

CENTRE FOR ADVANCED INTERNET ARCHITECTURES

Dissecting Server-Discovery Traffic Patterns Generated By Multiplayer First Person Shooter Games

<u>Sebastian Zander</u>, David Kennedy, Grenville Armitage

{szander, garmitage}@swin.edu.au
Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology

NetGames 2005, October 10th-11th

Outline

- Motivation
- Data Collection
- Server-Discovery Traffic Identification
- Analysis
- Improved Server Discovery
- Conclusions and Future Work

NetGames 2005, October 10th-11th

Motivation

- First Person Shooters usually based on client server model
- Players need to locate servers and retrieve server information to decide where to play
- Besides the actual game traffic (non-probe traffic) there is traffic to locate and query game servers (probe traffic)
- > How much probe traffic on typical server?
- Demographics of probe traffic vs. non-probe traffic?

NetGames 2005, October 10th-11th

Data Collection

- Game: Enemy Territory
 - ☐ First person shooter based on Quake 3 engine
 - □ Team-based with strategic objectives
- Two public (identically configured) game servers
 - □ CAIA server (Melbourne, Australia)
 - ☐ **GrangeNet** server (Canberra, Australia)
- Collected traffic flow information over 20 weeks
 - □ Bidirectional flows
 - ☐ Flow key: src IP, src port, dst IP, dst port
 - ☐ Flow timeout: 60 seconds
 - □ Volume (packets, bytes)
 - □ Packet length, inter-arrival times (min, mean, max, std dev)

NetGames 2005, October 10th-11th

http://caia.swin.edu.au szander@swin.edu.au Page 5

Probe Traffic Identification

- Simple heuristic
 - □ Packets from server to client < 20
 - ☐ Mean inter-arrival time of server to client packets > 500ms
- Based on insights from looking at probe traffic characteristics
- When compared against game server log information there is some error (0.5% of the volume misclassified)

NetGames 2005, October 10th-11th

Analysis – Overall Volume

	CAIA		GrangeNet	
	Probe	Non- Probe	Probe	Non- probe
Flows	16.18e6	7993	16.93e6	1757
	(99.95%)	(0.05%)	(99.99%)	(0.01%)
Mpackets	36.46	755.13	36.94	110.74
	(4.61%)	(95.39%)	(25.01%)	(74.99%)
GBytes	8.18	116.58	8.10	14.56
	(6.56%)	(93.44%)	(35.75%)	(64.25%)

NetGames 2005, October 10th-11th

Analysis – Demographics ■ Mapped IP addresses to countries using free GeoIP

- database (claimed 97% accuracy)
- Grouped countries (130+) into geographical regions
- Distribution is very similar for both servers

Improved Server Location

- Distribution of probe traffic depends on order of server list send by master server
- Our data (and some rather unscientific experiments with game client) suggest that the list is not order by location/distance
- Unnecessary probe traffic send to servers that players are unlikely to join because of high latency
- Players have to wait longer to find suitable (close) servers

NetGames 2005. October 10th-11th

http://caia.swin.edu.au szander@swin.edu.au Page 15

Improved Server Location cont'd

- Do not distant servers to client; at least sort server list in order of increasing distance/latency
- Very accurate ordering not required, could just sort by countries or even regions
- How to determine distance?
 - ☐ Clients and servers are configured with their location during installation/configuration
 - Master server determines locations based on IP addresses
 - □ Master server estimates latency between client and servers

NetGames 2005, October 10th-11th

Conclusions

- Amount of probe traffic independent of server popularity → can be significant fraction (7% and 36% on our servers)
- Number of probe flows is very high (99.9% on our servers) → can have significant impact on devices/software that keeps per-flow state
- Geographic origins of probe and non-probe traffic differ greatly
 - ☐ Non-probe traffic reflects local player community
 - ☐ Probe traffic seems to reveal global player distribution; does not even require popular server!

NetGames 2005, October 10th-11th

http://caia.swin.edu.au szander@swin.edu.au Page 17

Future Work

- Compare round-trip times and number of hops of probe and non-probe traffic
- More accurate probe traffic detection based on packet payload
- Study server list distribution and possible performance increase of distance-based ordering
- Study newer games e.g. Half-Life 2
- Real-time player map

NetGames 2005, October 10th-11th

Thanks for your attention! Questions?

NetGames 2005, October 10th-11th

