

CENTRE FOR ADVANCED INTERNET ARCHITECTURES

Dynamics and Cachability of Web Sites: Implications for Inverted Capacity Networks

Sebastian Zander, <u>Grenville Armitage</u>, Clancy Malcolm

zander@fokus.fraunhofer.de

{garmitage, cmalcolm}@swin.edu.au

Inverted Capacity Networks

- Imagine a world where all the bandwidth was around the edges rather than the core
 - $\hfill\square$ E.g. massive fibre to the home deployment
 - Neighbourhoods become local meshes of short-haul high bandwidth connectivity
 - □ Libraries could host neighbourhood web caches, revitalising their role as information repositories for their communities
- Will this improve the "user experience" enough to justify government or "social good" programs to fund?

Need to model likely performance improvements

□ Need to model cachability of content on today's Internet

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 3

Overview

- Inverted Capacity Networks
- Web Dynamics & Cachability
- Methodology
- Experiment Results
- Conclusions
- Future Work

Web Dynamics & Cachability

- (Still) most important content type: Web
- Move web content closer to the user
 - > Limit and smooth traffic into core network
 - Decrease latencies observed by user
- Gain depends on
 - □ Cachability: how much of the Web is cachable?
 - > Cachable according to expiration and validation (HTTP 1.1)
 - □ Dynamics: how is the Web changing over time?
 - Change: the content as contained in the response has changed between two consecutive visits

Methodology – Active vs. Passive

Passive

Analysis of web server/proxy logs (insufficient information!)
Sniffing and analysis of server/proxy traffic

Active

□ Actively request objects and analyse responses

- > We choose the active approach
 - Unbiased: independent of short term user group behaviour and content popularity
 - □ Controlled: e.g. regular visit interval
 - □ No infrastructure concerns: no access to provider network needed
 - □ No privacy/security concerns
 - □ Drawback: generated traffic

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 5

http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 6

Methodology - Dynamics

- Change Detection
 - □ Object (response body) may not have a unique identifier
 - □ Even if it has it one (e.g. ETag) it can't be trusted
 - > Generate a "unique" hash value for an object (CRC32 or MD5)
 - > Object changed if the hash value of the object changed
- In combination with visit timestamps

ICON 2003 Sydney, Australia

- Time between changes
- > Visit/change ratio
- > Furthermore
 - Age of objects
 - > Duplication

Methodology - Cachability

- We consider objects as cachable if expiration or validation (or both) are possible
- Reasons for being not cachable (expiration)
 - □ Uncachable HTTP method
 - $\hfill\square$ No freshness information
 - □ Stale (has expired)
 - □ Cache-Control or Pragma forbids caching
 - □ Uncachable response
 - □ Cookies
 - Dynamic URL (? parameter or "cgi-bin" in URL)
- Reasons for being not cachable (validation)
 - Missing Etag and Last-Modified

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 7

Methodology - Architecture

Experiment Results

- Observed 6 web sites for 2 weeks
 - □ 3 commercial
 - □ 3 university/government
 - $\hfill\square$ Popular among local users as indicated by a web proxy log
 - □ >500,000 URLs (URI + parameters)
 - □ ~15 GB content size
- Actually the sites have been observed for a longer period but only a two week period has been analysed
- Visit interval for all URLS: 1 day

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 9

Experiment Results

Content types sorted by object count

Cachability of the most common content types

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 11

Experiment Results

Rate of change and unchanged objects for the most common content types

Experiment Results

Minimum change intervals for different content types

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 13

http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 14

ICON 2003 Sydney, Australia

Experiment Results

- Only a small fraction (20%/32%) of the investigated objects/bytes is cachable. The main reason are html objects which we assume are dynamically generated
- On average uncachable objects are smaller (26kB) than cachable objects (40kB)
- 52% of the objects did not change at all in a 2 week period. Of the changed objects 10-40% (depending on content type) changed with a minimum interval of more than 1 day
- Smaller objects seem to smaller minimum time intervals between changes
- 7% of the URLs were duplicated at least twice

Interim Conclusions

- Capacity inverted network infrastructure is advantageous if the content can be cached in the high capacity part close to the user
- Investigated today's Web content distribution
 - □ For the observed content everything except html has a high cachability
 - □ Cachability of observed html content is very low; much lower as it could be considering the dynamics
- Limited scope of the experiment but the Web is simply too BIG

Shortfalls

- Active approach uses a large amount of bandwidth and increases load of the sites under investigation
 - Can not handle too many URLs
 - > Can not handle small visit intervals
- Spider can not make POST requests
- Spider can not send cookies (although it receives them)
- Spider can not handle HTTP authentication

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 17

Future Work

- More analysis e.g. growth of sites
- Passive measurement and comparison/combination with active approach
- Hybrid approach
 - □ Passively obtain URL set
 - □ Based on user popularity (access logs)
 - \square Based on the sites themselves (site structure, content, ...)
 - □ Actively scan the URL set (active)
- Adaptive sampling
 - Adjust sampling interval based on observed cachability and dynamics
- Improve cachability of dynamically generated content

Thanks for your attention!

ICON 2003 Sydney, Australia http://caia.swin.edu.au garmitage@swin.edu.au September 29th, 2003 Page 19

