Upgrading the Remote Unix Lab Environment (RULE)

Gareth Edwards
Joanne Ly
Huu Ngoc Duy Nguyen

Overview

- RULE Background
- Project Aim
- Proposed Changes to RULE
- Description of RULE Prototype
- Further Work
RULE Background

- Remote Unix Learning Environment
 - Multiple virtual Unix-like hosts
 - Uses FreeBSD’s jail functionality
- Used in HET436: Broadband Multimedia Networks lab exercises
 - E.g. Setting up proxy servers

RULE Background (Continued)

- Disadvantages
 - The jail functionality does not allow students to have full control of networking functionalities
 - No access to the kernel
 - Simplistic lab exercises in comparison to subject contents
 - More suitable for usage in a first year subject
 - Resource management mechanism
 - Does not ensure processes from one jail host does not starve processes from another jail host
Project Aims

- Allow each student their own dedicated FreeBSD host(s)/client(s)
 - Students able to modify and rebuild kernel
- Provide mechanisms to restore hosts to a working configuration
 - Controlled via a web interface
- Implement remote hardware resetting

RULE Prototype Description

- Each lab group is allocated an 802.1q VLAN
- VLAN connected to a server (through a switch) running:
 - NFS, TFTP and DHCP for remote, diskless booting
 - Apache, PHP and MySQL for web interface
- Hosts connected to a terminal console server
 - Reused from old RULE system
RULE Prototype Description (continued)

RULE Server

- NFS
- TFTP
- DHCP
- WEB
VLAN (continued)

- FreeBSD supports multiple pseudo interfaces (VLANs).

- Assign multiple IP addresses, subnet masks and VLAN tags to one Network Interface

- Used a Cisco switch
 - 802.1q VLAN setup
 - Turn off Spanning-Tree Protocol to avoid PXE boot timeout
Terminal Console Server

- Remote console access to RULE hosts
- Reused from old RULE system
 - Supports multi-port serial cards
 - Free "conserver" software package

Conserver Configuration

- Define serial ports to be monitored and the speed
- Ensure boot loader uses the serial port
 - `boot.config`
- Allow logins over the console port
 - `/etc/ttys`
Remote booting of hosts

- Implemented using Pre-boot eXecution Environment® (PXE)
 - Used to boot diskless machines through a network connection
 - DHCP assigns static IP address to host machine, identified by its MAC address
 - DHCP points to functional `pxeboot` executable
 - TFTP transfer of `pxeboot` to host's local memory
 - Host NFS-mounts a nominated file system

DHCP Configuration

- Contents of `dhcpd.conf`
  ```
  host client2 {
    #Assign a static IP to the client
    hardware ethernet 00:40:63:cb:56:e5;
    fixed-address 192.168.10.15;
    #Assign a hostname to the client
    send host-name "client2";
    
    #TFTP Server
    next-server 192.168.10.1;
    #Copy of PXEBOOT on TFTP Server Location
    filename "client2/boot/pxeboot";
    #Root path to find 'boot' folder
    option root-path "/diskless/client2/";
  }
  ```
Booting Scenarios

The student:

- Has modified their kernel and would like to boot straight off the HDD
- Needs to perform recovery operations
 - Boot a GENERIC kernel
 - Mount a compressed RAM image of a “known working” file system exported from a NFS server
- Wants to boot a GENERIC kernel
 - But have their file system on the HDD automatically mounted

Modifying the PXE Boot Process

- Standard process needs to be modified
 - Each time dhcpd.conf is changed, need to restart DHCP
 - Will disrupt other students
- Better solution:
 - Control via combination of different loader.conf files and softlinks
loader.conf

- Contains boot information
 - the kernel to be booted
 - the file system to be mounted
 - where to get each one from
 - NFS server
 - Host HDD
- Can edit this file without requiring any processes to restart

Soft links

- `dhcpd.conf` specifies location of host boot folder
 - Paths remain static for each individual client
 - Can use soft links to point from these locations to a file structure on the NFS server
- Links removed and added depending on how the user requires each client to boot

```plaintext
client1 -> rulehost/fbsd410_inst
client2 -> rulehost/fbsd54_ram
client8 -> rulehost/fbsd54_inst
client9 -> rulehost/fbsd54_ram
```
PXE Booting: Scenario 1

- Booting straight off the HDD
- Remove link to host’s boot folder
- PXE boot fails
 - Unable to find boot folder
 - Proceeds to boot of HDD

PXE Booting: Scenario 2

- Boot a GENERIC kernel
- Mount a compressed RAM image of a file system
- Host goes through general PXE boot process
 - Contents of loader.conf file in boot folder
    ```
    mfsroot_load="YES"
    mfsroot_type="mfs_root"
    mfsroot_name="/boot/mfsroot"
    vfs.root.mountfrom="ufs:/dev/md0c"
    init_path="/sbin/init"
    ```
PXE Booting: Scenario 3

- Boot a GENERIC kernel
- Mount file system off HDD
- Host goes through general PXE boot process
 - Contents of loader.conf file in boot folder

```
vfs.root.mountfrom="ufs:/dev/ad0s1a"
```

Web Interface

- Implemented using PHP and MySQL
- MySQL database
 - Consists of 3 tables
 - Table 1: Stores lab groups' passwords
 - Table 2: Stores a list of which VLANs are assigned to a lab group
 - Table 3: Stores which hosts are assigned to a VLAN
Web Interface

Boot Options

Welcome group?

VLAN ID: 102

Change Boot Type

Client: RAM

Kernel from:

○ RAM

○ HDD

Change

Root Filesystem from:

○ RAM

○ HDD

Kernel Distribution:

○ FreeBSD 5.4

○ FreeBSD 4.10

Start Installation

Client:

Distribution:

○ FreeBSD 5.4 Installation

○ FreeBSD 4.10 Installation

Change

Console Interface
Hardware Reset

- Enable physical control of remote host
- Parallel port of NFS sever connected to motherboard power header via simple circuit
- Server application causes power pin to be tied to ground for specified amount of time
 - Defined by type of reset

Firewall

- IP Firewall (IPFW)
- NATD
- DUMMYNET
Firewall (continued)

- Rebuild the kernel
- Enable IP Firewall (IPFW), NATD, DUMMYNET at start-up
- Define IPFW rules at: /etc/ipfw.rules

Dummynet

- Fair share of bandwidth utilisation between RULE hosts
- Limit the inbound and outbound bandwidth of each RULE host to 200Kbit/s
- Can be included in /etc/ipfw.rules file
Further Development

- Booting different operating systems
- Booting different types of motherboards
- Administration web interface
 - □ To reallocate hosts to VLANs
 - □ To reallocate VLANs to lab groups
 - □ To update group passwords