Generating Dynamic Adaptive Streaming over
HTTP Traffic Flows with TEACUP Testbed

Jonathan Kua, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 161216A
Swinburne University of Technology
Melbourne, Australia
jtkua@swin.edu.au, garmitage @swin.edu.au

Abstract—HTTP-based video streaming has become
popular in recent years, with Dynamic Adaptive Streaming
over HTTP (DASH) emerging as an ISO/IEC standard
for live and on-demand video streaming services. Netflix
and YouTube employ DASH-like streaming strategies and
account for more than 50% of North American traffic in
2015, representing a significant source of Internet traffic.
Consumer video streams are most likely to be bottlenecked
by last-mile ISP links and impacted by emerging Active
Queue Management (AQM) schemes for counteracting
bufferbloat. However, the interactions between different
TCP algorithms, DASH traffic (within a mix of other typ-
ical traffic) and the underlying AQMs are not well under-
stood. Experiments in a controlled testbed allow shedding
more light on this issue. We extended “TCP Experiment
Automation Controlled Using Python” (TEACUP) to use
dash.js and VLC clients for running repeatable DASH
experiment trials with different TCP algorithms over a
range of emulated network conditions, bottleneck rate
limits and AQMs.

Index Terms—video streaming, DASH, HTTP, TCP,
TEACUP

I. INTRODUCTION

Transmission Control Protocol (TCP) has been the
dominant transport layer protocol that carries the bulk of
all traffic across the Internet for many decades. Several
TCP congestion control algorithms were developed for
performance optimisation over the last few decades.
Although TCP was traditionally used for reliable bulk
transfers, recently it is also becoming the protocol of
choice for multimedia streaming applications — Dy-
namic Adaptive Streaming over HTTP (DASH) has
recently emerged as an International Organisation for
Standardisation/International Electrotechnical Commis-
sion (ISO/IEC) standard for live and on-demand stream-
ing [1]. Netflix and YouTube employ DASH-like video
streaming strategies [2], [3] and account for more than
50% of North American traffic in 2015 [4], representing

CAIA Technical Report 161216A

December 2016

a significant source of Internet traffic. Consumer video
streams are most likely to be bottlenecked by last-mile
ISP links and impacted by emerging Active Queue Man-
agement (AQM) schemes such as Proportional Integral
controller Enhanced (PIE) [5], Controlled Delay (CoDel)
[6] and FlowQueue-Controlled Delay (FQ-CoDel) [7]
for counteracting bufferbloat. However, the interactions
between different TCP algorithms, DASH traffic (within
a mix of other typical traffic) and the underlying AQMs
are not well understood. Experiments in a controlled
testbed allow shedding more light on this issue. Hence,
we enhanced “TCP Experiment Automation Controlled
Using Python” (TEACUP)'to run repeatable DASH ex-
periments with industry-grade clients.

Based on a configuration file and utilising Python
Fabric [8], these enhancements allow TEACUP to per-
form a series of DASH experiments with different traf-
fic mixes, different bottlenecks (bandwidths, queuing
schemes, buffer size), different emulated network paths
(path delays, packet loss rates), and different host set-
tings (TCP congestion control algorithm and system
settings). For each experiment permutation, TEACUP
automatically collects relevant information for post-
analysis , such as tcpdump files, SIFTR and Web10G
logs. More details on the design and implementation of
TEACUP-specific testbed can be found in [9]. TEACUP
also provides a number of native data analysis tasks [10]
and data visualisation functions with TEAPLOT [11].

This technical report describes the enhancements
made to TEACUP for generating DASH traffic flows.
The rest of the report is organised as follows. Section II
presents an overview of DASH architecture and industry
standardisation. Section III describes the enhancements

'The TEACUP project originated at CAIA (http://caia.swin.edu.au/
tools/teacup), and from version 1.0 the source code is freely available
on SourceForge at http://sourceforge.net/projects/teacup

page 1 of 12

mailto:jtkua@swin.edu.au
mailto:garmitage@swin.edu.au
http://caia.swin.edu.au/tools/teacup
http://caia.swin.edu.au/tools/teacup
http://sourceforge.net/projects/teacup

made to TEACUP for DASH support and provides patch-
ing/usage instructions. Section III presents the testbed
setup and test conditions for an experiment trial. Section
IV presents illustrative DASH experiment results. Sec-
tion V provides concluding remarks and outlines future
work.

II. BACKGROUND

This section presents the overall DASH architecture
and its applications, the benefits of using HTTP and the
general principles driving the rate adaptation algorithms.

A. DASH Architecture Overview

In DASH systems [1] (summarised in Figure 1), video
content is encoded into multiple versions at different
discrete bitrates. Each encoded video is then fragmented
into small video segments or chunks, each containing
a few seconds of video. Chunks from one bitrate are
aligned in the video time line to chunks from other
bitrates so that the client can smoothly switch bitrates,
if necessary, at the chunk boundary. Content information
such as video profiles, metadata, mimeType [12], [13],
codecs, byte-ranges, server IP addresses, and download
URLs is described in the associated Media Presentation
Description (MPD) files. The MPD describes a piece of
video content within a specific duration as a Period. In
a Period, there are multiple versions of the content, each
known as a Representation. In a Representation, there
are multiple video segments or chunks. URLs pointing to
the video chunks in an MPD can either be explicitly de-
scribed or be constructed via a template (client deriving
a valid URL for each chunk at a certain Representation)
[1]. Video chunks are 3GPP-formatted [12], [13] and
in each Representation, there is a single initialisation
segment which contains the configuration data and many
media segments. Concatenating the initialisation segment
and a series of media segments results in a continuous
stream of video. Video chunks and MPDs are then served
to clients by using standard HTTP servers.

CAIA Technical Report 161216A

December 2016

HTTP Server DASH Client

Representation Media Presentation » MPD
Description (MPD) Parser

TR TT :

Representation

IIIChunksIII

Representation

] e[‘

HTTP GET Requests

\ 4

DASH Adaptive Bitrate
Algorithms

Representation

TGS T

Figure 1: DASH client-server architecture

Video
player

HTTP
Client

Unlike traditional streaming strategies, DASH does
not control the video transmission rate directly. It de-
pends on the underlying TCP algorithm to regulate the
video transmission rate, which is determined by the
congestion feedback from the client-server network path.
When a streaming session starts, the client requests
the MPD file from the HTTP server and then starts
requesting video chunks (typically in sequential order)
as fast as possible to fill the playout buffer. Once this
buffer is full, the player enters a steady state phase where
it periodically downloads new chunks. In the steady state,
the player is in the ON state when it is downloading a
chunk, and in the OFF state otherwise (resulting in an
alternating ON-OFF traffic pattern illustrated in Figure
2). The time between the start of two consecutive ON
periods is termed cycle time (typically the chunk size —
the amount of multimedia content within each chunk —
in seconds). The client typically keeps a few chunks in
the buffer to maintain adequate playback.

Download Rate

Buffer pre-filling phase Steady state ON-OFF phase
> - >

ON | OFF | ON | OFF| ON
- L

. Time
Cycle time

Figure 2: DASH’s bursty ON-OFF behaviour

The video player uses various feedback signals ob-
served for each chunk (such as recently achieved

page 2 of 12

throughput? and/or playout buffer occupancy) to select a
suitable video rate for the next chunk to be downloaded.
Consider an example when using achieved throughput
as a criteria for its Adaptive Bitrate (ABR) algorithm.
If the throughput is high, ABR should select a higher
video rate to provide better Quality of Experience (QoE)
for the user. On the other hand, if the throughput is
low, ABR should dynamically switch to a lower video
rate to avoid playout buffer under-run. A good ABR
algorithm is responsive to fluctuating network conditions
and adapts smoothly to provide better QoE [14].

The presented video bitrate (or quality) is limited by
the video rates provided by the server, the information
contained in the MPD and the network bandwidth. The
DASH clients cannot match the network throughput
perfectly; they can only achieve the (discrete) video
rates described by the MPD. It will select a rate be-
low the estimated throughput to sustain video playback
and in the case where the network bandwidth exceeds
the maximum video bitrate, the video rate is capped
to the maximum video bitrate. Hence, in some ABR
approaches, the server can artificially limit the video rate
by only providing specific rates in the MPD to protect the
network. The “smoothness” between video bitrate tran-
sitions depend on the encoding granularity (the number
of video representations) of the video content provided
at the server.

Server Client

ET MPD :
Video chunks Retrieve MPD

in HTTP Server P!

o
4
o

Representation: 0.1Mbps GET chunks @ 0.1Mbps Start-up

RS 1

Representation: 0.5Mbps

III Chunkslll
Representation: 1.0Mbps
ﬂﬂﬂ Chunksﬂﬂﬂ
Representation: 1.5Mbps

GET chunks @ 1.0Mbps
HHH chunksﬂﬂﬂ

Figure 3: Timeline illustration of DASH adaptive be-
haviour

|

Video chunks
flow across network GET chunks @ 0.5Mbps

L
bt

Video quality switches GET chunks @ 0.1Mbps

Improves quality

A

Improves quality

ET chunks @ 1.0Mbps

|

Detects lower bandwidth:
Switch-down quality

|

Restore quality

A

As illustrated in Figure 3, the client quickly ramps
up its video bitrate request during start-up to pre-fill
its playout buffer. When the client detects a reduction
in bandwidth capacity (by utilising feedback signals
from previous chunks), it “backs off” by requesting a

“Estimated from the size of previous chunks and the time to retrieve
them.

CAIA Technical Report 161216A

December 2016

lower video bitrate. When the network capacity increases
again, it then restores its video quality. As a result, the
client is able to stream the video seamlessly without
having to over-provision the network or keep an oversize
playout buffer.

B. Standardisation

MPEG-DASH has been standardised by 3GPP (first
open as Work Item in January 2009 and finalised in
March 2010) and became an ISO/IECstandard for adap-
tive streaming [15]. The standard defines guidelines for
media presentation, segmentation, and a collection of
standard XML formats for the manifest file (MPD).
However, specific client implementation and rate adap-
tation techniques are not part of the standard [1]. Hence,
commercial streaming services that use DASH imple-
ment their own proprietary techniques both for media
representation and for client adaptation.

The DASH Industry Forum [16] (a group containing
leading streaming companies) drives the adoption and
research in modern adaptive streaming technologies. The
community has developed an open-source dash.js [17]
reference player, which employs Media Source Exten-
sions (MSEs) in a web/HTMLS5-based video player for
research and testing purposes.

III. TEACUP ENHANCEMENTS FOR DASH SUPPORT

In this section, we describe our extensions to TEACUP
for running and analysing DASH experiments.

The TEACUP DASH traffic generator starts dash.js
v2.0.0 [17] in Chromium [18] or Firefox [19] web
browser with Xorg [20], and starts requesting video
chunks from the lighttpd [21] server (with persistent
HTTP connections) that hosts the DASH dataset. The
adaptation heuristics are implemented on the client side,
and are dependent on the network conditions.

A. DASH server and dataset

DASH dataset is hosted on a regular lighttpd HTTP
server in the testbed hosts. We utilise the dataset made
available by ITEC-DASH [22]. The dataset® comprise of
full-length sequences at different representations in terms
of bitrates, resolutions and quality (representation rates).
It is encoded and multiplexed using different chunk sizes
(1, 2, 4, 10, 15 seconds) and are made available with

3The BigBuckBunny video content is an open-source animation
video, with source quality of 1080p, 9mins 46secs long by the
Blender Institute. It can be downloaded from http://www-itec.uni-klu.
ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny

page 3 of 12

http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny
http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny

corresponding Media Presentation Description (MPD)
files for chunk-by-chunk video request. There is also an
unsegmented version of the videos and the corresponding
MPD, which allows for byte-range requests.

For example, Table I shows 20 levels of representation
rates for the 10-sec dataset.

Resolution | Encoding Level Representation Rates
320x240 1-3 45, 88, 127kbps
480x360 4-8 177, 217, 253, 317, 369kbps
854x480 9-10 503, 569kbps
1280x720 11- 14 0.8, 1.0, 1.2, 1.4Mbps
1920x1080 15 - 20 2.1,24,209, 3.2, 3.5, 3.8Mbps

Table I: Representation rates available for 10-sec dataset

B. DASH clients

1) dash.js HTMLS5 player: We integrated the BSD-3
licensed dash.js DASH client into our testbed to serve
as our DASH client retrieving content from the lighttpd
server. dash.js is an initiative of the DASH Industry
Forum [17] to establish a production quality framework
for building multimedia players for MPEG-DASH con-
tent playback using client-side open source JavaScript
libraries leveraging the Media Source Extensions API
set as defined by the the World Wide Web Consortium
(W3C). All source codes are covered by the BSD-3
license.

EEEDASH Reference Client2.0.0 Ostar | 1463 | | OFork | 653
SRR P
hitp/dash.edgesuite.net/dash264/TestCases/1a/sony/SNE DASH _SD_CASE1A REVISED.mpd Load

ABR off | on

Save settings off | on

Use BOLA off | on

Video -

y: last 4 segments
0,033 <0048
Download: last 4 segments
0,025 <0029 <0.039

Ratio: last 4 segments
127.264<168.247 <198.532
Dropped Frames: 5

Figure 4: dash.js Web User Interface

To install Xorg, Chromium or Firefox on FreeBSD:

> pkg install xorg
> pkg install chrome

AND/OR

> pkg install firefox

To install Xorg, Chromium or Firefox on Linux Open-
SUSE:

CAIA Technical Report 161216A

December 2016

> zypper install xorg-xl1
> zypper install xorg-xll-server
> zypper install chromium

AND/OR

> zypper install firefox

2) VLC media player : Although dash.js is our main
DASH streaming client, we also explore VLC as our
alternative streaming client. The VLC-DASH plugin [23]
has been integrated into the official release of VLC
with continued improvements. We use the development
branch of VLC to keep up to date with the adaptive
streaming mechanisms implemented in VLC.

Appendix A and B describes the necessary steps to
build VLC development code for DASH support with
minimum Xorg environment and library packages. These
instructions are tested against the TEACUP host image
based on [9].

C. TEACUP DASH Traffic Generator

The start_dash_streaming_dashijs and
start_dash_streaming_vlc traffic generator
starts a video streaming client (dash.js or VLC) that
request video chunks from the lighttpd server that
stores the DASH dataset.Table II and III describes the
configurable parameters for both traffic generators.

| Parameters [Default | Description

client © IP address of DASH client
serv © IP address of DASH server
duration < Duration in seconds
wait © Time to wait before process is started
serv_port © Port number of DASH server serving
the dataset
browser ‘chrome’ Browser type (chrome or firefox)
chunk_size © Video chunk size (depending on
dataset)
mpd © File name of Media Presentation
Description (depending on dataset)
Table II: Configurable parameters for

start_dash_streaming_dashs traffic generator

page 4 of 12

[Parameters [Default Description

client © IP address of DASH client
serv © IP address of DASH server
duration < Duration in seconds
wait < Time to wait before process is started
serv_port © Port number of DASH server serving
the dataset
chunk_size " Video chunk size (depending on
dataset)
verbosity ‘2 Logging verbosity of VLC client
(1-10)
mpd < File name of Media Presentation

Description (depending on dataset)
Location of VLC source code
directory
Location of video files relative to the
docroot of the DASH server

vlc_location

base_url

Table I1I: Configurable parameters for
start_dash_streaming_vlc traffic generator

D. Patching TEACUP revision 7leb¢cf on the default
branch

We created a patch for TEACUP to support DASH
traffic generators natively. To apply the patch, first clone
TEACUP source code (revision 71e6¢cf)* from the Mer-
curial repository on SourceForge as follows:

hg clone -r 7le6cf http://hg.code.sf.net/
p/teacup/code teacup-code

Then, download the patch’ and apply it as follows:
1) Extract the patch file:

tar —-xvf teacup-dash-patch-0.1.tgz -C
teacup-code

2) Apply the patch:

cd teacup-code
patch —-pl < teacup-dash-patch-0.1/
teacup-dash-0.1.patch

E. TEACUP Configuration

TEACUP configuration file, config.py
should include an additional TPCONF variable,
TPCONF_chunksize_mpd to setup DASH streaming
experiments. TPCONF_chunksize_mpd is a list of
video chunk sizes and corresponding Media Presentation
Description (MPD) file. Each entry is a tuple. The first
value is the video chunk size in seconds (as provided
in the dataset) and the second value is the file name of
the corresponding MPD.

“This is the latest revision at the time of writing.
>The patch can be downloaded from http://caia.swin.edu.au/tools/
teacup/downloads/teacup-dash-patch-0.1.tgz

CAIA Technical Report 161216A December 2016

page 5 of 12

http://caia.swin.edu.au/tools/teacup/downloads/teacup-dash-patch-0.1.tgz
http://caia.swin.edu.au/tools/teacup/downloads/teacup-dash-patch-0.1.tgz

Generating DASH streaming traffic

traffic_dash_streaming = [

(70.0", "17, " start_http_server, server='newtcp33’, port=’8000",
docroot=’ /data/dash_dataset’ "),
(0.1, 2", " start_dash_streaming_dashjs, client='"newtcp20’,

serv='"newtcp33’, serv_port='8000’, browser=’"firefox’,
chunk_size=V_chunksize, mpd=V_mpd, duration=V_duration "),

This is the traffic generator setup we will use
TPCONF_traffic_gens = traffic_dash_streaming

Figure 5: DASH traffic generator definition example

Video chunk size and MPD pair
TPCONF_chunksize_mpd = [

("10",’BigBuckBunny_10s.mpd’),
]

Figure 6: TPCONF variable defining video chunk size and MPD

TPCONF_parameter_list = ({

Vary name V_ variable file name values extra vars
[...omitted...]
"chunksize_mpd’ : (["V_chunksize’,’V_mpd’], [’chunksize’,’mpd’], TPCONF_chunksize_mpd, {1}),

Figure 7: Parameter list definition example

TPCONF_variable_defaults = {

V_ variable value
[...omitted...]
"V_chunksize’ g TPCONF_chunksize_mpd[0] [O],
"'V_mpd’ 3 TPCONF_chunksize_mpd[O0] [1],

Figure 8: Variable defaults definition example

TPCONF_vary_parameters = [’tcpalgos’, ’‘delays’, ’'bandwidths’, ’‘agms’,’bsizes’, ’'chunksize_mpd’]

Figure 9: Varying parameters for experiment example

exp_20161114-134000_tcp_host0_del_20_down_12mbit_up_lmbit_agm pfifo_lbs_180
_chunksize_10_mpd_BigBuckBunny-10s.mpd

Figure 10: Example experiment directory name

CAIA Technical Report 161216A December 2016 page 6 of 12

IV. ILLUSTRATIVE DASH EXPERIMENTS

Here we describe the experiment testbed setup and test
conditions for our illustrative DASH experiments.

A. Experiment testbed setup

We built a test environment emulating standard In-
ternet connections from home with TEACUP testbed.
For illustrative purposes, we run experiment trials in-
volving dash.js client (on top of FreeBSD NewReno)
retrieving 10-sec video chunks from FreeBSD NewReno
[24] lighttpd server. The path has 40ms base RTT delay,
12Mbps downstream / 1 Mbps upstream (12/1 Mbps)
bottleneck bandwidth across FIFO, PIE and FQ-CoDel
AQMs. We use the configuration file with the key
parameters illustrated in Section III-E. Figure 11 shows
the experimental setup of the testbed networks.

Control Network ¢

D Data and control server
10.1.1.0/24

4 || DHCP+TFTP server
DASH client(s)— ________ T e T DASH server(s)
= = s i Testbed °
S— e [' Hosts

A >

1 Bottleneck Router

a0)
72.16.10.0/24 |

B

== -
—_—~ 172.16.11.0/24
@ — 4

Experiment Networks o

"Homgie;;;/;l;;k" "Tthnterrﬁnet“
Figure 11: TEACUP testbed emulating DASH client(s)
at home retrieving content from remote DASH server(s)

1) Hosts, router and bottleneck conditions: The router
provides a configurable bottleneck between the client
on network 172.16.10.0/24 and the server on network
172.16.11.0/24. Each host is a triple-boot machine that
can run 64-bit Linux (openSUSE 12.3 with kernel 3.17.4
and Webl0G patch), 64-bit FreeBSD (FreeBSD 10.1-
RELEASE) or 64-bit Windows 7 (with Cygwin 1.7.25
for unix-like control of the host).

In our experiments, all end-hosts run FreeBSD
NewReno and the bottleneck router runs 64-bit Linux
(openSUSE 12.3 with kernel 3.10.18 patched to run
at 10000Hz). The bottleneck router uses netem and
tc [25] to concatenate an emulated path with specific one
way delay (OWD) and an emulated bottleneck whose
throughput is limited to a particular rate. Packets sit in
a packet buffer while being delayed (to provide artificial
OWD) and then sit in a separate “bottleneck buffer” of
configurable size (in packets) while being rate-shaped to
the bottleneck bandwidth.

CAIA Technical Report 161216A

December 2016

We use Linux 3.17.4 kernel’s implementations of
FIFO, PIE and FQ-CoDel® for these experiments.

2) Traffic generators and logging: DASH flows were
generated by the dash.js client requesting 10-sec video
chunks from the DASH server. We use a standard
lighttpd (version 1.4.35) [21] server with persistent HTTP
connections enabled as our data source, serving the test
dataset as described in Section III-A. TCP connection
statistics were logged using SIFTR [26] under FreeBSD
and Web10G [27] under Linux. Packets captured at both
hosts with tcpdump were used to calculate non-smoothed
end-to-end RTT estimates using CAIA’s passive RTT
estimator, Synthetic Packet Pairs (SPP) [28].

3) Measuring throughput: ‘Instantaneous’ throughput
is an approximation derived from the actual bytes trans-
ferred during constant windows of time. Long windows
smooth out the effect of transient bursts or gaps in
packet arrivals. Short windows can result in calculated
throughput that swings wildly from one measurement
interval to the next. For these experiments we use a 0.8
sec wide window sliding forward in steps of 0.05 sec.

B. Experiment Results

There are no modifications to TEACUP data analysis
fabric tasks. Default analysis functions [10] such as
analyse_throughput, analyse_rtt, analyse_ackseq, can be
applied to DASH experiments. TEAPLOT [11] can also
be used to animate the playback of TCP’s behaviour
during DASH experiments.

Figures 12 and 13 show throughput, cwnd, RTT
and ACK sequence number over time when a DASH
stream is being bottlenecked by FIFO, PIE and FQ-
CoDel AQM schemes across a 12/1Mbps, 40ms base
RTT path. While all FIFO, PIE and FQ-CoDel achieve
similar throughput (Figures 12a, 13a, 13b) and download
rate (Figures 12d, 13g, 13h), PIE and FQ-CoDel induces
much less queuing delays (Figures 13e and 13f) than
traditional FIFO (Figure 12c¢). FQ-CoDel has a tighter
burst tolerance and emulates a smaller buffer by inducing
packet losses more aggressively than PIE (as shown
in the congestion window graphs in Figures 13d and
13c) hence it induces lower queuing delays than PIE.
In these scenarios where the path delay is relatively
small, FQ-CoDel and PIE allows DASH to achieve
similar performance. The performance of DASH over
FQ-CoDel degrades when the path delay increases, i.e
when the ratio of the effective queue buffer to the path’s
Bandwidth Delay Product (BDP) gets smaller [29].

CoDel results are not shown because they are similar to those of
FQ-CoDel when there is only a single flow.

page 7 of 12

e 172.16.11.73 8000_172.16.10.60_50067 700
12000 o ,=—m—m—s = = s s - = -w
v . R Do, . 600
,@-0000 1o e MR 500
~ L . . ~—~
<8000 — . . . 3
5 oo - oo 5 400
§>6000 - .. R ' = 300
. N . @)
o .
= 4000 .t - 200
= . . - .
2000 it R . 100
0-¢ . T, toet. 0
T T T T T T T
0 20 40 60 80 100 120
Time (s)
(a) Throughput vs time
250 ¢ 172.16.11.73_8000_172.16.10.60_50067 —~ 70000
[%2]
[]
200 — / 560000
@ y < 50000
E 150 5
— 2 40000
E (0]
o 100 ¥ vV § 30000
a
® S 20000
50 e
A PRE R R A N N P 2 10000
)
0 - 0
T T T T T T
0 20 40 60 80 100
Time (s)
(c) SPP RTT vs time
Figure 12:

CAIA Technical Report 161216A

December 2016

T+ 172.16.11.73_8000_172.16.10.60_50067

4 ;77
[. [|
I I I I I I I
0 20 40 60 80 100 120
Time (s)
(b) cwnd vs time
+ 172.16.10.60_50067_172.16.11.73_8000
/"
/
/
5l
/-4
/
I I I I I I I
0 20 40 60 80 100 120
Time (s)

(d) ACK Sequence Number vs time

Single DASH stream across a 12/1Mbps, 40ms base RTT path, with a 180-packet Linux FIFO bottleneck

page 8 of 12

o 172.1611.73_8000_172.16.10.60_21553 12000 —|+ 172161173 s000_17216.10.60_6006
12000 it ol Bl s v
_ PR A o :-EI; 10000 — }'i i
210000 4 #{¢%20 o (o0 ol @ SRR o
Ie) s 3 © e te e PR DO BN o) _ . - DI - o PSS
< 8000 4 ¥ e e P < 800 o ointas el
*g_ : . volrn . . - o I *g 6000 . et e :; ..
= 6000 - % e e el e £ . LI . SO DN
= ? : vt e =y IO .o .
3 3 D Do R PP D 3 4000 - - B P
E 4000 — 3 : .. Teee - el . E . E.: el - o . e .
2000 S L L O S D 2000 - R R A R
o: R P TR o R R I
T T T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (s) Time (s)
(a) PIE Throughput vs time (b) FQ-CoDel Throughput vs time
400 —+ 172161173 s000 17216 10,60 21553 25 |+ e 17261050 sosce
300 200
= =
5 S 150 o
=z 200 =
3 g 100
100 ' '
. ! Al .-
T T T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (s) Time (s)
(c) PIE cwnd vs time (d) FQ-CoDel cwnd vs time
250 |+ T s iz 10 00 e < 172101173 8000_172 16,1060 6000
150
200
@ m
E 3
= 150 — 100 -
= =
@ x
2 100 l o L
5 5 50 LbbbbbbL
o Rt U W b Ea b
0 — 0
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 12
Time (s) Time (s)
(e) PIE SPP RTT vs time (f) FQ-CoDel SPP RTT vs time
.~ 70000 —* 17216.10.60 21553 172.16.11.73_8000 70000 —« 172.16.1060_60606_172.16.11.73_8000
3 /7" 3 /7
éeoooo - P / éeoooo - y: /
< 50000 il < 50000 7l
@ 7 ! o v’
€ 40000 / 240000 | /
/ /
§ 30000 — § 30000
x x
S 20000 — S 20000
& 10000 & 10000
& &
0 - 0 -

T T T T T T T
0 20 40 60 80 100 120

Time (s)

T T T T T T T
0 20 40 60 80 100 120

Time (s)

(g) PIE ACK Sequence Number vs time (h) FQ-CoDel ACK Sequence Number vs time

Figure 13: Single DASH stream across a 12/1Mbps, 40ms base RTT path, with a 1000-packet Linux PIE and
FQ-CoDel bottleneck

December 2016

CAIA Technical Report 161216A page 9 of 12

V. CONCLUSIONS AND FUTURE WORK

The DASH traffic generator enhancements to our
TEACUP software provides a platform to explore the in-
teractions between DASH, TCP and AQMs under various
network path characteristics and system settings using
either dash.js HTMLS5 player or VLC media player. This
report provides patching and DASH client integration
instructions onto FreeBSD and Linux end-hosts. We
also provide experiment results generated with TEACUP
testbed as to illustrate the consequences of single DASH
flow over traditional FIFO, PIE and FQ-CoDel.

Future work will include extending TEACUP’s data
analysis functions to support per-chunk throughput, rep-
resentation rates and other QoE metrics for DASH per-
formance analysis.

APPENDIX

These appendices describes how to build VLC source
code from development branch in TEACUP testbed hosts
as setup according to [9].

A. BUILDING VLC UNDER FREEBSD
10.1-RELEASE
Prepare the build environment
FreeBSD default compiler clang is recommended
for building VLC. The testbed image already has the
required autotools installed, so no additional tools are
required.
Get the source via git
1) Install git
> pkg install git
2) Get the source code from the tip of the develop-
ment branch
> git clone git://git.videolan.org/vlc.git
3) The following instructions have been tested
against 3.0.0-git Vetinari (revision

2.2.0-git-4692-g560eedb). To checkout this
specific version:

> git checkout g560eedb
4) Bootstrapping the source tree (Note: bootstrapping
requires autotools)

> cd vlc
> ./bootstrap

CAIA Technical Report 161216A

December 2016

Tweaking VLC source code for FreeBSD

Some minor changes need to be made to build VLC
under FreeBSD.

1) Edit ./vlc/src/posix/error.c

./vlc/src/posix/error.c line 51

———%buf = sterror_1 (num, loc)
++++xbuf = strerror (num)
2) Patch VLC source code with the

patch-include-vlc_common.h from FreeBSD
ports tree. As root do:

> patch < /usr/ports/multimedia/vlc/files/
patch-include-vlc_common.h

Install necessary packages / libraries

These are the minimum set of packages/libraries re-
quired to build VLC for our experiments. Install them
with FreeBSD package manager.

install
install
install
install
install
install

pkg
pkg
pkg
pkg
pkg
pkg

Xorg
xcb
qt4
sdl
ffmpeg
libab52

V V V V V V

Configuration

./configure is used to check whether our system
is able to compile VLC, we can also specify features in
our VLC build.

1. Show various available options

> ./configure —--help

2. For our experiment purposes, we configure VLC
with this command:

> ./configure —--disable-lua —--disable-freerdp
—-disable-vcd —--disable-taglib
——enable-run—-as-root

Compilation
Compile VLC with GNU make

> gmake
or to install VLC to the system, run as root:
> gmake install

For our experiments, we simply run VLC from the
build directory

> ./vlc

page 10 of 12

Testing
1) A simple test after successful compilation of VLC:

startx

setenv DISPLAY :0

cd {vlc build directory}
dbus-run-session ./vlc

vV V V V

The VLC graphical user interface should show up.
2) A simple test of VLC DASH streaming:

startx

setenv DISPLAY :0

cd {vlc build directory}

dbus-run-session ./vlc -v
http://www-itec.uni-klu.ac.at/ftp/
datasets/DASHDataset2014/BigBuckBunny/
10sec/BigBuckBunny_10s_simple_2014_05_09.mpd

vV V V V

Note: These instructions have been tested against:

1. FreeBSD clang version 3.4.1
(tags/RELEASE_34/dotl-final 208032)
20140512

2. GNU Make 4.1

B. BUILDING VLC UNDER LINUX OPENSUSE
3.17.4-VANILLA

Prepare the build environment

The testbed image already has the required
autotools installed, so no additional tools are
required.

Get the source via git

1) Install git
> zypper install git

2) Get the source code from the tip of the develop-
ment branch
> git clone git://git.videolan.org/vlc.git

3) The following instructions have been tested
against 3.0.0-git Vetinari (revision

2.2.0-git-4692-g560eedb). To checkout this
specific version:

> git checkout g560eedb
4) Bootstrapping the source tree (Note: bootstrapping
requires autotools)

> cd vlc
> ./bootstrap

CAIA Technical Report 161216A

December 2016

Install necessary packages / libraries

These are the minimum set of packages/libraries re-
quired to build VLC for experiments. Install them with
Linux OpenSUSE package manager.

1) Add OpenSUSE VLC repositories to the system
repositories. As root do:

> zypper ar http://
download.videolan.org/pub/vlc/SuSE/13.1
VLC

2) Install VLC libraries dependencies from newly
enabled repositories.

> zypper si -d vlc

3) Install additional packages.

> zypper install xorg-x11
> zypper install xorg-xll-server

Configuration

./configure is used to check whether our system
is able to compile VLC, we can also specify features in
our VLC build.

1) Show various available options
> ./configure —--help

2) For our experiment purposes, we configure VLC
with this command:

> BUILDCC="/usr/bin/gcc —-m64 —-std=c99"
./configure --disable-lua
——disable-freerdp —--disable-vcd
——disable-taglib —--enable-run—-as-root

Compilation
Compile VLC with GNU make

> gmake

or to install VLC to the system, run as root:
> gmake install

For our experiments, we simply run VLC from the
build directory

> ./vlc

Testing
1) A simple test after successful compilation of VLC:

> startx
> cd {vlc build directory}

> DISPLAY=:0 dbus-run-session ./vlc

The VLC graphical user interface should show up.
2) A simple test of VLC DASH streaming:

page 11 of 12

> startx

cd {vlc build directory}

> DISPLAY=:0 dbus-run-session ./vlc -v
http://www-itec.uni-klu.ac.at/ftp/
datasets/DASHDataset2014/BigBuckBunny/
10sec/BigBuckBunny_10s_simple_2014_05_09.mpd

Vv

Note: These instructions have been tested against:

1,

CAIA Technical Report 161216A

[

—

(2]

[3

—

(4]

(5]

(6]

[7

—

(8]

(9]

gcc (SUSE Linux) 4.8.3 20140627
[gcc—4_8-branch revision 212064]
GNU Make 4.0

REFERENCES

T. Stockhammer, “Dynamic Adaptive Streaming over HTTP:
Standards and Design Principles,” in Proceedings of the Second
Annual ACM Conference on Multimedia Systems, ser. MMSys
’11. New York, NY, USA: ACM, 2011, pp. 133-144. [Online].
Available: http://doi.acm.org/10.1145/1943552.1943572

A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and
W. Dabbous, “Network Characteristics of Video Streaming
Traffic,” in Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, ser. CONEXT ’11.
New York, NY, USA: ACM, 2011, pp. 25:1-25:12. [Online].
Available: http://doi.acm.org/10.1145/2079296.2079321

A. Finamore, M. Mellia, M. M. Munafo, R. Torres, and
S. G. Rao, “YouTube Everywhere: Impact of Device and
Infrastructure Synergies on User Experience,” in Proceedings
of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, ser. IMC ’11. New York, NY,
USA: ACM, 2011, pp. 345-360. [Online]. Available: http:
//doi.acm.org/10.1145/2068816.2068849

Sandvine, “Sandvine Global Internet Phenom-
ena Report 2015,” https://www.sandvine.com/
downloads/general/global-internet-phenomena/2015/

global-internet-phenomena-report-latin-america-and-north-americ

pdf, 2015 (accessed May 2016).

R. Pan, P. Natarajan, F. Baker, G. White, B. VerSteeg,
M. Prabhu, C. Piglione, and V. Subramanian, “PIE:
A Lightweight Control Scheme To Address the
Bufferbloat Problem,” IETF Draft, https://tools.ietf.org/html/
draft-ietf-aqm-pie-03, November 2015. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-aqm-pie-03

K. Nichols, V. Jacobson, A. McGregor, and J. lyengar,
“Controlled Delay Active Queue Management,” IETF
Draft, https://tools.ietf.org/html/draft-ietf-agm-codel-02, De-
cember 2015. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-agm-codel-02

T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet, “FlowQueue-Codel,” IETF Draft, https://tools.ietf.
org/html/draft-ietf-aqm-fg-codel-03, November 2015. [Online].
Available: https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-03
Python, “Fabric: Python Remote Execution,” http:
/Iwww.microsoft.com/silverlight/smoothstreaming/, 2016
(accessed October 1, 2016).

S. Zander and G. Armitage, “CAIA Testbed for TEACUP
Experiments Version 2,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 150210C, 10 February 2015.
[Online]. Available: http://caia.swin.edu.au/reports/150210C/
CAIA-TR-150210C.pdf

[10]

(1]

(12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

b

[22]

[23]

[24]
[25]
[26]

(27]
(28]

[29]

December 2016

S. Zander, G. Armitage, “TEACUP v1.0 — Data Analysis
Functions,” Centre for Advanced Internet Architectures,
Swinburne University of Technology, Tech. Rep. 150529B,
2015. [Online]. Available: http://caia.swin.edu.au/reports/
150529B/CAIA-TR-150529B.pdf

I. True, G. Armitage, and P. Branch, “Teaplot v0.1: A
browser-based 3D engine for animating TEACUP experiment
data,” Centre for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, Tech. Rep.
150828A, 28 August 2015. [Online]. Available: http://caia.
swin.edu.au/reports/150828 A/CAIA-TR- 150828 A.pdf

R. Castagno and D. Singer, “MIME Type Registrations
for 3rd Generation Partnership Project (3GPP) Multimedia
files,” RFC 3839, IETF, 2004. [Online]. Available: http:
/Iwww.ietf.org/rfc/rfc3839.txt

H. Garudadri, “MIME Type Registrations for 3GPP2
Multimedia Files,” RFC 4393, IETF, 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4393.txt

G. Tian and Y. Liu, “Towards Agile and Smooth Video
Adaptation in Dynamic HTTP Streaming,” in Proceedings of
the 8th International Conference on Emerging Networking
Experiments and Technologies, ser. CONEXT ’12. New York,
NY, USA: ACM, 2012, pp. 109-120. [Online]. Available:
http://doi.acm.org/10.1145/2413176.2413190

ISO/IEC, “ISO/IEC 2309-1:2012 Information Technology:
Dynamic Adaptive Streaming over HTTP (DASH) Part
1: Media presentation description and segment formats,”
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=57623, 2012.

D. I. Forum, “DASH Industry Forum,” http://dashif.org/.
dash.js, “dash.js Player,” https://github.com/
Dash-Industry-Forum/dash.js/wiki.

Chromium, “The Chromium Projects,” https://www.chromium.
org/, 2016.

Mozilla, “Mozilla Firefox,” https://www.mozilla.org/, 2016.
Xorg, “X.org Foundation,” https://www.x.org/, 2016.

Lighttpd, “Lighttpd,” http://www.lighttpd.net/, 2014.

S. Lederer, C. Miiller, and C. Timmerer, “Dynamic Adaptive
Streaming over HTTP Dataset,” in Proceedings of the 3rd
Multimedia Systems Conference, ser. MMSys ’12. New
York, NY, USA: ACM, 2012, pp. 89-94. [Online]. Available:
http://doi.acm.org/10.1145/2155555.2155570

C. Miiller and C. Timmerer, “A vlc media player plugin
enabling dynamic adaptive streaming over http,” in Proceedings
of the 19th ACM International Conference on Multimedia,
ser. MM ’11. New York, NY, USA: ACM, 2011, pp. 723—
726. [Online]. Available: http://doi.acm.org/10.1145/2072298.
2072429

J. Healy, L. Stewart, and D. Hayes, “NewReno Conges-
tion Control Algorithm,” https://www.freebsd.org/cgi/man.cgi?
query=cc_newreno.

Linux, “The Linux Foundation - netem,” http://www.
linuxfoundation.org/collaborate/workgroups/networking/netem,
Nov. 2009.

L. Stewart, “SIFTR - Statistical Information for TCP Research,”
http://caia.swin.edu.au/urp/newtcp/tools.html.

Web10G, “The Web10G Project,” http://web10g.org/.

S. Zander and G. Armitage, “Minimally-Intrusive Frequent
Round Trip Time Measurements Using Synthetic Packet Pairs,”
in The 38th IEEE Conference on Local Computer Networks
(LCN 2013), October 2013.

J. Kua, G. Armitage, and P. Branch, “The Impact of Active
Queue Management on DASH-based Content Delivery,” in 41st
Annual IEEE Conference on Local Computer Networks (LCN
2016), Dubai, United Arab Emirates (UAE), Nov. 2016.

page 12 of 12

http://doi.acm.org/10.1145/1943552.1943572
http://doi.acm.org/10.1145/2079296.2079321
http://doi.acm.org/10.1145/2068816.2068849
http://doi.acm.org/10.1145/2068816.2068849
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://tools.ietf.org/html/draft-ietf-aqm-pie-03
https://tools.ietf.org/html/draft-ietf-aqm-pie-03
https://tools.ietf.org/html/draft-ietf-aqm-pie-03
https://tools.ietf.org/html/draft-ietf-aqm-codel-02
https://tools.ietf.org/html/draft-ietf-aqm-codel-02
https://tools.ietf.org/html/draft-ietf-aqm-codel-02
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-03
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-03
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-03
http://www.microsoft.com/silverlight/smoothstreaming/
http://www.microsoft.com/silverlight/smoothstreaming/
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf
http://caia.swin.edu.au/reports/150529B/CAIA-TR-150529B.pdf
http://caia.swin.edu.au/reports/150529B/CAIA-TR-150529B.pdf
http://caia.swin.edu.au/reports/150828A/CAIA-TR-150828A.pdf
http://caia.swin.edu.au/reports/150828A/CAIA-TR-150828A.pdf
http://www.ietf.org/rfc/rfc3839.txt
http://www.ietf.org/rfc/rfc3839.txt
http://www.ietf.org/rfc/rfc4393.txt
http://doi.acm.org/10.1145/2413176.2413190
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://dashif.org/
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://www.chromium.org/
https://www.chromium.org/
https://www.mozilla.org/
https://www.x.org/
http://www.lighttpd.net/
http://doi.acm.org/10.1145/2155555.2155570
http://doi.acm.org/10.1145/2072298.2072429
http://doi.acm.org/10.1145/2072298.2072429
https://www.freebsd.org/cgi/man.cgi?query=cc_newreno
https://www.freebsd.org/cgi/man.cgi?query=cc_newreno
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://caia.swin.edu.au/urp/newtcp/tools.html
http://web10g.org/

	Introduction
	Background
	DASH Architecture Overview
	Standardisation

	TEACUP Enhancements for DASH Support
	DASH server and dataset
	DASH clients
	dash.js HTML5 player
	VLC media player

	TEACUP DASH Traffic Generator
	Patching TEACUP revision 71e6cf on the default branch
	TEACUP Configuration

	Illustrative DASH Experiments
	Experiment testbed setup
	Hosts, router and bottleneck conditions
	Traffic generators and logging
	Measuring throughput

	Experiment Results

	Conclusions and Future Work
	Appendix
	References

