

CENTRE FOR ADVANCED INTERNET ARCHITECTURES

Quantitative Assessment of IP Service Quality in 802.11b Networks

Thuy T.T. Nguyen Grenville J. Armitage

Introduction

- ☐ Brief background on 802.11b networks
- ☐ Test Setup and Findings
 - Impact of Downstream being a bandwidth bottleneck
 - Impact of 802.11b's CSMA/CA scheme- a lower bound on TCP performance degradation in sharing medium
- □ Conclusions

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

Background on 802.11b networks - 1

- ☐ Extension to 802.11 that applies to wireless LANs
- □ Provides 11 Mbps transmission in the 2.4 GHz band using Direct Sequence Spread Spectrum (DSSS)
- ☐ Uses CSMA/CA at MAC layer
- ☐ Operates in Adhoc/Infrastructure modes
- □ Our study focuses on 802.11b Infrastructure mode & CSMA/CA with RTS/CTS and positive ACK mechanism

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

Background on 802.11b networks - 3

802.11b Frame Encapsulation

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

10/11/2004

Page 5

Impact of Downstream (DS) BW Bottleneck -

CLIENT 1 2.4GHz Intel Celeron ASUS P4SGX-MX FreeBSD4.9

802.11b Wireless Netgear PC Card

- □Nttcp transferring 8MByte with TCP client window 32KBbyte from Server to Client
- □ICMP ping from Client to Server to estimate RTT
- ☐MTU sizes of 1500, 1200, 1000 and 512 bytes
- □ Repeat test with and without Server side BW limit using Dummynet

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

Test Results Implications

☐ Spike in RTT over the DS link affects all traffic sharing the AP

☐ Implications for ISPs who wish to support interactive applications while concurrently hosting local, non-interactive content

☐ Configuring the optimal window size based on idle link's RTT might lead to highly sub-optimal result

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

Impact of CSMA/CA with RTS/CTS - 1 SERVER ACCESS 2.4GHz Intel Celeron POINT 2.4GHz Intel Celeron ASUS P4SGX-MX ASUS P4 P800VM ATX sco Aironet 100 1200 Series FreeBSD4.9 FreeBSD 4.9 Mbps 802.11b Wireless Netgear PC Card CLIENT 2 2.4GHz Intel Celeron FreeBSD4.9 802.11b Wireless Netgear PC Card

- □Nttcp from Server to Client 1
- ☐ Pinging Server from Client 2 with Different Ping Intervals and Packet Sizes

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

10/11/2004

Page 9

Impact of CSMA/CA with RTS/CTS - 2

Nttcp Throughput vs. Ping Rate (64byte ping packets)

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

Impact of CSMA/CA with RTS/CTS - 3

	1500-byte MTU TCP Data (μs)	TCP ACK (μs)	
DIFS & SIFS	50 + 10*3 = 80	50 + 10*3 = 80	
RTS & CTS	192*2 + (20+14)/0.125 = 656	192*2 + (20+14)/0.125 = 656	
802.11 Data	192 + (1500+42)/1.375 = 1,313.4	192 + (40+42)/1.375 251.6	
802.11 ACK	192 + 14/(1.375) = 203	192 + 14/(1.375) = 203	
Frame exchange total	2252.4	1190.6	
Total transaction	3443		

TCP Transaction Time

* Backoff Time is not included in the calculation

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

10/11/2004 Page 11

Impact of CSMA/CA with RTS/CTS - 4

	64-byte Echo Request & Reply (μs)	128-byte Echo Request & Reply(μs)	256-byte Echo Request & Reply (μs)
DIFS + RTS + CTS + SIFS	736	736	736
802.11 Data	269.1	315.6	408.7
802.11 ACK	203	203	203
Frame exchange total	1208.1	1254.6	1347.7
Total transaction *	2416.2	2509.2	2695.4

Ping Transaction Time

* Backoff time is not included in the calculation

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

Conclusions

Experimentally characterise:

□Impacts of limited DS link capacity on wireless clients and ISPs

■ Negative effects of CSMA/CA scheme in 802.11b networks on TCP performance in the presence of non-reactive flows from other interactive applications

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

10/11/2004 Page 17

Future Work

- Expanding our experiments with 802.11b 'hotspot' game scenarios
- ☐ Considering other factors, e.g. backoff time in the CSMA/CA scheme, collision rate, and transmission probability
- Motivate further work on load balancing among different APs, optimising media access algorithm, application classification, priority queuing, and packet scheduling in 802.11b networks

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au

THANK YOU!

ATNAC2004 {tnguyen, garmitage}@swin.edu.au http://caia.swin.edu.au