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Motivation
�Different areas greatly benefit from 

classifying network traffic flows 
according to their creating applications

�Application-based traffic trend analysis

�Adaptive, network-based QoS mapping 

�Dynamic application-based access control 

�Lawful interception

�Detection of malicious traffic
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Current Solutions & Shortfalls 1/2
� Use port numbers for identification

� Well-known and registered ports (IANA)

� Known default ports (e.g. http://www.portsdb.org)

�Ambiguous default ports

�Applications use different or unknown ports

� Multiple servers/clients on same IP address

� Dynamically allocated ports (e.g. passive FTP)

� Users deliberately using different ports (hide 
use of applications or bypass port-based filters)
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Current Solutions & Shortfalls 2/2
� Stateful reconstruction of session and 

application information  

� Inspecting packet payload and decoding protocol

�Resource intensive, must know the protocol (or 
reverse engineer), fails with encryption, privacy?

� Signature-based approach

� Pattern search in packet payload 

�More efficient than protocol decoding but 
decreased accuracy, finding signatures can be 
difficult, fails with encryption, privacy? 
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Machine Learning Approach 1/4
� Use protocol independent flow attributes (features) 

� Packet-level: e.g. packet length

� Flow-level: e.g. inter-arrival times, duration, volume

� Multi-flow-level: e.g. number of concurrent flows

� Use Machine Learning (ML) to classify flows using 
these features
� Train algorithm on representative set of flows

� Classify/predict classes for new unseen flows

� Idea is not completely new but lots of open questions
� What algorithm? What (set of) features?

� Accuracy? Performance? 



Swinburne University of Technology 4

http://caia.swin.edu.au szander@swin.edu.au Page 7IEEE LCN 2005, Sydney, Australia, November 15th-17th

Machine Learning Approach 2/4
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Machine Learning Approach 3/4
� Machine Learning Algorithm

� Autoclass (http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/)

� Unsupervised learning (clustering)

� Feature selection
� Sequential forward search (greedy algorithm)

� Start with empty feature set

� Each step add new feature that maximally increases 
goodness metric

� Wrapper model (execute actual ML algorithm)

� Goodness Metric: Intra-Class Homogeneity (H)

� Percentage of instances of majority application in class



Swinburne University of Technology 5

http://caia.swin.edu.au szander@swin.edu.au Page 9IEEE LCN 2005, Sydney, Australia, November 15th-17th

Machine Learning Approach 4/4
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Dataset
� Packet traces from NLANR (http://www.nlanr.net)

� Auckland VI (2 days), Leipzig II, NZIX II
� 8 different applications: FTP Data, Telnet, Mail (SMTP), 

DNS, Web, AOL Messenger, Napster, Half-life

� 1000 randomly sampled flows for each application
� No payload in public traces

� Select flows based on application default ports
� Assume most flows are of expected application
� Some ‘wrong’ flows decrease homogeneity

� Flow Attributes (Features)
� Packet length (mean/variance), inter-arrival times 

(mean/variance), volume (bytes), duration 
� Bidirectional (except duration)
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Results – Average Homogeneity
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Results – Accuracy
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Results – False Positives
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Results – Best Features
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Conclusions
� Some separation of applications can be achieved

� Average accuracy 86.5%

� Features
� Packet length, volume favoured over inter-arrival times, 

duration (biased by our set of applications!)

� Performance (2.4GHz Celeron)
� Learning very slow (~8.5 hours with full feature set)

� Classification fast (~6,300 flows/second)

� Disadvantages of current ML technique
� Classes need to be mapped to applications

� Many parameters to be tuned
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Future Work
� Compared different ML algorithms (especially 

supervised techniques)

� Compare different feature selection methods

� Investigate new features

� For verification use traces where real application ‘is 
known’ (payload analysis)

� Investigate how quickly flows can be classified

� Investigate influence of flow sampling

� Investigate different application (e.g. peer-to-peer)

� Develop prototype software
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The End

Questions, Comments?


