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Motivation
m Uncover past network application traffic trends

m Available traces usually anonymised and without
payload information

m Payload-based analysis impossible

m Port-based identification inaccurate for applications
such as p2p file-sharing, multiplayer games

m Machine learning (ML) classification based on
payload-independent features could be solution

m Train classifier to detect applications of interest
m Use classifier on historic traces



Approach

m Obtain representative data for applications of
Interest (positive training examples)

m Can similar applications be separated?
m 10-fold cross-validation for each trace separately
m Classes in historic traces based on default ports
m Can recent traffic represent past traffic?

m Train on recent hand-classified data, test on
historic data

m Train and test between historic data
m Classes in historic traces based on default ports

Approach cont’d

m Obtain representative data for all other
applications (negative training examples)

m Problem: traffic mix in historic trace unknown

m Use ML classifier to identify traffic from historic
trace that is not the applications of interest

m Train classifier with one class for each application
plus one class for each port from historic trace

m Compute overlap (false positive/negative rates)
between applications of interest and each port

m If overlap > threshold = positive examples
otherwise = negative examples



ML Algorithm and Data Sets

m C4.5 decision tree algorithm

m Features: packet length, inter-arrival time, active/
Idle times, duration, protocol, volume, TCP push

m [races
m Payload-classified trace as positive examples (PC)

m Two public anonymised traces as historic traces
(Twente, Leipzig)

m Applications: HTTP/HTTPS, DNS, p2p file-
sharing (eDonkey, Kazaa, BitTorrent), game
(Half-Life)

Separating Applications

m Each trace separately = Combine classes of PC
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Predicting Applications

m Train on PC, test m Train Twente, test
Twente and Lelpzig Leipzig and vice versa
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Estimating Historic Trends

= Non-default port m ML-based vs. default
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Conclusions & Future Work

m Similar network applications can be separated

m Application features remain relatively representative
between different datasets; but limited variance is
problematic

m Approach for obtaining negative examples is
somewhat ad-hoc and has limitations; investigate
other approaches

m Need historic traces with payload for verification

m Tech Report
[1] http://caia.swin.edu.au/reports/060313A/CAIA-TR-060313A.pdf
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