

CENTRE FOR
ADVANCED
INTERNET
ARCHITECTURES

Automated Traffic Classification and Application Identification using Machine Learning

Sebastian Zander, Thuy Nguyen, Grenville Armitage

{szander,tnguyen,garmitage}@swin.edu.au
Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology

Supported by Cisco Systems, Inc. under the URP program

Outline

- Motivation
- Current Solutions & Shortfalls
- Machine Learning Approach
- Experimental Results
- Conclusions & Future Work

IEEE LCN 2005, Sydney, Australia, November 15th-17th

Motivation

- Different areas greatly benefit from classifying network traffic flows according to their creating applications
 - □Application-based traffic trend analysis
 - □Adaptive, network-based QoS mapping
 - □Dynamic application-based access control
 - □Lawful interception
 - □Detection of malicious traffic

IEEE LCN 2005, Sydney, Australia, November 15th-17th

http://caia.swin.edu.au szander@swin.edu.au Page 3

Current Solutions & Shortfalls 1/2

- Use port numbers for identification
 - □ Well-known and registered ports (IANA)
 - ☐ Known default ports (e.g. http://www.portsdb.org)
- Ambiguous default ports
- Applications use different or unknown ports
 - □ Multiple servers/clients on same IP address
 - ☐ Dynamically allocated ports (e.g. passive FTP)
 - ☐ Users deliberately using different ports (hide use of applications or bypass port-based filters)

IEEE LCN 2005, Sydney, Australia, November 15th-17th

- Stateful reconstruction of session and application information
 - ☐ Inspecting packet payload and decoding protocol
 - ◆ Resource intensive, must know the protocol (or reverse engineer), fails with encryption, privacy?
- Signature-based approach
 - □ Pattern search in packet payload
 - More efficient than protocol decoding but decreased accuracy, finding signatures can be difficult, fails with encryption, privacy?

IEEE LCN 2005, Sydney, Australia, November 15th-17th

http://caia.swin.edu.au szander@swin.edu.au Page 5

Machine Learning Approach 1/4

- Use protocol independent flow attributes (features)
 - □ Packet-level: e.g. packet length
 - ☐ Flow-level: e.g. inter-arrival times, duration, volume
 - ☐ Multi-flow-level: e.g. number of concurrent flows
- Use Machine Learning (ML) to classify flows using these features
 - ☐ Train algorithm on representative set of flows
 - ☐ Classify/predict classes for new unseen flows
- Idea is not completely new but lots of open questions
 - □ What algorithm? What (set of) features?
 - □ Accuracy? Performance?

IEEE LCN 2005, Sydney, Australia, November 15th-17th

Machine Learning Approach 3/4

- Machine Learning Algorithm
 - ☐ Autoclass (http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/)
 - ☐ Unsupervised learning (clustering)
- Feature selection
 - ☐ Sequential forward search (greedy algorithm)
 - ☐ Start with empty feature set
 - □ Each step add new feature that maximally increases goodness metric
 - ☐ Wrapper model (execute actual ML algorithm)
 - ☐ Goodness Metric: Intra-Class Homogeneity (H)
 - □ Percentage of instances of majority application in class

IEEE LCN 2005, Sydney, Australia, November 15th-17th

Example Homogeneity (H) computation

Class	Арр	H [%]
1	Web	82
2	DNS	100
3	Mail	67
4	Web	100
5	DNS	38
Total Average H		77.4

IEEE LCN 2005, Sydney, Australia, November 15th-17th

http://caia.swin.edu.au szander@swin.edu.au Page 9

Dataset

- Packet traces from NLANR (http://www.nlanr.net)
 - □ Auckland VI (2 days), Leipzig II, NZIX II
 - □ 8 different applications: FTP Data, Telnet, Mail (SMTP), DNS, Web, AOL Messenger, Napster, Half-life
 - □ 1000 randomly sampled flows for each application
 - No payload in public traces
 - □ Select flows based on application default ports
 - ☐ Assume most flows are of expected application
 - ☐ Some 'wrong' flows decrease homogeneity
- Flow Attributes (Features)
 - □ Packet length (mean/variance), inter-arrival times (mean/variance), volume (bytes), duration
 - ☐ Bidirectional (except duration)

IEEE LCN 2005, Sydney, Australia, November 15th-17th

Conclusions

- Some separation of applications can be achieved
 - □ Average accuracy 86.5%
- Features
 - □ Packet length, volume favoured over inter-arrival times, duration (biased by our set of applications!)
- Performance (2.4GHz Celeron)
 - ☐ Learning very slow (~8.5 hours with full feature set)
 - ☐ Classification fast (~6,300 flows/second)
- Disadvantages of current ML technique
 - ☐ Classes need to be mapped to applications
 - □ Many parameters to be tuned

IEEE LCN 2005, Sydney, Australia, November 15th-17th

http://caia.swin.edu.au szander@swin.edu.au Page 15

Future Work

- Compared different ML algorithms (especially supervised techniques)
- Compare different feature selection methods
- Investigate new features
- For verification use traces where real application 'is known' (payload analysis)
- Investigate how quickly flows can be classified
- Investigate influence of flow sampling
- Investigate different application (e.g. peer-to-peer)
- Develop prototype software

IEEE LCN 2005, Sydney, Australia, November 15th-17th

The End

Questions, Comments?

IEEE LCN 2005, Sydney, Australia, November 15th-17th