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Motivation

m Different areas greatly benefit from
classifying network traffic flows
according to their creating applications

OApplication-based traffic trend analysis
OAdaptive, network-based QoS mapping
ODynamic application-based access control
OLawful interception

ODetection of malicious traffic
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Current Solutions & Shortfalls 1/2

m Use port numbers for identification
O Well-known and registered ports (IANA)
O Known default ports (e.g. http://www.portsdb.org)

¢ /Ambiguous default ports

¢ Applications use different or unknown ports
O Multiple servers/clients on same IP address
O Dynamically allocated ports (e.g. passive FTP)

O Users deliberately using different ports (hide
use of applications or bypass port-based filters)
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Current Solutions & Shortfalls 2/2

m Stateful reconstruction of session and
application information

O Inspecting packet payload and decoding protocol

& Resource intensive, must know the protocol (or
reverse engineer), fails with encryption, privacy?

m Signature-based approach
O Pattern search in packet payload

& More efficient than protocol decoding but
decreased accuracy, finding signatures can be
difficult, fails with encryption, privacy?
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Machine Learning Approach 1/4

m Use protocol independent flow attributes (features)
O Packet-level: e.g. packet length

O Flow-level: e.g. inter-arrival times, duration, volume
O Multi-flow-level: e.g. number of concurrent flows
m Use Machine Learning (ML) to classify flows using
these features
O Train algorithm on representative set of flows
O Classify/predict classes for new unseen flows
m |dea is not completely new but lots of open questions
O What algorithm? What (set of) features?

O Accuracy? Performance?
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Machine Learning Approach 3/4

m Machine Learning Algorithm
O Autoclass (http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/)

O Unsupervised learning (clustering)

m Feature selection
O Sequential forward search (greedy algorithm)

O Start with empty feature set
O Each step add new feature that maximally increases
goodness metric
O Wrapper model (execute actual ML algorithm)
O Goodness Metric: Intra-Class Homogeneity (H)
O Percentage of instances of majority application in class
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Machine Learning Approach 4/4

Example Homogeneity (H) computation
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Dataset

m Packet traces from NLANR (http://www.nlanr.net)
O Auckland VI (2 days), Leipzig Il, NZIX |l

O 8 different applications: FTP Data, Telnet, Mail (SMTP),
DNS, Web, AOL Messenger, Napster, Half-life

O 1000 randomly sampled flows for each application
¢ No payload in public traces
O Select flows based on application default ports
O Assume most flows are of expected application
0O Some ‘wrong’ flows decrease homogeneity
m Flow Attributes (Features)

O Packet length (mean/variance), inter-arrival times
(mean/variance), volume (bytes), duration

O Bidirectional (except duration)
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Results — Average Homogeneity
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Results — Best Features
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=== Auckland-VI,day 2 === NZzIX-I

Percentage

Feature

IEEE LCN 2005, Sydney, Australia, November 15"-17th http://caia.swin.edu.au szander@swin.edu.au Page 14

Swinburne University of Technology



Conclusions

m Some separation of applications can be achieved
O Average accuracy 86.5%

m Features

O Packet length, volume favoured over inter-arrival times,
duration (biased by our set of applications!)

m Performance (2.4GHz Celeron)
O Learning very slow (~8.5 hours with full feature set)

O Classification fast (~6,300 flows/second)

m Disadvantages of current ML technique

O Classes need to be mapped to applications

O Many parameters to be tuned
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Future Work

m Compared different ML algorithms (especially
supervised techniques)

m Compare different feature selection methods
m Investigate new features

m For verification use traces where real application ‘is
known’ (payload analysis)

m Investigate how quickly flows can be classified

m Investigate influence of flow sampling

m Investigate different application (e.g. peer-to-peer)
m Develop prototype software
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The End

Questions, Comments?
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