-enabled CPE devices
 - CPE device prioritise these applications
 - Processing shifted to ISP
 - Uses Machine Learning techniques to classify flows in real-time

