

CENTRE FOR ADVANCED INTERNET ARCHITECTURES

Evaluation of IEEE 802.11b and Mobile IPv6 Handoff Times

Mai Banh

18/08/2004 mbanh@swin.edu.au

Mobile IPv6

- Mobile IPv6 (MIPv6) retains connectivity through a single, well-known Home Address of the Mobile Node when it changes its attachments to different subnets
- Mobile Nodes use a Care-of Address (CoA) to communicate when not at home.
- MIPv6 handoff: MN changes from one subnetwork to another.
- Handoff latency: the period that communication between MN and CN is disrupted

Talk outline

- MIPv6 handoff steps defined by RFC 3775
 - > Detection movement step
 - Methods for L3 detection
- Implementation of KAME
- Experimental setup and results for 802.11b and MIPv6 handoff times
- Evaluation of the results
- Handoff Impact on application performance

3 18/08/2004 mbanh@swin.edu.au <u>http://caia.swin.edu.au</u>

MIPv6 Handoff procedures (RFC 3775) MIPv6 Handoff procedures (RFC 3775)

- CN
 - HA ARI A
- Movement Detection
- Forming New Care-of Addresses (Stateful or stateless Address autoconfiguration)
- Sending Binding Updates to the Home Agent (Registration/Deregistration)
- > Wait for HA perform DAD
- Receiving Binding Acknowledgements
- Correspondent Registration

Movement Detection (RFC 3775)

5

- Detect L3 handoffs. Generic method that uses the facilities of IPv6 Neighbor Discovery
 - When MN has no packets to send, no frequent Router Advertisements or indications from the linklayer, must depend on other available information (e.g., from lower protocol layers)
- After detects an L3 handover, MN performs DAD on its link-local address
- Selects a new default router as a consequence of Router Discovery
- Performs Prefix Discovery with that new router to form new CoA

18/08/2004 mbanh@swin.edu.au http://caia.swin.edu.au

L3 handoff detection methods (RFC 3775)

- IPv6 Neighbor Discovery
 > Router Discovery and/or NUD
- Router Discovery: Information in received Router Advertisements either to detect prefix changes or to discover expired lifetime for RA
 - There might be multiple routers on the same link hearing a new router does not necessary to constitute L3 handoff
 - Multiple routers on the same link might advertise different prefixes.

Detection methods (continued)

- For L3 movement confirmation
 - Expired lifetime for RA
 - Advertisement Interval option in RA: indicates the frequency expected to continue to receive future RAs from that router
 - The MN can then implement its own policy to determine how many lost RAs from its current default router and constitute an L3 handover indication.
 - NUD to detect the default router is no longer bi-directionally reachable, in which case the MN must discover a new default router

. 18/08/2004 mbanh@swin.edu.au <u>http://caia.swin.edu.au</u>

MIPv6 Implementation by KAME

- Form new CoAs and start DAD:
 - > IPv6 address auto-configuration mechanism.
 - DAD is performed to ensure MN's link local address not duplicated
- Movement detection: NUD mechanism. Can performed simultaneously with DAD
- After L3 detection, select a new CoA
- Sending Binding Updates to the Home Agent
- Wait for HA perform DAD
- Receiving Binding Acknowledgements
- Correspondent Registration

7

IEEE 802.11b layer handoff

9

18/08/2004 mbanh@swin.edu.au <u>http://caia.swin.edu.au</u>

NUD takes 3 seconds

MIPv6 hand-off including link layer hand-off	Average hand-off from home to foreign network (in s)	Average hand-off from foreign back to home network (in s)
CN is MIPv6 node (RA interval: 30ms –70ms)	4.770	3.779
CN is non MIPv6 node (RA interval: 30ms –70ms)	4.75	3.638

18/08/2004 mbanh@swin.edu.au http://caia.swin.edu.au

Handoff impact on application performance

On common webcam application

Cum ulative distribution of webcam perform ance over 30 handoff sam ples

12

