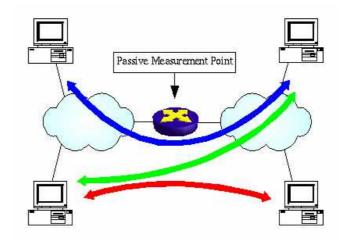


CENTRE FOR ADVANCED INTERNET ARCHITECTURES

Passive TCP Stream Estimation of RTT and Jitter Parameters

Jason But Urs Keller Grenville Armitage David Kennedy

Outline


- Passive Monitoring of TCP
- RTT and Jitter Estimation algorithm
- Accuracy of Algorithm
 - Estimates under configured network conditions
 - · Estimates in a congested network
 - Comparison against the end host TCP RTT estimate

Passive Monitoring of TCP

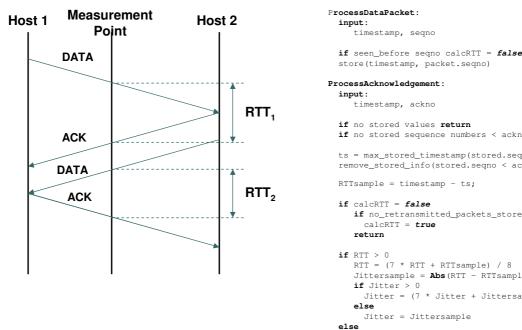
- Allows us to monitor more streams
- · Can measure in the network core
- No requirements on end-clients

IEEE Local Computer Networks (LCN2005) http://caia.swin.edu.au jbut@swin.edu.au

November 2005 Page 3

Passive Monitoring of TCP

- Issues with trying to estimate TCP RTT and Jitter when not at an endhost
 - Packets can be dropped/lost
 - Packets can be retransmitted
 - Witnessed packets may not be causal
- Existing approaches
 - SYN-ACK¹ Estimation, Slow Start¹ Estimation, TStat² Not applicable for stream duration
 - Jaiswal et al³. Can over estimate RTT, no Jitter estimates


1. H. Jiang and C. Dovrolis "Passive Estimation of TCP Round-Trip Times", ACM SIGCOMM Computer Communications Review, vol. 32 no. 3, 2002, pp. 75-88

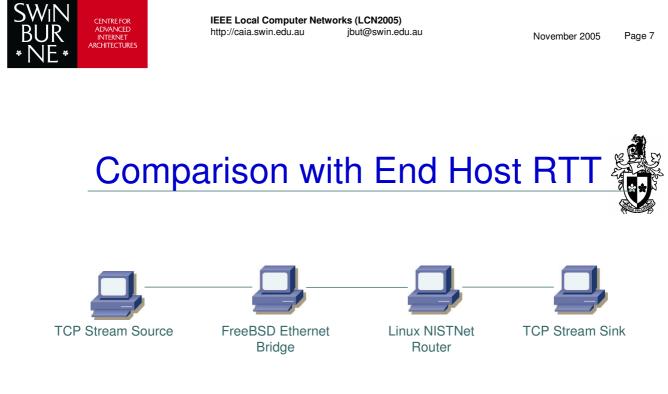
- 2. TSTAT TCP Statistic and Analysis Software Tool, Politecnico di Torino, http://tstat.tlc.polito.it
- 3. S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley "Inferring TCP Connection Characteristics Through Passive Measurements", Proceedings of IEEE InfoCom2004, March 2004

RTT and Jitter Estimation

IEEE Local Computer Networks (LCN2005) http://caia.swin.edu.au jbut@swin.edu.au

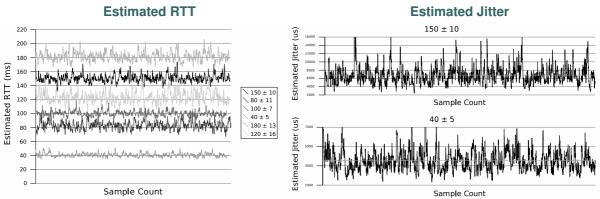
November 2005 Page 5

RTT and Jitter Estimation


- Define TCP Recovery state •
 - · Enter state if we witness out of order data packets or retransmitted packets
 - Leave state when all re-transmitted data packets have been acknowledged
 - No estimates made while in TCP Recovery
- RTT samples smoothed using Jacobsons algorithm •
- Jitter Sample Difference between the current RTT • sample and the current (smoothed) RTT estimate
- Jitter samples smoothed using Jacobsons algorithm •

Algorithm Accuracy

- Do we generate enough samples to obtain a suitable running estimate of RTT and Jitter?
- How well do RTT and Jitter estimates match configured network delay and network delay variation?
- How well do RTT estimates match the TCP RTT estimations in the end hosts?



- Traffic captured on bridge
 - TCPdump on Linux does not store packets in chronological order
- NISTNet Router
 - · Programmed with configured mean and standard deviation delay
 - Correlation factor used to minimise packet re-ordering

Configured Network Delays

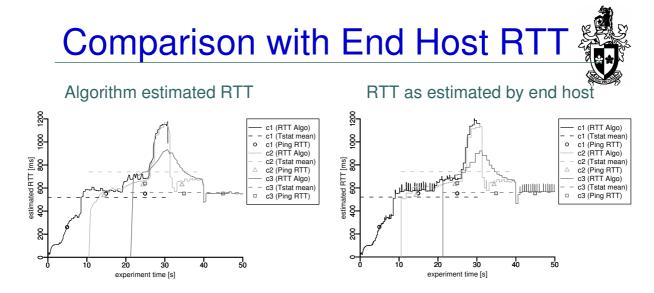
- Estimated RTT and Jitter mean value accurate when compared against configured values
- Degree of fluctuation relative to configured jitter

IEEE Local Computer Networks (LCN2005)

http://caia.swin.edu.au

Compar	ison wit	h End Hos	st RTT
	Switch	FreeBSD Ethernet Bridge + DummyNet	TCP Stream Sink

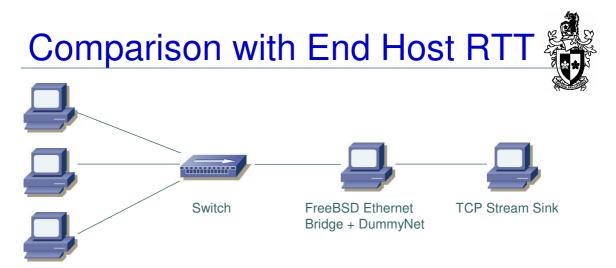
jbut@swin.edu.au


TCP Stream Sources

- Three TCP Streams
 - Stream duration ~30s
 - · Each stream started at 10s intervals
- DummyNet Bridge
 - · Configured delay 75ms
 - Configured throughput 500kbps

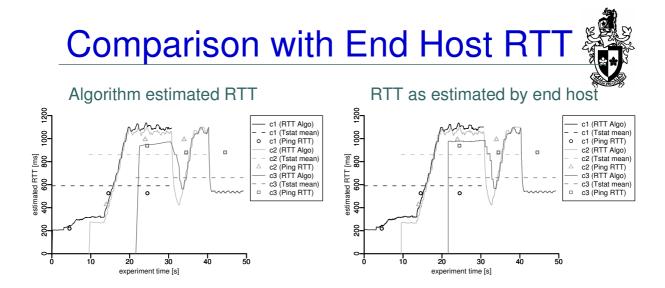
IEEE Local Computer Networks (LCN2005) http://caia.swin.edu.au jbut@swin.edu.au November 2005

Page 9



- For further comparison
 - TSTAT calculated mean for each flow
 - RTT as measured by ping
 - · Same values on both graphs

EEE Local Computer	Networks (LCN2005)
http://caia.swin.edu.au	jbut@swin.edu.au


```
November 2005 Page 11
```


TCP Stream Sources

- Same experimental setup
- DummyNet configured with a different delay for each TCP flow – 100ms, 150ms, 200ms

- Again the estimate matches the TCP stack estimate
- Single value calculated by TSTAT not representative for the duration of flow

IEEE Local Computer Networks (LCN2005) http://caia.swin.edu.au jbut@swin.edu.au

November 2005 Page 13

Conclusions

- · Passive RTT estimation is an inaccurate process
- We present a new continuous RTT and Jitter estimation
 algorithm
 - Jitter estimation algorithm can be used on any sequence of RTT estimates generated by another algorithm
- Accurate RTT and Jitter estimation under test conditions of artificially induced jitter
- Under congested network conditions
 - Algorithm tracks the RTT estimate in the TCP endhost stack accurately
- Running estimates superior to output generated by existing tools such as TSTAT (single mean and standard deviation)
 - More accurately reflect instantaneous network conditions
- Algorithm implemented in netsniff
 - <u>http://caia.swin.edu.au/ice/tools/netsniff</u>

Questions

IEEE Local Computer Networks (LCN2005) http://caia.swin.edu.au jbut@swin.edu.au

November 2005 Page 15