
Jason But

Developing Platform Independent

Software using the AutoTool

Suite

� Why develop Platform Independent code

� From the users perspective

� From the developers perspective

� The Autotools Suite

� Automake

� Autoconf

� The NAM (Not AutoMake) System

� Why

� How to use it

Outline

Why Platform Independent Code?

� Most software we develop is likely to be tools to gather or
analyse data
� Smaller

� Possibly only used by you

� It may be useful enough to release
� E.g. pckhisto and netsniff

� If others use FreeBSD
� Environment could be configured differently, your Makefile or script might

not work

� Other Platform OSs
� Linux

� MacOS X

� Windows – God forbid

Why Platform Independent Code?

� Developing Platform Independent Software

� The source code

�Generic

�Use platform independent libraries

�Write standards compliant code (for different compilets)

�Where necessary, group platform dependent code into a small file
set so different versions can be compiled in

� The build environment

� Locations of tools and libraries

�Names of tools and libraries

�Version of make

�How to install

Why Platform Independent Code?

� Need to distribute a project that

� Examines the build system and determines if it can build the
software

� Creates a standard means of building and installing the
software

�Typically make, but make differs across platforms

� Source code written to be able to compile on different
platforms and with different compilers

� Many options but fast becoming standard is the:

� configure/make/make install cycle

The Users Perspective

� Simplified Download/Compile/Installation Cycle

� Download and uncompress source code

� Execute
./configure

su root

make

make install

� Consistent across all platforms and increasingly among
distributed software

The Users Perspective

� The configure script scans the system and build a (set
of) Makefile(s) specific to the platform under
consideration

� The standard Make tool is then used to compile and
install the software

� Advantages

� Platform specific instructions are automatically handled

� User doesn’t have to worry about changing compile or install
options

� configure can check for required libraries/software/features
and fail with an appropriate error message

The Developers Perspective

� Simplified Support Scenario

� The same package is compatible with a number of different
systems

� Complex Development

� How to write the configure script

� What to check for and how

� How to generate platform independent Makefiles

� Maintenance of installation system

The Developers Perspective

� configure must run on all systems – have to use a
standard scripting language (/bin/sh)

� Different systems:

� Have libraries and tools installed in different locations

� Install your application to different locations

� Have different Make systems – BSD Make is substantially
different to GNU Make

The Autotools Suite

� The GNU Autotools suite was developed to help
simplify the task of distribution of platform independent
code

� automake

� autoconf

� autoheader

� libtool

� Of most interest is automake and autoconf, used to
generate a system independent configure script which
can subsequently be used to generate system
independent Makefile(s)

Autotools – Overview

Makefile.am

configure.(in|ac)

Makefile

aclocal.m4
acsite.m4 config.h

autoheader

automake

autoconf

Makefile.in

configure

config.h.in

The Autotools Suite

� The concept behind the GNU Autotools suite is a good
one:

Remove the task of creating system checks and developing

system independent build environments from the developer

through the use of a simple tool set.

� But just how good are the individual tools within the
suite – particularly automake and autoconf

Automake

� Input files

� Makefile.am

� List of executables and libraries to build and sources for each target

� configure.(ac|in)

� List of Makefile.am files to consider

� List of macros to implement

�Determination of which rules to include

� Output files

� Makefile.in

� Input for configure script

Automake

� Advantages

� Makefile.am format is simple
and easy to read

� Don’t have to worry about
writing a Makefile

� Supports a large number of
different types of targets

� Disadvantages

� Difficult to add extra rules – as
discovered when Kris tried to
add support for pre-compiled
headers with gcc3.4

� Generated Makefile.in files are
complex and difficult to follow

� Final Makefile(s) difficult to
read

� Debugging problems

� Understanding build process

� Running make produces ugly
output

Automake – Makefile sample

Automake – make output sample

Autoconf

� Input files

� configure.(ac|in)

� List of macros to scan and check on system

� List of Makefiles to generate

� aclocal.m4, acsite.m4

�Set of M4 macros that can be used in the configure.(ac|in) file that
are not part of the standard autoconf macro set

� Output files

� configure

�Script to execute to build the Makefile(s)

Autoheader

� Input files – same as autoconf

� Output files

� config.h.in

�Used as input when running configure to generate config.h

Autoconf

� Advantages

� Pre-existing macro set to check
for existence of:

� Tools

� Programs

� Libraries

� Headers

� M4 Macro language

� Can put shell script into
configure.(ac|in)

� Can be used without automake

� Disadvantages

� M4 Macro Language – need to
learn yet another language

� Remembering cycle of
applications to run to properly
regenerate all required files

Autoconf – configure.in sample

Using Autoconf without Automake

� Need to write our own set of Makefile.in(s)

� More effort

� Greater care needed in writing to ensure compatibility

� Resultant Makefile(s) are as neat or messy as the
source Makefile.in templates

Not AutoMake (NAM)

� What is NAM

� Basically a set of files that implements core build
functionality in a way that minimises the effort involved in
writing a Makefile.in file

� Allows use of autoconf without automake AND simple
generation of Makefile.in

� Based in spirit on the WINE setup which uses autoconf but
not automake

� Why NAM

� Nicer Makefile(s) and make output

� Re-usable

NAM – What does it Offer

� Default targets – all, clean, install, uninstall

� Recursive make in subdirectories

� C++ compilation

� Optional clean or verbose output during build

� Automatic dependency regeneration

� Automatic rerunning of autoconf and configure if necessary

� Readable Makefiles

� Linking or C++ archives and executables

� Installation of executable in $(prefix)/bin and $(prefix)/sbin

� Installation of man pages

NAM – Required Files

� NAM_rules.mk.in

� Common build rules

� Configure generates NAM_rules.mk

�Contains platform dependencies

� Included into your Makefiles

� bsd.mk

� BSD make specific instructions

� gnu.mk

� GNU make specific instructions

NAM – Template Files

� configure.in

� Minimal set of autoconf macros required to generate a NAM
compatible project

� Need to add extra tests and variables as per your project
requirements

� Makefile.in

� Sample Makefile.in with all possible options for NAM

� Remove unrequired functionality

� Add extra and new compile rules

Creating NAM projects

� Easier for a new project

� Use the template configure.in and Makefile.in files and add
to them as the project evolves

� More complex for an existing project

� Use the template files and try to port macros from existing
configure.in file – not automake macros

� Add rules to Makefile.in as needed

� Possibly extend NAM_rules.mk.in with new default rule (and
submit changes back to me)

Example – pkthisto

� Recently converted pkthisto to use NAM

� Existing package did not compile on FreeBSD 5.3

� Used default configure.in template

� Added tests for libraries and header files used by pkthisto

� Developed Makefile.in to compile pkthisto

� Link (and install) a single executable

� List source files involved

Example – pkthisto (Makefile.in)

Example – pkthisto (output)

Example – netsniff

� Even though a recent project, netsniff compilation has
evolved

� Initially a single Makefile that built the source with nice output

� Converted (by Urs) to use autoconf and automake

� Converted (by me) to use autoconf and NAM

� More complex

� Number of subdirectories

� Temporary archive libraries

� More autoconf tests to run

� More configure options enabled

Example – netsniff (clean output)

Example – netsniff (verbose output)

� Output of “make VERBOSE=2”

Using NAM

� Installing the required files

� Obtain NAM_rules.mk.in, bsd.mk and gnu.mk and place a
copy in the top directory of your project

� NAM_rules.mk will be generated in the top build directory
after running configure

Using NAM

� Writing Makefile.in(s)

� Obtain the template file Makefile.in and place a copy in the
top directory of your project AND in each subdirectory you
wish to recursively make

� The first four lines of the Makefile.in file are mandatory and
MUST NOT be commented out or deleted

TOPSRCDIR = @top_srcdir@

SRCDIR = @srcdir@

VPATH = @srcdir@

TOPBUILDDIR = ./@top_builddir@

Using NAM

� Writing Makefile.in(s) – variables

� SUBDIRS – list of subdirectories for make to recurse into

� INCLUDES – compiler flags to list extra directories to search for included files

� PROGRAMS – list of executables to link

� ARCHIVES – list of temporary library archives (.a) to link

� xxx_SRCS – list of C++ source files to compile in order to build program xxx,
where xxx is a program in the PROGRAMS or ARCHIVES variable

� xxx_LIBS – list of libraries to use when linking the program or archive xxx

� xxx_LDFLAGS – linker flags to use when linking the program or archive xxx

� PRECOMP_HEADER – list of header files to compile using precompiled headers
(requires gcc3.4+)

� INSTALL_BIN – list of executables to install to $(prefix)/bin

� INSTALL_SBIN – list of executables to install to $(prefix)/sbin

� INSTALL_MAN – list of man pages to install to $(prefix)/man

Using NAM

� Writing Makefile.in(s)

� Do NOT delete the line

@NAM_RULES@

� This includes the rules defined in NAM_rules.mk

� Add any new and other rules AFTER the @NAM_RULES@
line

�Can add extra dependencies for all, clean, install and uninstall
targets

�New targets (all, install, uninstall) with rules will be executed AFTER
the default make of these targets

�Any rules before @NAM_RULES@ will supercede make all as the
default target

Using NAM

� Writing configure.in

� Do not remove any existing macros from this file

� Add new macros to test for anything you need where
specified in the file

� Add a list of all Makefiles your project needs to the
AC_CONFIG_FILES macro, you MUST ensure that your
Makefile(s) are listed AFTER the NAM_rules.mk file already
there

�Otherwise your Makefiles will be generated with the old
NAM_rules.mk and will be one configure cycle out of step

Using NAM

� Writing configure.in

� Source for writing configure.in tests

� Download the autoconf manual from
http://www.gnu.org/software/autoconf/manual/index.html

� Autoconf website – http://www.gnu.org/software/autoconf

� Google search for help

� Using the minimal configure.in will not be a problem, it just
means that occasionally make will fail where it would be
better if configure failed – the idea is if configure completed
successfully, the system is capable of building the
application

Conclusions

� Concept behind the autotools suite is good
� Autoconf is well implemented, automake is a mess

� NAM allows use of autoconf and minimal work in writing Makefile.in files

� NAM takes advantage of a prewritten rule set to minimise work
on the build environment
� Leverage my 8 weeks effort into learning how autoconf works

� Get readable Makefiles and build output with no effort

� Easy to use, especially for new projects

� Make your software development platform independent from the
start
� Lets you run tests at home if you have a different platform (such as Linux

or MacOS

� Lets your software be used by others

Questions

� And the title says it all…

