Implementing Active Queue Management at the
home to reduce NBN speed demands

Jordan Boerlage*, Russell Collom*
Centre for Advanced Internet Architectures, Technical Report 161107A
Swinburne University of Technology
Melbourne, Australia
jordanboerlage @ gmail.com, collom_r@hotmail.com

Abstract—As technology continues to involve itself in our
lives, more and more applications and devices are being
connected to the Internet. As these devices and applica-
tions are connected, more than ever, user’s are noticing
unresponsiveness and the increase in the time taken to
do their daily requirements. The following research report
aims to address this concern, illustrating the effect that
Active Queue Management (AQM) can have on reducing
latency with running multiple applications at one time.
This report will first explore research that has been done in
the past, looking into the theory behind the implementation
of AQM algorithms. From there, we have conducted a
testbed scenario in order to gain raw data on how AQM
can be used in an emulated network setup, detailing it’s
effectiveness in real world applications. With this data, we
have been able to determine how AQM has the potential to
reduce the current speed demands on Australia’s National
Broadband Network (NBN), with popular demographics
traffic requirements emulated in order to illustrate AQMs
effectiveness in real world situations. Additionally we have
compared the impact that higher upload and download
speeds can have on latency reductions at the home.

Index Terms—TEACUP, AQM, FQ-CoDel, FIFO, RTT

I. INTRODUCTION

With continued advances in online technology, as
well as the introduction of services such as Netflix
in Australia, average speed demands for a common
broadband network are constantly on the rise. Depending
on a household’s typical usage patterns and traffic re-
quirements, queue buffers on the edge of local networks
can be a key factor in causing delays in a network.
These delays in turn end up affecting all types of traffic
regardless of their download and upload speed require-
ments, due to the congestion resulting from multiple
services running simultaneously. In such cases, latency

*This work was originally developed as part of these author’s BEng
Final Year Research Project, 2016

CAIA Technical Report 161107A

November 2016

sensitive traffic in particular can have it’s performance
significantly enhanced through the use of Active Queue
Management (AQM) systems implemented on network
boundary devices, due to the way that they smartly
handle and manage different types of traffic as opposed
to traditional first in, first out (FIFO) queueing systems.

We have investigated the use of different AQM al-
gorithms in a range of experimental household demo-
graphics, running testbed experiments that emulate traffic
requirements during a households peak usage periods.
These experiments directly compare and analyse how
the network traffic operates, before and after an AQM
is implemented in each situation. From this information,
we have been able to make conclusions on how smarter
queuing technologies can be used to reduce different
user’s speed demands, and hence determine the potential
they have in reducing the load requirements on Aus-
tralia’s National Broadband Network (NBN). With this,
we have been able to make an assessment on whether
the current NBN speed tiers are appropriate for all user’s
with and without AQM running on the gateway.

The report is structured as follows. Section II will look
into the background of why AQM is needed, as well as
explore how different AQM algorithms can work to re-
duce network latency, and how TEACUP can be used to
emulate AQM in a testbed. Section III shows the creation
of six different demographics that represent commonly
occurring households in Australia that we have used
to run tests on. Section IV shows the experimental
testbed that we used, and also the configuration file
parameters we chose to use in the experiments. Section
V shows the results from our experimentation along with
a discussion and analysis of what they represent. Section
VI explores how these results apply in a real world
context and finally, Section VII concludes these results
and discussions, with an additional Appendix at the end
that includes results that were less crucial to the report.

page 1 of 32

mailto:jordanboerlage@gmail.com
mailto:collom_r@hotmail.com

II. BACKGROUND
A. Apparent Need for Speed

There is a common misconception in the general
public that the only way to fix high latency/Round Trip
Times (RTTs) in a network is to increase the speed or
bandwidth levels. In reality, many applications such as
online games and VoIP calls only accept small latency
alterations to function optimally, however their actual
speed requirements are very low. Similarly, some appli-
cations such as file transfers may have elastic bandwidth
requirements, with user’s being able to set up a download
then perform other tasks while it loads, quick completion
times may be of little importance to the user. Although
high bandwidth levels are unnecessary for such applica-
tions, their performance can be significantly diminished
by a full queue buffer, which can cause large delay
times to a network. Higher speeds will reduce a networks
average latency simply by pushing packets through the
queue faster, however with smarter queue management,
user’s can also achieve the same effects without having
to opt for higher costing speed plans. However, for
applications that require high bandwidth such as video
streams like Netflix, better queue management will offer
little difference as such services are capped at their speed
requirements.

In 2001, the Internet Telecommunications Union
(ITU) [1] published a report that estimated that latency
tolerance that user’s have for different typically used
network applications, which has been used as a basis
for forming Table I. From Table I, we can see that
applications are split into four separate latency classes;
Interactive, Responsive, Timely and Non-critical based
on their time to completion requirements for user’s.
Skype and other interactive applications such as gaming
have very low latency tolerance, as they are performed in
“real-time” by the user, with little tolerance for latency.
Responsive applications such as web browsing and e-
mail are shown to have slightly higher latency tolerance,
as user’s will still want low completion times, but ap-
plications are not real-time, and therefore tolerate some
delay. Streaming and messaging applications fall under
the timely latency category, with slightly more lenient
completion time requirements than the responsive appli-
cations. Finally, applications such as bulk uploads and
downloads have very elastic completion time require-
ments, as such applications can run in the background
whilst user’s perform other tasks. These values were used
as a reference point for a user’s latency tolerance in our
analysis.

CAIA Technical Report 161107A

November 2016

Type of Traffic Latency Category Latency Tolerance

Voice or Video Interactive 0 - 150 ms
(Skype, VoIP)
Interactive apps Interactive 0 - 200 ms
(gaming)
Online Responsive 1-2s
transactions
(Email,
web-browsing)
Streaming Timely 5-10 s
(Netflix, Youtube)
Message services Timely 5-10 s
(WhatsApp, SMS)
Bulk downloads Non-critical >10 s
(App updates,
podcast)
Cloud/data Non-critical >10 s
uploads
Table 1

COMMON INTERNET TRAFFIC SEPARATED INTO LATENCY
CATEGORIES [1]

B. Transmission Control Protocol

Transmission Control Protocol (TCP) is a transfer
protocol that accounts for a large amount of internet
traffic. TCP is considered a “reliable” protocol due to
the way that it sets up a session between sender and
receiver before a transfer begins (connection-oriented),
and requires “ACKnowledgement” messages to be seen
by the receiver for each chunk of data sent in order for
the connection to remain open [2].

TCP has a congestion window (cwnd) that determines
how much throughput of a link that the TCP session
will consume. When a TCP link is established, the initial
cwnd is set to a small multiple of the Maximum Segment
Size (MSS) on the link. TCP connections begin in the
“slow-start” (SS) phase. In SS, each time a set of packets
is acknowledged by the receiver, the transmitter will
increase the cwnd size by one MSS for every packet
ACK it receives, essentially doubling the size of the
cwnd after each round trip, and consequently doubling
TCP’s bandwidth requirements on the link. This will
continue until TCP experiences congestion on the link,
usually in the form of packet loss, in which case it will
halve the size of it’s cwnd. At this stage TCP enters
the “congestion avoidance” (CA) phase, where it instead
increases it’s cwnd by one MSS for every RTT until it
experiences congestion, in which case it halves. TCP will

page 2 of 32

continue in CA until the TCP connection is terminated.
It should be noted that the halving of the congestion
window size is a characteristic of the NewReno TCP
standard, with other standards such as Linux’s CUBIC
(which reduces cwnd by 30% on packet loss) performing
slightly differently.

Another method for telling TCP to back-off is the
Explicit Congestion Notification (ECN) flag, which is
a softer method that applications can use to reduce TCP
congestion. When the ECN flag is set to ’1°, the TCP
flow is essentially told that the link is experiencing
congestion without a packet being dropped. This results
in the TCP flow acting the same way as if a packet were
dropped, halving it’s window size and hence the band-
width that it takes up. TCP’s nature results in it taking up
the full available capacity of a link for data transfers. It
is important to understand TCP’s nature when analysing
AQM, as TCP can be problematic especially when used
with large router buffers, which is explained in more
detail in the next section.

Although small (approximately 40 Bytes), TCP ACK
messages create a minimum upload speed requirement
for primarily downstream connections such as Netflix
and movie downloads. As an example we can look at
a TCP download that is transferring data at 12Mbps.
Using a typical MTU of 1500 Bytes, we can see that the
number of packets that are being downloaded per second
is: 12000000/(8*1500) = 1000 packets per second. As
an ACK message will be typically required for every
second data packet received, the movie download will
create (40*8*1000)/2 = 160 Kbps worth of ACK upload
traffic.

C. Active Queue Management

As mentioned in Section I, network border devices
contain a packet buffer. A buffers role is to absorb
packets into a queue in the event of traffic bursts across
the network [3]. When a router’s buffer fills up, it can
cause incoming packets to be lost, and in turn, congestion
through the network. Without AQM, queues commonly
use a simple ‘FIFO’ method to deal with network traffic.
This method involves sending data out in the order
that it enters the queue, and when the queue is full,
dropping all incoming data. With no prioritization or
queue maintenance to prevent it from filling up, this can
cause potential problems with congestion on a router.

One solution to fix full router buffers is to increase
their size. With more space to store more traffic, this can
make it less likely that the buffer will fill up and begin to
drop traffic. One major issue with this method is that the

CAIA Technical Report 161107A

November 2016

larger the queue gets, the larger RTTs that are added by
the full buffer become, this is referred to as ‘bufferbloat’
[3]. One of the main contributors to bufferbloat is TCP,
which as explained earlier will fill up the larger queues
regardless of their size.

AQM algorithms can be a useful tool with which to
reduce a router’s queueing delay. In order to achieve this,
AQM’s actively monitor a router’s average queue size,
and when the queue starts to fill up, AQM can impose
several different packet marking or dropping algorithms
to make TCP senders back off early. This in turn reduces
the router’s average queue size and consequently, the
RTTs experienced in the network [4]. One drawback of
AQM is that it can negatively effect throughput speeds
on a TCP link, especially if the link has a high RT Ty,
(the time it takes for a packet to reach it’s destination
and return based on the physical properties of a link).
This is due to the way that AQM algorithms tell TCP
to back off early, causing TCP to spend less time at
it’s optimal congestion window size, and thus throughput
levels. This can be a particularly large issue on link’s
with a high RTTy,s, where TCP will take significantly
longer to reach it’s the maximum window size, as the
delay between sent packets, and received ACK’s will
be high. This will result in file transfers having longer
completion times, the extent of which has been analysed
in Section V.

Although AQM presents great potential for network
improvements, it is still a relatively new technology and
therefore is not widely utilized within many networks.
Studies are currently being performed in order to dis-
cover the most effective AQM algorithms to use and how
they work in practical environments, with companies
such as Cablelabs, Cisco, and IETF providing advance-
ments in various AQM technologies [5]. Universities,
including Swinburne are also researching AQM’s in
order to highlight their importance in the IT industry
[6]. Although this is the case, one area of study and
implementation of AQM that we wanted to explore was
it’s ability to reduce a user’s actual speed demands on
the NBN.

We have added to this research by using the acceptable
latency tolerances for user’s shown in Table I, with a
particular focus on online games as latency here is most
commonly driving the idea that a user needs more speed,
and hence we have explored how AQM can reduce speed
requirements on the NBN after being implemented,
whilst still keeping RTTs below these levels. We have
investigated a handful of the many different AQM tech-
niques available, eventually selecting the most effective

page 3 of 32

algorithm to be used in our experiments for comparison
against FIFO queueing. The following modern AQM
systems have been examined:

1. Proportional Integral controller Enhanced (PIE) —
Drops packets from the back of the queue based on
a probability that is calculated based on latency [7].
This calculation takes latency samples over time to
discover whether the overall latency in the queue is
increasing or decreasing. If the latency is increasing the
drop probability is increased, and if it is decreasing it
is decreased. PIE can tolerate traffic bursts within the
network by allowing a queue to be filled over it’s target
delay for small periods of time.

2. Controlled Delay Management (CoDel) — Drops
packets that have been in the queue too long. CoDel
time stamps each packet that enters the queue to cal-
culate a packets local delay (sojourn time), with which
it compares to a preset target delay value [8]. If the
sojourn time is lower than the target delay the packet is
forwarded normally, however if it is higher, then a time
drop (Td) bit will be set for the next incoming packet.
If an incoming packet that has the Td bit set again has a
sojourn time that is higher than the threshold, the packet
is then dropped. In a similar fashion to PIE, CoDel can
also support burst tolerance. This process is shown in
Figure 1.

Dequeue next packet

ocal min > targé
delay?

Reset count

Forward packet

Drop current packet
Increment count

Schedule next time to
drop : Td = now +
interval/sqrt(count)

Figure 1. CoDel Algorithm [5]

3. Flow Queuing CoDel (FQ-CoDel) — An improve-
ment to the CoDel algorithm is the added benefit of a
Deficit Round Robin (DRR) queueing algorithm, cre-
ating separate queues for different types of traffic, for

CAIA Technical Report 161107A

November 2016

which CoDel is then applied on. Different queues are cre-
ated by hashing a packets source IP, destination IP, port
numbers, IP protocol number, and a randomly generated
queue number assigned when the hashing commences

[3].
D. TEACUP

TCP Experiment Automation Controlled Using
Python (TEACUP), is a software that has been developed
as a useful tool to automate TCP experiments in a con-
trolled testbed by CAIA Swinburne [9]-[12]. TEACUP
can emulate a variety of different network conditions
and parameters such as bottleneck rate limits, packet loss
rates, and different queuing algorithms. TEACUP uses a
configuration file written in Python in order to emulate
given network conditions, and capture an array of data
including tcpdump, log files and graphed test results.

With TEACUP, it is possible to recreate network traffic
that matches our case studies bandwidth requirements
using applications such as DASH, iPerf, NTTCP, and
Pktgen. We have been able to create a testbed network
with an emulated packet queue on a router, that has
captured network traffic at the bandwidth tiers of NBN
using FIFO, CoDel, FQ-CoDel, and PIE. The collection
and analysis of this data shows how effective AQM can
be at reducing the average RTT in a network.

Using TEACUP as the backbone for the collection
and running of our experiments, the following traffic
generators have been utilized within TEACUP to emulate
bursty traffic such as FTP downloads, interactive traffic
like browsing the web, latency sensitive traffic such as
online gaming, as well as any traffic that doesn’t occur
in real time such as Email:

1) iPerf - Can be used in TEACUP to emulate both
TCP and UDP traffic at different required band-
widths over a given amount of time. We can use
iPerf within TEACUP to emulate TCP or UDP
traffic flows for both the server to client (down-
load) and the client to server (upload) at given
speeds for each demographic. In doing this, iPerf
has been used for the majority of traffic emulations
within our project testbed [13].

2) DASH - Dynamic Adaptive Streaming over HTTP
(DASH) can be used to emulate our video stream-
ing services through the network. DASH uses a
HTTP server that contains both a Media Presen-
tation Description (MPD), as well as the actual
chunks of data to be streamed. DASH stores
chunks of data at multiple quality levels, and can

page 4 of 32

dynamically vary the quality of chunks that it pro-
vides to it’s client’s through information provided
by the MPD file. This file contains information
about the chunk segments stored, their represen-
tation rates, and how to stream them based on
a client’s bandwidth capabilities [14]. TEACUP
provides the capability to emulate a DASH server
for a client to stream from. It does this by first,
starting up a HTTP server on one of the testbed
computers to emulate it as a server, and then
transferring bursts of data to the second “client”
computer, through port 80, at a given cycle interval
in order to emulate each DASH chunk. For this
reports a two second chunk size was chosen, using
the BigBuckBunny dataset.

3) NTTCP - Can be used in TEACUP to specifically
emulate UDP VoIP flows between a server and it’s
client. NTTCP is configured very similar to how
iPerf is setup, and is useful for the emulation of
VoIP traffic to observe how it is affected by AQM,
which is expected to be quite significant due to
this traffic being latency sensitive.

4) Pktgen - This tool can be used in TEACUP in
order to generate UDP game traffic based on
synthetically captured traffic from a real First
Person Shooter (FPS) Games such as Quake 3. In
TEACUP, one host is essentially acting as a game
client, with the other being a server. Game traffic
is bidirectional as the game state needs to receive
both updates and inform a server of the current
state, so it effects both down and up directions,
with an additional latency requirement.

III. DEMOGRAPHICS
A. Australian Household Background

The average Australian household consists of 2.6 fam-
ily members according to statistics recorded by the Aus-
tralian Bureau of statistics in 2011 [15]. However, many
families are either significantly larger or smaller than
this, with many Australians living alone, and some larger
families containing more than six people, we decided
that a single case study size would not be able to be used
to accurately make assumptions on how effective AQM
is for all Australian homes. Furthermore, not all user’s
have the same internet requirements, as not everyone in a
household will always use the internet at the same times,
levels of intensity, or types of traffic. For these reasons,
we have chosen to use data from the Australian Bureau
of statistics and Telsyte in order to find some of the most
commonly occurring speed requirement demographics in

CAIA Technical Report 161107A

November 2016

Australia, and create testbed experiments that emulate
these speed requirements with and without AQM present
on the gateway.

As mentioned, some useful information that we can
use on Australian internet usage demographics may
come from the research company: Telsyte. Telsyte has
generated a report on a survey conducted to determine
the average number of devices used in an Australian
household, as well as the type of applications that are ran
during peak times. Telsyte have used past data surveyed
from 2013, as well as current data to predict the potential
growth of various types of data usage by 2020. This
information has been of a great assistance in focusing our
research on specific usage patterns, as well as the amount
of user’s and devices running in typical households [16].

Currently, NBN Co’s implementation of NBN in Aus-
tralia has plans set to provide user’s with up to 100 Mbps
download, and up to 40 Mbps upload speeds [17], as
shown in Table II:

NBN Speed Tiers

Download Speed Upload Speed

12 Mbps 1 Mbps
25 Mbps 5 Mbps
25 Mbps 10 Mbps
50 Mbps 20 Mbps
100 Mbps 40 Mbps

Table 11
NBN DOWNLOAD AND UPLOD SPEED TIERS [17]

From Table II we can see that NBN Co plans to
accommodate for a wide variety of user’s requirements.
From our research and implementation of AQM in our
experiments, we have been able to find that for the
majority of consumers, speeds of 100 Mbps will be
excessive and unnecessary, and most consumers can stay
at a substantially lower download and upload speed and
still be able to consume the exact same content. This is
explained in more detail in Section V.

B. Categories of speed and latency requirements

In addition to traffic usage trend information, we esti-
mated typical network applications speed requirements
using information found from the NBN Co website
[18], as well as whistleOut.com [19]. Analysis during
peak time was particularly important as this is when

page 5 of 32

user’s most notice whether or not the internet is running
poorly, and hence develop the perceived idea of needing
more speed. Table III shows the estimated download and
upload speeds for various types of typical network traffic
that we have used in order to estimate each households
usage requirements for our experimentation. We can see
that primarily downstream TCP traffic has very small
associated upload speeds. As mentioned in Section II.B,
this is resultant from the minimum ACK message rate
required in order to maintain each applications down-
stream packet rate. This is also the case for the download
speeds associated with upstream TCP traffic such as
cloud uploads.

Service Download Upload Consumption
Speed speed type
(Kbps) (Kbps)
Netflix SD 3000 40 Fixed
Netflix HD 5000 65 Fixed
General 1500 20 Elastic
web/Social
Media
E-mail 300 300 Elastic
HD Movie 8000 105 Elastic
Downloads
Cloud 3000 3000 Elastic
services
App 3000 40 Elastic
updates
Online FPS 25 25 Latency
Gaming Sensitive
Phone 100 100 Latency
(VoIP) (one Sensitive
concurrent
call)
Table III
EXPERIMENTAL APPLICATIONS DOWNLOAD AND UPLOAD
SPEEDS

From the survey conducted by Telsyte, we were able
to identify the main applications that are being used
simultaneously during peak periods, and exclude ap-
plications from our experimentation that we felt were
not commonly being used such as 4K streaming. Ad-
ditionally, it is interesting to note that most applications
common usage percentages are increasing, especially the
streaming of online videos. Exceptions to this include
general web browsing traffic, which is notably the most

CAIA Technical Report 161107A

November 2016

detected occurrence, and VoIP calls, which is quite low
most likely due to many other applications such as text
messaging and social services replacing the need for
VoIP systems.

From this data, we have defined three generic user
templates that have been used to build up our demo-
graphic case studies. These templates represent the most
common traffic requirements in Australia split into low,
medium and high networking profiles shown in Tables
IV, V and VL.

Application Download (Kbps) Upload (Kbps)
App Updates 3000 40
Cloud Services 3000 3000
General Web 1500 20
E-mail 300 300
Online FPS 25 25
Gaming
7825 3385
Table IV

Low CONSUMPTION USER APPLICATIONS

For the low consumption user, we allocated applica-
tions that we felt matched what a general internet con-
sumer would use in their peak usage periods. This could
be updating their Operating Systems or phone/computer
applications, as well as uploading pictures/backups to
the cloud. Additionally, due to the majority of user’s
surveyed in the Telsyte survey using general web appli-
cations, we have allocated the use of general web/email
applications to each of the three templates. Notably,
most of these applications fall under the elastic traffic
category, which is the traffic that AQM will be targeting
in order to reduce the demographics speed requirements.
Online FPS gaming traffic is also used for each template
as it will best show how latency sensitive traffic can be
affected by other traffic types on a gateway.

The moderate consumer, like the low consumer, uses
all the basic functionality that most internet user’s re-
quire, however has the additional requirement of using
the Netflix streaming service in standard definition (SD).
This was added because we felt that we needed to
accommodate for the fact that although on the decline,
SD Netflix still falls in at the fourth highest application
used by user’s simultaneously with other applications.
Of additional note is the fact that Netflix has fixed speed
requirements, so unfortunately for user’s wishing to use

page 6 of 32

Application Download (Kbps) Upload (Kbps)

App Updates 3000 40
Cloud Services 3000 3000
General Web 1500 20

E-mail 300 300
Netflix SD 3000 40
Online FPS 25 25

Gaming

10825 3425
Table V

MODERATE CONSUMPTION USER APPLICATIONS

this application they must have at least 3 Mbps download
and 48 Kbps upload speed, regardless of whether or not
AQM is present.

Application Download (Kbps) Upload (Kbps)
HD Movie 8000 105
Downloads
App Updates 3000 40
Cloud Services 3000 3000
General Web 1500 20
E-mail 300 300
Online FPS 25 25
Gaming
Netflix HD 5000 40
20825 3530
Table VI

HiGH CONSUMPTION USER APPLICATIONS

Our high consumption user essentially runs as many
typical applications that we thought were realistically
possible for a single internet user at any given period.
This includes, in addition to our other templates concur-
rently running applications, bulk HD movie downloads
and streaming Netflix in HD, making sure to include all
services that Telsyte suggests are on the rise.

C. Demographics

From our three templates, we have formed a variety of
different typical household demographics that we have
run our experiments on. In particular, we focused on

CAIA Technical Report 161107A

November 2016

household sizes of one to four, as there is a relatively
low percentage of household sizes that are bigger than
this according to the ABS survey mentioned previously.
The speeds shown for each demographic are rounded
up to the nearest Mbps as rough upper bounds. The list
below represents the six demographics we determined
for our experiments:

1) Single user (high consumption): 21/4 Mbps
down/up. We selected this demographic as one
to focus on as according to ABS survey done
in 2011, a single user household is the second
most common household size. Additionally, the
high consumption template was used as it has the
most elastic traffic speed requirements, and thus
will best represent a simple scenario that can show
the effect that AQM has on a gateway.

2) Couple without children (two moderate users):
19/7 Mbps down/up. For this demographic we
simply doubled all the upload and download re-
quirements for a moderate user. However, only a
single SD Netflix stream was used, as we felt that
it is more realistic for a couple to stream only one
instance of Netflix at a time.

3) One parent, one child (one high, one low): 29/7
Mbps down/up. This demographic is focused on
the performance of various applications when one
user is running significantly more services than
the other. This scenario was used to show how
user’s could be mislead to consider upgrading to
a higher speed tier in order to receive the better
performance, and thus is good to illustrate the
effectiveness of AQM.

4) Two parents, one child (two moderate, one low):
30/11 Mbps down/up. Similar to a couple without
children, this scenario is built up of multiples of the
user’s defined in the Tables in Section B, however
now emulates two SD Netflix streams. In addition
to this, we have added a one channel VoIP call
in order to realistically show how some family
households still may require extra latency sensitive
services.

5) Three person share house (two high, one moder-
ate): 53/11 Mbps down/up. As this three person
house is essentially built up of three independent
people, we have selected the high consumption
template to accommodate for each user running
content separately. This means multiple HD Netflix
streams, online gaming, as well as HD movie
downloads. This demographic was useful in deter-

page 7 of 32

mining the validity of higher NBN speed tiers, as
each of the high consumption user’s may be con-
tent with longer download and upload completion
times as long as their game traffic operates with
low latency.

6) Two parents two kids (one high, two moderate, one
low): 51/14 Mbps down/up. This demographic is
focused on the last relatively common household
size. In this household, essentially all realistic ser-
vices are being run at the same time, with at least
one instance of each type of typical service we
have defined, as well as multiple general internet
activities such as web browsing, and uploading
files to the cloud. Similar to demographic 5, this
scenario will be useful in identifying the full
effectiveness of AQM, as it shows the typical tiers
that higher usage households could be reduced to
after AQM.

60000
50000
40000
30000
20000
10000

demol

demo2

demo5

demo6

demo4

demo3

0

M Fixed Latency Sensitive M Elastic

Figure 2. Traffic classifications download speed needs for each
Demographic

From Figures 2 and 3, we can see that the majority
of speed requirements for both download and upload is
elastic, and therefore has elastic completion time require-
ments. This is the traffic that our AQM algorithms will
focus on reducing the speed requirements for, making
each demographics traffic requirements resemble speeds
closer to their cumulative fixed and latency sensitive
traffic speed requirements, whilst still keeping network
RTTs down.

IV. METHODOLOGY
A. Testbed

The testbed we have used for this project consists
of four separate physical 64 bit Acer Aspire laptop

CAIA Technical Report 161107A

November 2016

16000
14000
12000
10000

8000

6000

4000
2000 I

demo 1

demo 2 demo 3 demo 4 demo 5 demo 6

M Fixed Latency Sensitive M Elastic

Figure 3.
Demographic

Traffic classifications upload speed needs for each

computers running FreeBSD 10.3, connected via 1 Gbps
ethernet cabling by a switch, each with a unique role as
represented by Figure 4.

Emulated Home Network Emulated External Network

Emulated Home gateway

%
&

Emulated Control host

Figure 4. Testbed setup used for all TEACUP experiments

o Home User - The client, pulls data from the server
through an emulated home gateway.

o« Home Gateway - This sits in between the client
and server, routing all packets that traverse the
network. This is where the queues in each direction
are present, and thus where the bottleneck was
occurring, which is where we tested different AQM
algorithms.

o Internet Server - Acts as a content server, using
emulation tools such as iPerf and DASH (through
TEACUP) to emulate the data transfer of different
types of traffic for our case study.

o Control Host - Essentially does the initializing of
the experiments, as well as collect all traffic that
occurs for analysis.

page 8 of 32

e Switch - Model TL-SF1005D was used as a suffi-
ciently capable switch that is fast enough to have
negligible effects on the emulated bottlenecks ob-
served in results.

B. Configuration

As mentioned earlier, all of the experiments for this
report were performed using TEACUP, which requires
a configuration file written in Python programming lan-
guage, that is used to emulate test conditions. In order
to create our experiments, we first had to come up with
realistic values for RTTy. and our router’s buffer size
in number of packets, as well as decide which AQM
algorithms to use, and upload and download speeds that
best analyse whether or not the current NBN tiers are
currently ideal for all user demographics.

For RTTy.e, using ping statistics calculated from
Wondernetwork [20], we discovered that end-to-end
pings across Australia have a maximum RTT value of
60ms (Melbourne-Perth), however the largest percentage
of traffic travels between Australia’s two largest cities in
Melbourne and Sydney, which have a RTT of between
10-20 ms depending on current network conditions. For
this reason we have used a RTT},s value of 20 ms for the
majority of our experiments. This will accurately emulate
the most commonly occurring traffic that Australia would
see in an NBN enabled scenario. Additionally, in order
to test the effect that AQM has on throughput levels
in networks with higher RTTy., we have tested the
throughput on a 12/1 Mbps down/up link with a RT Ty,
of 20 ms (Melbourne-Sydney), in comparison to 150
ms (Melbourne-Western United States), and 250 ms
(Melbourne-Europe).

Regarding buffer size, studies suggest that the ideal
size for a network buffer is equal to a link’s Bandwidth
Delay Product (BDP), which can be calculated by multi-
plying the bandwidth of a link by the delay across it. For
FIFO, in order to analyse network extremities, we chose
to use a bandwidth of the highest NBN tier (100 Mbps)
across a link from Melbourne to Perth (60 ms), which
results in a router buffer size of 500 packets. Although
we are using a different RTT for this calculation than
those mentioned previously, this value will result in a
buffer size that NBN Co would more realistically use
for home gateways they provide for the NBN all across
Australia.

For AQM, the recommended buffer size for a CoDel or
FQ-CoDel bufter is 1000, which is what we used for our
AQM experiment. Although the FIFO and AQM buffer
sizes are different, this will not change the conclusions

CAIA Technical Report 161107A

November 2016

that we can make on the effects that AQM is having
on a user’s latency, as the larger buffer size should
have a negative effect on RTTs in a common network.
By effectively doubling the buffer size, it will also
further demonstrate how much more effective AQM is
at managing queuing delays regardless of how big it’s
buffer size gets.

When it came to determining our bandwidth speeds
we would run experiments on, we wanted to make sure
that we explored a full range of different download
and upload speeds, that encompassed NBN Co’s offered
speeds. We started from 8/1 Mbps, and went up to 100/40
Mbps. The download speeds initially went from 8 to 12,
16 then 20, before just increasing by five until 100 Mbps
was reached. The upload speeds on the other hand started
at 1 Mbps at lower download speeds, before slowly
increasing as the download speeds increased. For every
download speed there was also a 1 Mbps version, to
see the effect that a congested link for a high download
with only a 1 Mbps upstream would have. For the five
NBN speed tiers shown in Table II, multiple other upload
speeds were chosen for each, to clearly contract the low
and high upload speeds for the same connection. A full
list of speeds that we have run experiments on is included
in the Appendix C code file, pages 30 to 31.

Tests were initially run on each modern AQM algo-
rithm (PIE, CoDel, FQ-CoDel) in order to discover the
algorithm that proved to be most effective. After these
tests were run, we found that FQ-CoDel consistently
performed better than the other algorithms, and thus
chose this algorithm for most of our testing. This is
shown in detail in Section V. Configuration files that
were used to run experiments are included in Appendix
C.

Tables VII to XIII show the traffic that was created
for each demographic, along with each applications start
times and running duration that represent each house-
holds peak usage patterns over a 60 second period. In
addition to this, they illustrate the TEACUP tools that
were used for each traffic type, a complete example of
the configuration file for demographic 1 is shown in
Appendix C. In terms of congestion control algorithm,
the default parameter for TEACUP configuration files
of NewReno was used, as that was effective enough to
make sure our other configurations applied correctly.

page 9 of 32

Application Generator Start Time Duration (s) Application Generator Start Time Duration (s)
(s (s)
HD Movie iPerf TCP 1 60 App Updates iPerf TCP 5,10 20
down down
App Updates iPerf TCP 5 20 Cloud iPerf TCP up 0,10 40
down Upload
Web iPerf TCP 5, 20, 35, 50 1 Web iPerf TCP 5, 10, 20, 25, 1
down down 35, 40, 50,
E-mail iPerf TCP 0,25,50 3 >
down E-mail iPerf TCP 0, 5, 25, 30, 3
Game Pktgen 15 45 down 50, 55
Netflix (SD) DASH 10 50 Game Phigen 15 45
Netflix (SD) DASH 10 50
Table VII
DEMOGRAPHIC 0.5 (NO UPLOAD) TRAFFIC START TIMES AND Table IX
DURATION DEMOGRAPHIC 2 TRAFFIC START TIMES AND DURATION
Application Generator Start Time Duration (s) Application Generator Start Time Duration (s)
(s) (s)
HD Movie iPerf TCP 1 60 HD Movie iPerf TCP 1 60
down down
App Updates iPerf TCP 5 20 App Updates iPerf TCP 5,10 20
down down
Cloud iPerf TCP up 0 40 Cloud iPerf TCP up 0,10 40
Upload Upload
Web iPerf TCP 5, 20, 35, 50 1 Web iPerf TCP 5, 10, 20, 25, 1
down down 35, 40, 50,
E-mail iPerf TCP 0,25,50 3 >3
down E-mail iPerf TCP 0, 5, 25, 30, 3
Game Pktgen 15 45 down 50, 55
Netflix (SD) DASH 10 50 Game Pktgen 15 ®
Netflix (HD) DASH 10 50
Table VIII
DEMOGRAPHIC 1 TRAFFIC START TIMES AND DURATION Table X

V. RESULTS
A. Traffic Types

Figures 5 to 14 are used to show how each of the
different traffic types act seperately from one another on
an uncongested link.

Figures 6 and 8 show that the iPerf TCP stream in
each of the up and down directions takes up the full
capacity of the 12/1 Mbps down/up link, with the link’s
throughput maxed out in each case. Figure 5 shows
the single iPerf flow’s RTT vs Time graph, where we
can see that congestion is experienced at approximately
12 seconds into the flow, and therefore the congestion
window and RTT are halved. Similarly, Figure 7 shows

CAIA Technical Report 161107A

November 2016

DEMOGRAPHIC 3 TRAFFIC START TIMES AND DURATION

how the RTT of the flow slowly increases as the conges-
tion window increases. However, the 1Mbps bottleneck
and 500 packet buffer means RTT quickly exceeds one
second, and the TCP connection never exits slow-start
mode before our 60 second trial ends. This supports our
analysis of the way TCP works in Section IL.A.

As DASH uses TCP sessions to transfer media content
from the server to the user, the traffic patterns are very
similar to the regular iPerf TCP stream for both RTT and
throughput. The extra spread of results for the throughput
in Figure 10 is due to the different nature of how DASH
is being run compared to iPerf in our experiments, with

page 10 of 32

Application Generator Start Time Duration (s) Application Generator Start Time Duration (s)
(s (s)
App Updates iPerf TCP 3,5,10 20 HD Movie iPerf TCP 0 60
down down
Cloud iPerf TCP up 0,5,10 40 App Updates iPerf TCP 3,5,10,12 20
Upload down
Web iPerf TCP 5, 10, 12, 20, 1 Cloud iPerf TCP up 0,5,10,15 40
down 25, 27, 35, Upload
403542%750’ Web iPerf TCP 0, 5, 10, 12, 1
’ down 15, 20, 25,
E-mail iPerf TCP 0,5, 7,25, 3 27, 30, 35,
down 30, 32, 50, 40, 42, 45,
55, 57 50, 55, 57
Game Pktgen 15 45 E-mail iPerf TCP 0,5, 7, 10, 3
. down 25, 30, 35,
Netflix (SD) DASH 10 50 32. 50, 55.
VoIP NTTCP 15 45 57, 60
Table XI Game Pktgen 15 45
DEMOGRAPHIC 4 TRAFFIC START TIMES AND DURATION Netflix (HD) DASH 10,15 50,45
VoIP NTTCP 15 45
Application Generator Start Time Duration (s) Table XTII
(s) DEMOGRAPHIC 6 TRAFFIC START TIMES AND DURATION
HD Movie iPerf TCP 0,10 60
down
« Bulk TCP traffic (Down)
App Updates iPerf TCP 3,5,10 20
d 500 —
own
Cloud iPerf TCP up 0,5,10 40 w 400 —
Upload E
. E 300
Web iPerf TCP 5, 10, 12, 20, 1 E
down 25, 27, 35, o
40, 42, 50, o 200 7
55, 57
100 —
E-mail iPerf TCP 0,5,7, 25, 3
down 30, 32, 50, 0
55, 57 I I I I I I I
Game Pktgen 15 45 0 10 20 30 40 50 60
Netflix (HD) DASH 10,15 50,45 Time (s)
Table XII

DEMOGRAPHIC 5 TRAFFIC START TIMES AND DURATION

the extra steps in starting a chrome window on the server,
then connecting and streaming content from the client
causing minor throughput variations. The segmenting of
the flow in Figure 9 is due to the two second chunk sizes
that we are using.

We can also see that the Pktgen and NTTCP ses-
sions that are used to emulate game and VOIP traffic
respectively are very similar, with very low throughput

CAIA Technical Report 161107A

November 2016

Figure 5. RTT vs Time for a single iPerf traffic representing a Bulk
TCP download for 12/1 Mbps down/up, 20 ms RTTpase and 500 pkt
buffer FIFO queue

requirements (Game 17 Kbps VoIP 100 Kbps), the RTT
in each case remains consistently low at around 20-22
ms shown in Figures 11 and 13, only slightly higher
than the RT Ty, of 20 ms in each case. This accurately
represents our earlier analysis of latency sensitive traffic
requirements. As mentioned previously, game traffic has
been used as the focus of the majority of tests done
in the following experiments, as it will best show how

page 11 of 32

o Bulk TCP traffic (Down)

12000

10000

8000
6000

4000

Throughput (kbps)

N

o

o

o
|

o
]

I I I I I I I
0 10 20 30 40 50 60

Time (s)
Figure 6. Throughput vs Time for a single iPerf traffic representing

a Bulk TCP download for 12/1 Mbps down/up, 20 ms RT Ty, and
500 pkt buffer FIFO queue

* Bulk TCP traffic (Up)

I
o
o
o
|

SPP RTT (ms)

=

o

o

o
|

I I I I I I I
0 10 20 30 40 50 60

Time (s)

Figure 7. RTT vs Time for a single iPerf traffic representing a Bulk
TCP upload for 12/1 Mbps down/up, 20 ms RTTh.e and 500 pkt
buffer FIFO queue

latency sensitive traffic can be negatively effected by
other applications causing congestion on a gateway.

B. High RTT with FIFO: flooded downstream

Figures 15 to 18 emulate the traffic requirements
of demographic 1, however the cloud upload traffic,
as well as the e-mail upload traffic has been removed
creating demographic 0.5. This was done in order to
show how traffic performs with traffic congestion in a
single direction (down), in potentially non-peak usage
periods.

From Figures 15 and 16 we can see that the added
TCP download streams are causing a reasonable amount
of congestion on the FIFO gateway, which is in turn

CAIA Technical Report 161107A

November 2016

* Bulk TCP traffic (Up)

1000

800 —

600 —

400 —

Throughput (kbps)

200 —

I I I I I I I
0 10 20 30 40 50 60

Time (s)
Figure 8. Throughput vs Time for a single iPerf traffic representing

a Bulk TCP download for 12/1 Mbps down/up, 20 ms RTThase and
500 pkt buffer FIFO queue

o DASH_traffic(Down)
500 rﬂ'
@ 400
: r
E 300 =brHF
ad
& 200
(%))
100 1
O _ L
I I I I I I I
0 5 10 15 20 25 30
Time (s)
Figure 9. RTT vs Time for a single DASH traffic representing a

Netflix stream for 12/1 Mbps down/up, 20 ms RTTpase and 500 pkt
buffer FIFO queue

causing the latency sensitive traffic to have increased
RTTs. Figure 15 shows that with the added traffic, the
game traffic now has an average RTT of around 300 ms,
which is substantially up on the 20-22 ms previously
observed without congestion. From Table I, we can see
that this is not an acceptable latency level for game traffic
(200 ms). Additionally, from Figure 16 we can also see
the effects that the added traffic is having on throughput,
as each of the DASH and movie download applications
can no longer reach the full capacity of the 12 Mbps
link whilst competing with the additional traffic on the
gateway.

Figure 17 further shows how important upload speeds
can be in FIFO networks. Here we can see the RTT vs

page 12 of 32

12000 | » DASH_traffic(Down)
10000 — . l‘..... ""_-...'-.-.
@ .
g 8000 —
é. 6000 —
<
=) .
3 4000 —
=
2000 o °
o - .
I I I I I I I
0 5 10 15 20 25 30
Time (s)
Figure 10. Throughput vs Time for a single DASH traffic repre-

senting a Netflix stream for 12/1 Mbps down/up, 20 ms RTTpase and
500 pkt buffer FIFO queue

24 | » Game_Traffic
—~ 23
0
E
E 224 Meiot oo
o F‘%“"‘:“‘iﬁ' %o ":c . se even
o "“-s. n.--a.” Ce s S st
.‘ N o v. S350, 0
0 o9q 4 Mﬂ"' -"" ‘\J:,"* "'* %;'.':":
e “'\. o
.r-’ :"-';‘ .2&';;‘ .:c::.w 3‘-‘7'5"-‘”
20 —
I I I I I I I
0 10 20 30 40 50 60
Time (s)
Figure 11. RTT vs Time for a single Pktgen traffic representing

a FPS Game for 12/1 Mbps down/up, 20 ms RTTpe and 500 pkt
buffer FIFO queue

Time graph with increasing download speeds at a fixed
upload speed of 1 Mbps. As expected, the average RTT
experienced by the game traffic is reduced as download
speed increases, however at a download speed of 50
Mbps the average RTT stops reducing and instead starts
to actually increase as the link speed increases. This is
due to the upstream TCP ACK traffic from the concurrent
downstream TCP flow. As explained in Section II.B, TCP
is considered a reliable protocol due to the way that a
TCP receiver is required to acknowledge every packet
that it receives from a sender. These ACK packets are
only small (40 Bytes) in the up direction, however as the
download speed increases, a significantly high number
of ACK packets is required for the greater number of

CAIA Technical Report 161107A

November 2016

20 | ¢ Game_Traffic

. Ao R X Py

'-P_.r, Ao, o s’ e a0, -'H—F‘-.. gote
2 15 - - :
o
=3 : .
5 . :
a 10
< .
(o)) .
>
(] . .
£
= 5. .

0 - .

I I I I I I I
0 10 20 30 40 50 60

Time (s)
Figure 12. Throughput vs Time for a single Pktgen traffic repre-

senting a FPS Game for 12/1 Mbps down/up, 20 ms RTTpase and 500
pkt buffer FIFO queue

24 | ® VoIP_traffic
—~ 23 .
)
E ! - ..
'_
E 22 — .
[a
o
21
20 s
I I I I I I I
0 10 20 30 40 50 60
Time (s)
Figure 13. RTT vs Time for a single NTTCP traffic representing a

VoIP call for 12/1 Mbps down/up, 20 ms RTTpase and 500 pkt buffer
FIFO queue

packets that the client receives. This can be a problem
with highly skewed asymmetric link’s, which is what
we are observing in Figure 17. As the download speed
has reached a level where it is too much higher than
the upload traffic (50 Mbps), we can observe that the
ACK packets start to flood the upload link (1 Mbps),
causing congestion and thus higher RTTs for the FPS
game traffic observed.

Figure 18 shows a small example of how higher
upload speeds can reduce the RTT experienced in the
same scenario. Looking at speeds from 65 Mbps down to
75 Mbps down, where with a previous upload speed of 1
Mbps the RTTs slowly increases with higher speeds, we
can now see that with a higher upload speed (4 Mbps),

page 13 of 32

* VolP_traffic
100
‘2 80 !
0 .
=
5 60 — .
o
%) .
3 40
° >
i .
20
0 — o
I I I I I I I
0 10 20 30 40 50 60
Time (s)
Figure 14. Throughput vs Time for a single NTTCP traffic

representing a VoIP call for 12/1 Mbps down/up, 20 ms RT T and
500 pkt buffer FIFO queue

& DASH_Traffic1(Down) Game_Traffic
DASH_Traffic2(Down) ~ ® APP_Updates(Down)
600 —{ * Movie_Download(Down) ® Web_Traffic(Down)

/ (4

0 10 20 30 40 50 60

500 —
400 —
300 —

:::—:q:ue:;i.;.k
o

SPP RTT (ms)

200

100

Time (s)

Figure 15. RTT vs Time for Demo 0.5 traffic at 12/1 Mbps down/up,
20 ms RTThase and 500 pkt buffer FIFO queue

that can accommodate the download traffic ACK speed
requirements, as expected the RTT now reduces as the
download speed increases.

C. High RTT with FIFO: flooded downstream and up-
stream

Figures 19 to 23 show examples of how the traffic
from demographic 1, which includes a bulk cloud upload
as well as e-mail upload traffic on top of the traffic from
demographic 0.5, thus showing how flooding both the
downstream and the upstream can effect latency sensitive
traffic.

From Figures 19 and 20, we can see that the single
cloud upload has significant effects on the latency and
throughput levels observed on the network. Figure 19

CAIA Technical Report 161107A

November 2016

—| ® DASH_Traffic1(Down) Game_Traffic
15000 DASH_Traffic2(Down) ~ ® APP_Updates(Down)
% Movie_Download(Down) ® Web_Traffic(Down)

—~
(72) s x
Q. x % ,‘; X
o) X X x x %
X 10000 — B % T ot B
5 x TR S L R o
= X % 5% *
< PR

oF X ® x Xave x
(o)) X e .
3 x # X
2 5000 ;e e
= o o ¢ X
g A pinger :

x " 4%« .
o « .
o ‘ x
0 - . =i 4,

Time (s)

Figure 16. Throughput vs Time for Demo 0.5 traffic at 12/1 Mbps
down/up, 20 ms RT Ty and 500 pkt buffer FIFO queue

rpp—
2004 T
R
£ 150 —
E . e
@ 100 4 - LT i i
o i L H -_-— - - -
o) 4 - T BN i ===
50 T U freerer R S
-
0 —
T T T T T T T T T T T
down 25mbit 30mbit 35mbit 40mbit 45mbit 50mbit 55mbit 60mbit 65mbit 70mbit 75mbit
Figure 17. RTT Boxplot for Demo 0.5 FPS Game traffic at fixed

1 Mbps upload with changing download speed, 20 ms RT Ty and
500 pkt buffer FIFO queue

shows latency levels with an average of around 1000
ms, reaching as high as 2500 ms for each traffic type
shown, which is significantly up on the latency levels
shown with no upload in Figure 15, where the game
traffic reached a maximum RTT of around 500 ms, and
had an average of about 250 ms.

Additionally, Figure 20 shows the negative effects
that the congestion is having on the throughput, with a
congested uplink causing the TCP traffic to be unable
to reach optimal throughput levels for the majority
of the transmission, and much of the link’s 12 Mbps
capacity going unused. This is again due to the ACK
traffic associated with the download traffic. TCP ACK
messages need to travel un-hindered between client and
server in order for the server to optimally increase it’s
TCP cwnd value, and thus it’s throughput on the link
at an ideal rate. This is not possible with a congested
uplink, as the TCP ACK messages are competing with
the bulk cloud upload traffic on the gateway. To confirm
this, we can see that this is remedied shortly after the

page 14 of 32

120 | ® Game_Traffic
b b
o - - -
1
m
é 80 - —_ 0 - '
1
= : '
E 60 : - .
n- [— —_
1
% 407 - - !
20
O —
T T T T T T
down 65mbit 65mbit 70mbit 70mbit 75mbit 75mbit
up 1mbit 4mbit 1mbit 4mbit 1mbit 4mbit
Figure 18. RTT Boxplot for Demo 0.5 FPS Game traffic with

changing download/upload speed from 65/1 - 75/4 Mbps, 20 ms
RTThpase and 500 pkt buffer FIFO queue

— ® DASH_Traffic1(Down)
DASH_Traffic2(Down)
X DASH_Traffic3(Down)
DASH_Traffic4(Down)

® Movie_Download(Down)
4 Game_Traffic

¥ Cloud_Upload(UP)

= APP_Updates(Down)

3500
3000
@ 2500
2000 '
1500

4-‘
+

SPP RTT (ms

1000 —
500 —

o1

I I I I I I I
0 10 20 30 40 50 60

Time (s)

Figure 19. RTT vs Time for Demo 1 traffic at 12/1 Mbps down/up,
20 ms RTTpase and 500 pkt buffer FIFO queue

cloud upload finishes at 40 seconds into the graph, when
the TCP ACK messages can be sent without congestion.

Figure 21 is an example of increasing the download
speeds on a link for demographic 1, where a bulk cloud
upload is significantly effecting the RTT throughout
the entire graph. Although as explained earlier, higher
download speeds should in theory cause lower RTTs for
the game traffic, we can see that this is not the case for
this example, with the median RTT not far from 1000 ms
at each speed shown, which is not acceptable for latency
sensitive traffic. This is due to the low upload speed of
1 Mbps used for this experiment, which is being filled
by cloud upload TCP traffic. With the uplink full, TCP
ACKs for the download traffic are being congested, thus
causing the latency we are observing on the link. This
shows how important upload speeds can be to a user,

CAIA Technical Report 161107A

November 2016

e DASH_Trafficl(Down) ® Movie_Download(Down)
15000 | x DAsH Taficabom) v Giovs Uosd(uP)
DASH_Traffic4(Down) = APP_Updates(Down)
B -
£ W ™M
< 10000 — r
45' L
Q_ L L
ey []
(@]
3 s
= 5000 —
|_
0 —
I I I I I I I
0 10 20 30 40 50 60
Time (s)
Figure 20. Throughput vs Time for Demo 1 traffic at 12/1 Mbps

down/up, 20 ms RT Ty and 500 pkt buffer FIFO queue

1500

1000 —

SPP RTT (ms)

o1}

=}

=}
|

0 -

T T T T T T T T T T T T
down 20mbit 25mbit 30mbit 35mbit 40mbit 45mbit 50mbit 60mbit 70mbit 80mbit 90mbit 100mbit

Figure 21. RTT Boxplot for Demo 1 FPS Game traffic at fixed 1
Mbps upload with changing download speed, 20 ms RTTyase and 500
pkt buffer FIFO queue

as in this case, no matter how high a user’s download
speeds are, they will still experience undesirable RTT
levels for their latency sensitive traffic if cloud uploads
are performed simultaneously.

200 —| = came_Tafic
L]
_
E i
E =
& 1007 L
o
o
——
B T
=
===

0 -

down 20mbit 25mbit 30mbit 35mbit 40mbit 45mbit 50mbit 60mbit 70mbit 80mbit 90mbit

Figure 22. RTT Boxplot for Demo 1 FPS Game traffic in the period
45-60s, at fixed 1 Mbps upload with changing download speed, 20
ms RTTpae and 500 pkt buffer FIFO queue

Figure 22 shows an example of increasing the down-

load speeds with a fixed upload speed similarly to Figure
29, however highlights the period of 45-60 seconds

page 15 of 32

where the cloud upload is finished. Now that there is
no TCP traffic flooding the uplink, we can see that as
expected, the higher download consistently cause lower
RTTs for the game traffic on the link.

2000 4 v
£ 1500 |
e
E
& 1000
[N
o
n
500
0 -
T T T T T T T T T T
up 1mbit 2mbit 3mbit 4mbit 5mbit 6mbit 7mbit 8mbit 9mbit 10mbit
Figure 23. RTT Boxplot for Demo 1 FPS Game traffic at fixed 25

Mbps download with changing upload speed, 20 ms RTThase and 500
pkt buffer FIFO queue

We can see from Figure 23 that at a fixed download
speed of 25 Mbps, as each upload speed increases, the
RTT is reduced, with traffic reaching acceptable RTT
values (under 200 ms) at 7 Mbps up. This is because
with both a relatively high download and upload speed,
neither the downlink or uplink are congested as severely
as in previous examples, allowing higher speeds to have
positive effects on network RTTs.

D. Low RTT with AQM: flooded downstream and up-
stream

Figures 24 to 26 aim to compare the effectiveness
that CoDel, PIE and FQ-CoDel have in the reduction of
network RTTs, using the first NBN tier as an example.
This was done in order to select the most effective AQM
algorithm to be used in the remainder of experiments
with which to test against FIFO.

As we can see from Figures 24 (PIE), 25 (CoDel),
and 26 (FQ-CoDel), each algorithm has significantly
reduced the RTTs experienced by the game traffic on
the link when compared to results shown for FIFO
queuing in Figure 19, with each algorithm reducing the
average RTT experienced to below 100 ms, as apposed
to FIFO shown in Figure 19, which had an average RTT
of over 1000 ms. Although this is the case, there are
some definite differences between the results shown for
each algorithm. We can see from Figure 24 that PIE
has the highest average RTT for all traffic of the three
algorithms at around 90 ms, and game traffic averaging
approximately 60 ms. This is likely due to the fact that

CAIA Technical Report 161107A

November 2016

® DASH_Traffic1(Down)
DASH_Traffic2(Down)
% DASH_Traffic3(Down)
DASH_Traffic4(Down)

® DASH_Traffic5(Down)
4 Movie_Download(Down)
¥ Game_Traffic

= Cloud_Upload(UP)

400 —

300 —

200 —

SPP RTT (ms)

100 —

Time (s)

Figure 24. RTT vs Time for Demo 1 traffic at 12/1 Mbps down/up,
20 ms RTThae and 1000 pkt buffer PIE queue

400

* DASH_Traffic1(Down)
DASH_Traffic2(Down)
X DASH_Traffic3(Down)

Movie_Download(Down)
= Game_Traffic
4 Cloud_Upload(UP)

300 —

SPP RTT (ms)
N
o
o
l
f..ﬁ- a®-a um

[any

o

o
|

Time (s)

Figure 25. RTT vs Time for Demo 1 traffic at 12/1 Mbps down/up,
20 ms RTThase and 1000 pkt buffer CoDel queue

PIE uses a random drop method based on a latency
calculation.

Figure 25 shows that CoDel is a close second with an
average RTT of approximately 80 ms for all traffic, and
similar game traffic average of about 60 ms. This makes
sense, as unlike PIE, CoDel does not drop packets based
on a random probability. Finally, from Figure 26 we can
see that FQ-CoDel is the most effectively performing
algorithm, with the lowest average RTT at around 40
ms for most of the traffic, with only the upload traffic
reaching RTT levels that resemble the other algorithms
RTTs, and the game traffic staying at approximately 20-
30 ms for the majority of the experiment. In addition
to this, FQ-CoDel also has a significantly lower spread
than the other two algorithms for the majority of the

page 16 of 32

« DASH_Traffic1(Down) Movie_Download(Down)

400 — DASH_Traffic2(Down) ~ ® Game_Traffic
X DASH_Traffic3(Down) 4 Cloud_Upload(UP)
3
% 300 ¢
e .
N~— *
= .
— *
200 o . s
& i :
%) s :
100 — 24
s -
*
*
O —

Time (s)

Figure 26. RTT vs Time for Demo 1 traffic at 12/1 Mbps down/up,
20 ms RTTpase and 1000 pkt buffer FQ-CoDel queue

traffic. This is due to FQ-CoDel adding FlowQueue
scheduling and flow isolation to the basic CoDel AQM.
By separating different flows (and returning ACKSs)
into separately scheduled queues, FQ-CoDel isolates the
ACKs and game packets from competing TCP Data
packets. Consequently, game traffic experiences far lower
queuing delays and ACK traffic receives a sufficient
share of bottleneck capacity. Additional graphs showing
the impact for AQM over a range of upload speeds are
shown in Appendix A.

2000 —)

[N
5]
o
=}
|

1000

SPP RTT (ms)

500

agm fifo codel pie fq—codel

Figure 27. RTT Boxplot comparing for Demo 1 FPS Game traffic
for FIFO and other AQM at fixed 12/1 Mbps down/up speed with a
20 ms RTTpase

Figure 27 shows a side-by-side Boxplot comparison of
FIFO against the three algorithms shown previously for
the first NBN tier of 12/1 Mbps down/up. Here we can
more easily compare FIFO to AQM, with FIFO’s median
of approximately 1000 ms better standing out against the

CAIA Technical Report 161107A

November 2016

other three algorithms, each with median RTTs of below
100 ms.

Figure 28 compares the game traffics RTTs for FIFO
against the three AQM algorithms at each of the four
remaining NBN speed tiers. Similar to Figure 27, we
can see that CoDel and PIE produce similar results to
each other, with significant RTT reductions shown in
comparison to FIFO at each of the speed tiers, and
higher speeds causing lower RTTs for each of the two
algorithms. Conversely, FQ-CoDel bottoms out at a con-
sistent RTT of around 25 ms at each speed. This lower
than the other algorithms and only slightly higher than
the RT Ty, of 20 ms, even when the gateway is being
flooded by multiple TCP traffic streams, again showing
that FQ-CoDel is superior to the other two algorithms.
For these reasons we chose to use FQ-CoDel as the most
suitable algorithm to compare FIFO tests against for the
rest of our experiments, as it would be the most likely
algorithm chosen for real life applications. Additionally,
DOCSIS 3.0 supports FQ-CoDel as an optional AQM to
be enabled on it’s routing appliances.

Figure 29 compares FQ-CoDel to the FIFO experi-
ment we previously observed in Figure 21, highlighting
the effect that increasing the download speed has on
RTTs experienced by game traffic with FQ-CoDel on
the gateway. Here we can see that unlike FIFO, where
the RTT consistently remains around 1000 ms, the cloud
upload traffic has little effect on the RTTs observed by
FQ-CoDel, as it’s pre-emptive packet dropping method
does not allow the traffic to congest the uplink. Instead,
the RTTs for FQ-CoDel remain constant throughout the
graph, consistently staying only slightly higher than the
RTTp,se of 20 ms.

Figure 30 similarly compares FQ-CoDel to the FIFO
experiment previously shown in Figure 23, instead look-
ing at the effect that increasing the upload speed has on
the RTTs experienced by game traffic with FQ-CoDel on
the gateway. Although the increased upload speeds have
a positive effect on the RTTs experienced by game traffic
with FIFO, we can see that with FQ-CoDel these higher
speeds are not necessary, as again the RTT remains only
slightly above the RT Ty, for the entire graph.

E. Demographic Comparisons

This section explores the application of FQ-CoDel
in comparison to FIFO for the all six demographics
detailed in Section III.C. Median RTT values for FPS
game traffic were taken and graphed for demographics 1-
6. This was done for a full range of bandwidth speeds up
to the highest NBN speed tier (100/40 Mbps down/up).

page 17 of 32

400 —] ® Game Traffic
b

1

1

]

—~ 300 —
(]

£

~

E 200

04

a8

&

-
2 _ = -
] -
1 1 T
o . e N o
o —

I I I I I I I I I I I I I I I I
agm fifo codel pie fg—codel fifo codel pie fq-codel fifo codel pie fq-codel fifo codel pie fq-codel
down 25mbit 25mbit 25mbit 25mbit 25mbit 25mbit 25mbit 25mbit 50mbit 50mbit 50mbit 50mbit 100mbit 100mbit 100mbit 100mbit

up 5mbit 5mbit 5mbit 5mbit 10mbit 10mbit 10mbit 10mbit 20mbit 20mbit 20mbit 20mbit 40mbit 40mbit 40mbit 40mbit
Figure 28. RTT Boxplot comparing for Demo 1 FPS Game traffic for FIFO and other AQM at NBN down/up speed tiers, with a 20 ms
RTThase
W Game_Traffic
2000 —
- -
- -
: - o ! | o - !
| ' ! ' ' ' '
% 1500 : - ! | | . ! -
S
f=2
E
£ 1000
o
&
500 —
—_
—_
0 — — — — — — — T — — —
I I I I

I I I I I I I I
fifo
30mbit

fifo
8mbit

fifo
12mbit

fifo
25mbit

fq-codel
30mbit

agqm fq-codel

8mbit

fq-codel
12mbit

fq-codel

down 25mbit

I I I I I I
fifo
35mbit

fifo
55mbit

fifo
60mbit

fifo
40mbit

fifo
45mbit

fq-codel
45mbit

fq-codel
55mbit

fq-codel
60mbit

fq-codel
35mbit

fq-codel
40mbit

Figure 29. RTT Boxplot comparing for Demo 1 FPS Game traffic for FIFO & FQ-CoDel at fixed 1 Mbps upload with changing download

speed, and a 20 ms RTTpase

Boxplots that these medians were derived from are
included in Appendix B, and a full list of these speeds
can also be seen in the configuration file included in
Appendix C.

From Figures 31 and 32 we can see the clear cor-
relation’s that increasing speeds have with each of the
six demographics. From Figure 31, we can see that
all six demographics show unacceptable median RTT
levels for the game traffic at various stages of the
graph. Despite the very different traffic requirements
between demographics, each graph follows the same
RTT patterns, with the RTT for the game traffic dropping
off as both the download and upload speeds gradually
increase throughout the graph. This shows that even
though our later demographics have higher download and
upload application requirements, this has little effect on

CAIA Technical Report 161107A

November 2016

the median RTT experienced by latency sensitive game
traffic on the link.

Consequently we can apply our conclusions from
observations to all Australian household sizes, even
those that are not shown in our demographics tests.
Similar to other results from Section V, we can see that
both download and upload speeds are clearly showing
improvements in median game traffic RTTs as they
are increased for each demographic. We can see that
due to the smaller upload speeds in comparison to
the download speeds, higher bandwidths on the uplink
have a particularly strong effect on RTT reduction, with
each demographic except for demographic 1 (which has
smaller traffic levels) requiring at least 5 Mbps upload
speeds in order to reduce the game traffic latency below
an acceptable 200 ms at each stage of the graph.

page 18 of 32

= Game_Traffic
2500 — -
'
'
'
— '
& 2000 .
IS '
~ -
= 1500 — '
['
x '
'
o — |
2 1000
0 -
= - - — = =
-
| o
= —_ —_ p—r— —_ ? —— —— ——
T T T T T T T T T T T T T T T T T T T T
agm fifo fq-codel fifo fq-codel fifo fq-codel fifo fq-codel fifo fq-codel fifo fq-codel fifo fq-codel fifo fg-codel fifo fq-codel fifo fq-codel
up 1mbit 1mbit 2mbit 2mbit 3mbit 3mbit 4mbit 4mbit 5Smbit 5mbit Bmbit 6mbit 7mbit 7mbit 8mbit 8mbit 9mbit 9mbit 10mbit 10mbit

Figure 30. RTT Boxplot comparing for Demo 1 FPS Game traffic for FIFO & FQ-CoDel at fixed 25 Mbps download with changing upload

speed, and a 20 ms RTTyase

Comparison of median RTT Experienced for different demographics with FIFO at 20ms RT Tsse

1200

1000

800

600

RTT (ms)

200

0

8/1 12/1 12/2 12/5 12/10 16/1 20/1 25/1 25/2 25/5 25/10 30/2 35/2 40/3 45/3 50/1 50/2 50/5 50/10 50/20 55/3 60/4 65/4 70/4 75/4 80/4 85/4 90/4 95/4 100/1 100/2 100/5 100/10100/40

Download/Upload Speeds (Mbps)

—Demol Demo2 Demo3

Figure 31.
RTTbase

Conversely, Figure 32 shows the RTT levels for game
traffic with FQ-CoDel running on the gateway remain
consistently low, with game traffic RTT medians staying
below 26 ms at each speed for all six demographics
shown, which is only slightly higher then the RTTpy
of 20 ms. Although we can see that the RTT patterns
follow the same trends as those shown with FIFO in
Figure 31, with download and upload speeds effecting
the shape of the graph, we can see that the RTT values
only span a range of 21-26 ms (Sms spread), which is
so small as to be almost negligible, and not significant

enough for user’s to notice.

F. AQM penalises throughput to/from distant servers

As shown in previous sections, AQM has a significant
effect on reducing the RTTs experienced by latency sen-
sitive game traffic in a network, however as mentioned
in Section II.C, AQM can have a negative effect on the
throughput levels that TCP connections can achieve on
a link. Figures 33 to 36 explore this trade-off, analysing

CAIA Technical Report 161107A

November 2016

Demo4 ——Demo5 -—Demo6

RTT Boxplot medians comparing for Demo 1-6 FPS Game traffic for FIFO at full range of down/up speed tiers, with a 20 ms

14000 — . mgz:zzgm::z:ggggn:‘)s) % Movie_Download(250ms)
12000 4 =» . Pt
n o x . x % s el :
£-10000 A P oo e £ . o
= et R W ST .
= 8000 - M A B i X g
3 x o % 3 R e x@%r
x v, > O .
-§, 6000 —{ . L ek ARG K T
[] X & . 2 e x X xx *
<= 4000 — % X . X % x%xx x .
(= Z %
2000 — = -
x x o«
0 - £ x|
I I I I I I I
0 10 20 30 40 50 60
Time (s)
Figure 33. Throughput vs Time for Demo 0.5 Elastic Movie

Download traffic at 12/1 Mbps down/up, 20, 150 and 250 ms RT Thasc,
500 pkt buffer FIFO queue

Throughput vs Time graphs for RT Ty, values of 20 ms,
150 ms, and 250 ms. Figures 33 and 34 look at the

page 19 of 32

Comparison of median RTT Experienced for different demographics with FQ at 20ms RTToase

26

20

81 12/1 12/2 12/5 12/10 16/1 20/1 25/1 25/2 25/5 25/10 30/2 35/2 40/3 45/3 50/1 50/2 50/5 50/10 50/20 55/3 60/4 65/4 70/4 75/4 80/4 85/4 90/4 95/4 100/1 100/2 100/5 100/10100/40
Download/Upload Speeds (Mbps)

—~Demo1l Demo2

Figure 32.
20 ms RTTpase

« Movie_Download(20ms) % Movie_Download(250ms)
Movie_Download(150ms)

12000
210000

8000

6000

4000

Throughput (kb

2000 -

Time (s)

Figure 34. Throughput vs Time for Demo 0.5 Elastic Movie
Download traffic at 12/1 Mbps down/up, 20, 150 and 250 ms RT Thasc,
1000 pkt buffer FQ-CoDel queue

TCP throughput levels for the movie download traffic
in demographic 0.5, where there was no cloud traffic
congesting the uplink. From Figure 33, we can see that
the increases in RTT from 20 ms to 150 ms to 250 ms,
have only a small effect on the TCP throughput levels
for FIFO, with an average throughput of approximately
8 Mbps for each of the flows on the 12 Mbps link.
Conversely, from Figure 34 we can see that the
higher RTTy, for the network are significantly effecting
the throughput levels with FQ-CoDel running, with the
throughput dropping off as the RTTy. is increased,
and throughput levels reaching as low as 2 Mbps at an
average of around 4 Mbps for a RTTy, of 250 ms.
As explained in Section II.C, this is due to the FQ-
CoDel preemptively dropping packets from the movie

CAIA Technical Report 161107A

Demo3

November 2016

Demo4 ——Demo5 ——Demob

RTT Boxplot medians comparing for Demo 1-6 FPS Game traffic for FQ-CoDel at full range of down/up speed tiers, with a

downloads TCP flow, causing TCP to back off early.
With a higher RTT, it takes TCP longer to reach it’s
optimal throughput levels, and AQM can hinder this
process. This means that that if a user was in Melbourne
and wanting to download a file from a server based in
Europe (250 ms RTTy,s) it would take twice as long
for the file download to complete with FQ-CoDel (4
Mbps) than with FIFO (8 Mbps) on a 12 Mbps link.
It is important to note however, that TCP applications
usually have elastic completion time requirements that
ultimately depend on how long a user is willing to wait.

14000 — . mzx::_gga::g:ggg?ms)s) % Movie_Download(250ms)

12000 — o -
m * % x
£ 10000 Wan .
= - x3%

S 8000 e
!sl X Xx
o 6000 — .
> . .
e oo : :
< 4000 —) x .
[. ?"“',’\}(
%
2000 PP Y b R . 1
5 x A S X Boetn R e
0 o e e Tt

I I I I I I I
0 10 20 30 40 50 60

Time (s)

Figure 35. Throughput vs Time for Demo 1 Elastic Movie Download
traffic at 12/1 Mbps down/up, 20, 150 and 250 ms RTThase, S00 pkt
buffer FIFO queue

Figures 35 and 36 show an example how FQ-CoDel
does not always negatively effect throughput levels on
a link. Here we can see results for throughput levels
of a TCP movie download in demographic 1, where

page 20 of 32

+ Movie_Download(20ms)
Movie_Download(150ms)

% Movie_Download(250ms)

12000 —

10000 <.

8000

6000

4000

Throughput (kbps)

2000

Time (s)

Figure 36. Throughput vs Time for Demo 1 Elastic Movie Download
traffic at 12/1 Mbps down/up, 20, 150 and 250 ms RTTpase, 1000 pkt
buffer FIFO queue

the uplink is being congested by bulk cloud upload
traffic. Figure 35 shows that for each of the three
RTTpyse values, the movie download cannot reach optimal
throughput levels due to the congested uplink, with
throughput speeds staying below 4Mbps for each of
the RTTp,scexamples until the movie upload finishes at
40 seconds. Conversely, we can see from Figure 36
that although in theory AQM should usually negatively
effect TCP throughput, with AQM reducing congestion
on the uplink, throughput levels for each of the RT Ty,q
examples instead reach consistently higher levels than
those shown for FIFO.

VI. REAL WORLD IMPLICATIONS OF AQM

From our results we have been able to show the
distinctive effect that AQM algorithms on a home bot-
tleneck gateway in significantly reducing the RTTs of
latency sensitive game traffic. Section V.B shows how
ineffective FIFO queueing can be in typical single user
household, with Figure 23 showing that minimum upload
speeds of 8 Mbps are required for acceptable latency
levels (under 200 ms) for game traffic. From the same
section we can see that download speeds have little effect
on reducing the RTT of game traffic if the uplink is
congested. This means that with FIFO, a user would
have to opt for the third NBN tier (25/10 Mbps down/up)
in order to experience acceptable RTTs for their game
traffic if other upload applications were present in the
household. Conversely, looking at Figure 29 we can see
that FQ-CoDel can consistently offer RTTs only slightly
higher than the RT Ty, of 20 ms regardless of the upload
speeds. This means that for this example, with FQ-CoDel

CAIA Technical Report 161107A

November 2016

a user could opt for the bottom NBN tier of 12/1 Mbps
down/up, whilst still achieving even lower RTTs for their
latency sensitive game traffic than if they had the third
NBN tier with FIFO on the gateway.

From Figure 32 we can see that FQ-CoDel has a
consistent RTT for each demographic that did not exceed
26ms for any of the demographics, even with flooded
gateways at the lowest speed of 8/1 Mbps down/up.
This means that provided user’s are happy for their
download times to take longer with lower speeds, they
can simply base their NBN tier choice off of their fixed
traffic speeds requirements whilst achieving minimal
RTTs for their latency sensitive traffic, regardless of
their other application requirements in an FQ-CoDel
situation. However, as shown in Figure 31, in a FIFO
situation, user’s that want low RTTs for their game traffic
become heavily reliant on their download and upload
speeds, with only the top two NBN tiers (50/20, 100/40)
achieving acceptable game traffic RTTs (under 200 ms)
for all six demographics. We can also see that the bottom
two NBN tiers are ineffective for all demographics with
the exception of demographic 1 at 25/5 Mbps down/up,
suggesting that these tiers are not at suitable download
and upload levels for typical Australian households if
they require cloud upload applications. From this, we
can say that FQ-CoDel has the potential to save user’s
money on higher costing speed tiers, by allowing latency
sensitive traffic to have minimal RTTs at the lowest NBN
tiers when running in conjunction with other traffic.

Additionally, this may have the potential to reduce
the load on the NBN, as with AQM, the high number
of user’s that would opt for lower speed tiers would
reduce the overall maximum download and upload usage
levels experienced by the NBN infrastructure, potentially
saving on the future costs associated with the NBN
rollout. Furthermore, AQM may have great potential for
use in remote locations, where NBN Co is unable to
justify the costs of rolling out expensive cabling. With
AQM used in these situations, low back-haul speeds
would still be able to achieve low RTTs for small towns
of user’s that were previously unable to use latency
sensitive traffic such as online games and VoIP calling.
Similarly, AQM could have the potential to change the
scope of potential business plans, enabling businesses
to scope projects in areas that they would not have been
able to consider with FIFO, due to their latency sensitive
requirements.

Optus currently offers a cable internet “top speed
pack” that has speeds of 100/2 Mbps down/up [21].
Although most of the general public would neglect to

page 21 of 32

look too far into the upload speeds, we can see that with
FIFO running on the gateway they can be very impor-
tant. From Figure 31, we can see that at 100/2 Mbps
down/up all six demographics have unacceptable RTTs
for their latency sensitive game traffic, with all median
RTTs shown to be higher than 400 ms. Although these
demographics represent a situation where the uplink is
flooded with cloud updates, we can also see from Figure
17, that highly skewed asymmetric link’s can have their
download rates capped by the number of TCP ACK
messages that need to be sent on the uplink. This is
the case even when there is no other upload traffic to
compete with, as the RTT of game traffic increased at a
point where the TCP ACK messages flooded the upload
(50 Mbps). This congested uplink also puts a cap on the
throughput achieved on the link, as the slowing down of
the TCP ACK traffic on the uplink will in turn disallow
TCP from reaching it’s optimal packet throughput levels
in ideal timeframes. From this we can say that highly
skewed asymmetric link’s are only feasible in AQM
environments if user’s desire low RTTs for their latency
sensitive traffic.

It is also important to note that for a user’s home
gateway, by applying an AQM, it will only effect the
uplink bottleneck. In order for the downlink bottleneck
to be changed, an AQM would need to be implemented
on the ISP’s gateway that provided the downlink traffic
to the user’s home premises. As this would be out the
user’s control, the fact that the uplink traffic is typically
what is offered at a much lower rate to customers
of an ISP further validates the need for an AQM at
the home gateway. As an AQM can reduce the speed
requirement for latency sensitive traffic by so much in
the uplink direction, it should not matter that an ISP has
not implemented an AQM on their gateway, provided
the user does not consume a lot more traffic then their
downlink speeds can provide.

VII. CONCLUSIONS

With so many forms of traffic with different require-
ments such as elastic, fixed and latency sensitive, often
they are competing with each other, causing congestion,
and increasing the overall delays experienced by each
application. For latency sensitive applications such as
FPS games, they only produce a very minimal amount
of traffic, but in order for the game to remain immersive,
require their RTT experienced to be low. This is where
AQM comes into play, as opposed to simple FIFO
queuing, as it can implement smarter queuing algorithms
such as FQ-CoDel in order to ensure TCP backs off

CAIA Technical Report 161107A

November 2016

sooner, as to not fully congest a home gateways buffer,
and allow the overall RTT being experienced by certain
traffic to be reduced.

This is important when it comes to latency sensitive
traffic, as it is in turn driving the apparent need for
speed, as gamers are noticing that the latency they
are experiencing is going up when with a congested
bottleneck, making the experience a lot less immersive.
This in turn is driving idea that across Australia, we need
NBN Co to implement a faster service, providing speeds
of up to 100/40 Mbps. This is with just FIFO queuing
though, as opposed to AQM, so by setting up a physical
testbed running a TCP analysis software developed at
CAIA Swinburne known as TEACUP, we were able to
observe how effective AQM can be.

Firstly, we were able to quickly determine that FPS
game traffic goes from experiencing RTT in the realm
of 2 ms on top of the initial RTT},s. when just by itself,
to an average of 1000 ms of delay for lower speed
tiers when it is competing with different types of traffic
in both the down and upstream direction, which is not
ideal for game traffic, which requires under 200ms RTTs.
Additionally, it was found over a large range of different
download and upload speeds, that the upload speed in
particular had the most impact when increasing the speed
capacity for our demographics. This is due to the fact that
the upload speed typically ranges a lot lower, with the
bottom NBN speed only offering 1 Mbps. The download
speed increasing still improves performance, however as
it typically is a lot higher, with the bottom NBN speed
being 12 Mbps, it can be enough to reduce the RTT for
a congested bottleneck without large amounts of traffic
in the down direction.

Additionally, it was found that for bottlenecks where
there was no significant uploads, for higher download
speeds with only a small upload counterpart, that the
RTT being experienced will actually go up due to the
amount of ACKs that a fully congestion down-link of
speeds such as 60 Mbps down would introduce. This
is important to note, as currently Optus is offering an
NBN speed tier of 100/2 Mbps, which for a user who
is consuming a lot of content in the down direction,
will suffer additional RTT even without having any extra
traffic in the up direction such as uploading photos to the
cloud.

With three modern AQM algorithms run in compari-
son to FIFO, it was found that although PIE and CoDel
did significantly reduce the RTT being experienced for
game traffic, FQ-CoDel reduced the RTT more at around
1-5 ms on top of the 20 ms RTTy,, constantly for

page 22 of 32

all demographics we tested, regardless of the available
bandwidth speeds. This was due to the fact that with
the added benefit of FQ scheduler, the game traffic was
able to be constantly routed as it is only small packets
that arrive at regular intervals, allowing them to be
automatically routed without being dropped or delayed.

This makes FQ-CoDel very ideal for user’s who often
consume their home gateway with bulk TCP traffic in the
up and down direction, as well as use latency sensitive
applications such as online games, or make VoIP calls.
It is important to note though that there is a trade-off in
order for FQ-CoDel to be implemented, and that is the
completion times for any elastic traffic such as uploading
files to the cloud, or downloading a big movie may take
longer to and from content servers whose RT Ty, are
high, such as servers located outside Australia. For a
connection to Europe via a 12/1 Mbps NBN speed tier,
downloads could take twice as long using FQ-CoDel
instead of FIFO. Really this is a time that is elastic for
most user’s, as they are typically doing something else
when this is happening anyway.

Where AQM is not helpful though is fixed download
requirements such as Netflix, so unfortunately for user’s
who require potentially multiple HD or 4K Netflix
streams, they will require a speed that will facilitate for
these base requirements. With this research though, it
is possible to see that regardless of the user’s traffic
requirements, latency sensitive application performance
will be greatly improved for FQ-CoDel. This in turn
means that for user’s who don’t necessarily require
multiple Netflix streams, and are willing for elastic traffic
to take a bit longer to download, that they will be able
to use an NBN bandwidth speed tier significantly lower
then some of the higher tiers offered, saving them money.

Not only is this the case for NBN speed tiers, but
also for user’s who are currently on a smaller available
bandwidth, or will not be able to get better speeds
due to their location. This also means that businesses
may be able to further scope in additional locations
when planning a particular business area, due to the
type of traffic they are implementing. Overall, AQM, in
particular FQ-CoDel, will be able to reduce the growing
need for user’s to have faster speeds, especially if their
main reason for justification in getting a faster speed
is due to latency sensitive applications such as online
games, reducing the requirement for most NBN speed
tiers, saving the home user from having to upgrade
and incur the additional costs required for these greater
speeds.

CAIA Technical Report 161107A

November 2016

ACKNOWLEDGMENTS

We would like to express our gratitude for all the
assistance provided for this project. In particular, the
assistance of Professor Grenville Armitage, our project
supervisor, who assisted us with forming our ideas, and
offering suggestions and general feedback at each stage
of the project. Additionally, we would like to thank
PhD Candidate Jonathan Kua for his variant and more
accurate way to emulate DASH traffic, as well as his
general assistance and advice throughput the project.
Lastly, we would like to express gratitude to Camberwell
High School for granting us the use of the four physical
computers that we used to run all of our experiments on
this semester.

REFERENCES

[1] I. R. G.1010, “End-user multimedia qos categories,” 29
November 2001. Available at https://www.itu.int/rec/T-REC-G.
1010-200111-I/en.

[2] W. Stevens, “Tcp slow start, congestion avoidance, fast retrans-
mit, and fast recovery algorithms,” January 1997. Available at
https://tools.ietf.org/html/rfc2001.

[3] T. Hoeiland-Joergensen, P. McKenney, J. Gettys, and E. Du-
mazet, “The flowqueue-codel packet scheduler and active queue
management algorithm,” March 2016. Available at https://tools.
ietf.org/html/draft-ietf-aqm-fq-codel-06.

[4] F. Baker and R. Panr, “On queueing, marking, and dropping.”
IETF Draft, April 2016. Available at https://tools.ietf.org/html/

rfc7806.
[S] G. White, “Active queue management algorithms for
docsis 3.0.” IETF Draft, April 2013. Available at

http://www.cablelabs.com/wp-content/uploads/2013/11/Active_
Queue_Management_Algorithms_DOCSIS_3_0.pdf.

[6] G. Armitage, “Technical reports,” October 2016. Available at
http://caia.swin.edu.au/reports/4.

[7] P. Natarajan, R. Pan, and F. Baker, “Pie: A lightweight con-
trol scheme to address the bufferbloat problem,” April 2016.
Available at https://tools.ietf.org/html/draft-ietf-aqm-pie-06.

[8] K. Nichols, V. Jacobson, A. Mcgregor, and J. Iyen-
gar, “Controlled delay active queue management.” IETF
Draft, March 2016. Available at https://tools.ietf.org/html/
draft-ietf-aqm-codel-03.

[9] S. Zander, “Teacup v1.0 - command reference,” No. 150529C,

(Melbourne, Australia), 29 May 2015. Available at http://caia.

swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf.

S. Zander and G. Armitage, “Teacup v1.0 - data analysis

functions,” Tech. Rep. 150529B, Centre for Advanced Internet

Architectures, Swinburne University of Technology, Melbourne,

Australia, 29 May 2015. Available at http://caia.swin.edu.au/

reports/150529B/CAIA-TR-150529B.pdf.

S. Zander and G. Armitage, “Caia testbed for teacup ex-

periments version 2, tech. rep., Centre for Advanced In-

ternet Architectures, Swinburne University of Technology,

2010. Available at http://caia.swin.edu.au/reports/150210C/

CAIA-TR-150210C.pdf.

(10]

(11]

page 23 of 32

https://www.itu.int/rec/T-REC-G.1010-200111-I/en
https://www.itu.int/rec/T-REC-G.1010-200111-I/en
https://tools.ietf.org/html/rfc2001
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06
https://tools.ietf.org/html/rfc7806
https://tools.ietf.org/html/rfc7806
http://www.cablelabs.com/wp-content/uploads/2013/11/Active_Queue_Management_Algorithms_DOCSIS_3_0.pdf
http://www.cablelabs.com/wp-content/uploads/2013/11/Active_Queue_Management_Algorithms_DOCSIS_3_0.pdf
http://caia.swin.edu.au/reports/4
https://tools.ietf.org/html/draft-ietf-aqm-pie-06
https://tools.ietf.org/html/draft-ietf-aqm-codel-03
https://tools.ietf.org/html/draft-ietf-aqm-codel-03
http://caia.swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf
http://caia.swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf
http://caia.swin.edu.au/reports/150529B/CAIA-TR-150529B.pdf
http://caia.swin.edu.au/reports/150529B/CAIA-TR-150529B.pdf
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf

[12] S. Zander and G. Armitage, “Teacup v1.0 - a sys-
tem for automated tcp testbed experiments,” Tech. Rep.
150529A, Centre for Advanced Internet Architectures, Swin-
burne University of Technology, Melbourne, Australia, 29 May
2015. Available at http://caia.swin.edu.au/reports/150529A/
CAIA-TR-150529A.pdf.

V. Gueant, “The tcp, udp and sctp network bandwidth measure-
ment tool.” Available at https://iperf.fr/.

“Dynamic adaptive streaming over http (mpeg-dash).” Available
at http://www.encoding.com/mpeg-dash/.

Profile.Id, “Australia household size.” Available at http://profile.
id.com.au/australia/household-size.

Telsyte, “Internet uninterrupted.” Available at
http://www.nbnco.com.au/content/dam/nbnco2/documents/
Internet%20Uninterrupted%20Australian%20Households %
200f%?20the %20Connected %20Future.pdf.

N. co ltd, “Nbn - australiaSs new broadband network,”
2016. Available at http://www.nbnco.com.au/sell-nbn-services/
products-services-pricing/Product-identifier/wholesale-speeds.
html.

N. co Itd, “How much speed do you need?.” Available
at http://www.nbnco.com.au/blog/connected-homes/
how-much-speed-do-you-need.html.

A. Angove, “Broadband usage guide: How much data do you
need?.” Available at https://www.whistleout.com.au/Broadband/
Guides/Broadband- Usage-Guide.

Wondernetwork, “Ping times between cities.” Available at https:
/Iwondernetwork.com/pings.

Optus, “How fast are optus’ internet speeds.” Available
at http://www.optus.com.au/shop/broadband/home-broadband/
network/internet-speed.

[13]
[14]
[15]

[16]

(171

(18]

[19]

[20]

[21]

APPENDIX

Appendix A. Figures 37 to 39 show the AQM Box-
plots for changing upload speed, fixed 25 Mbps down-
load speed, at 20ms RTT

70 T 2 came are
60 4
50
40

30

SPP RTT (ms)

20
10

O_

T T T T T T T T T
up 1mbit 2mbit 3mbit 4mbit 5mbit 6mbit 7mbit 8mbit 9mbit

Figure 37.

1000 pkt buffer PIE queue

CAIA Technical Report 161107A

RTT Boxplot for Demo 1 FPS Game traffic at fixed
25 Mbps download with changing upload speed, 20 ms RTTpase and

November 2016

® Game_Traffic

100 4
—~ 80 '
[%) [
£ i
~ 60 .
'_ '
o --—
o 40]
& L=
o 2 - S e s emEn e sEEe siEe

O —
T T T T T T T T T T
up Imbit 2mbit 3mbit 4mbit 5mbit 6mbit 7mbit 8mbit 9mbit 10mbit

Figure 38. RTT Boxplot for Demo 1 FPS Game traffic at fixed

25 Mbps download with changing upload speed, 20 ms RTTpase and
1000 pkt buffer CoDel queue

30 . Game_Traffic

25 o g
o~ e S i
£ 20
£ 15
o
o
o 10
wn

5 —

O —

T T T T T T T T T T
up Imbit 2mbit 3mbit 4mbit 5mbit 6mbit 7mbit 8mbit 9mbit 10mbit

Figure 39. RTT Boxplot for Demo 1 FPS Game traffic at fixed

25 Mbps download with changing upload speed, 20 ms RTTpase and
1000 pkt buffer FQ-CoDel queue

Appendix B. Figures 40 to 51 show RTT Boxplots
for Demo’s 1-6 FPS game traffic with full range of
bandwidth speeds for both FIFO and FQ-CoDel, at 20ms
RTTbase

Appendix C. TEACUP Configuration example for
demographic 1 shown on pages 27 to 32.

page 24 of 32

http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
https://iperf.fr/
http://www.encoding.com/mpeg-dash/
http://profile.id.com.au/australia/household-size
http://profile.id.com.au/australia/household-size
http://www.nbnco.com.au/content/dam/nbnco2/documents/Internet%20Uninterrupted%20Australian%20Households%20of%20the%20Connected%20Future.pdf
http://www.nbnco.com.au/content/dam/nbnco2/documents/Internet%20Uninterrupted%20Australian%20Households%20of%20the%20Connected%20Future.pdf
http://www.nbnco.com.au/content/dam/nbnco2/documents/Internet%20Uninterrupted%20Australian%20Households%20of%20the%20Connected%20Future.pdf
http://www.nbnco.com.au/sell-nbn-services/products-services-pricing/Product-identifier/wholesale-speeds.html
http://www.nbnco.com.au/sell-nbn-services/products-services-pricing/Product-identifier/wholesale-speeds.html
http://www.nbnco.com.au/sell-nbn-services/products-services-pricing/Product-identifier/wholesale-speeds.html
http://www.nbnco.com.au/blog/connected-homes/how-much-speed-do-you-need.html
http://www.nbnco.com.au/blog/connected-homes/how-much-speed-do-you-need.html
https://www.whistleout.com.au/Broadband/Guides/Broadband-Usage-Guide
https://www.whistleout.com.au/Broadband/Guides/Broadband-Usage-Guide
https://wondernetwork.com/pings
https://wondernetwork.com/pings
http://www.optus.com.au/shop/broadband/home-broadband/network/internet-speed
http://www.optus.com.au/shop/broadband/home-broadband/network/internet-speed

SPP RTT (ms)

Figure 40. RTT Boxplot for Demo 1 FPS Game traffic for FIFO at full range of down/up speed tiers, with a 20 ms RTTpase

SPP RTT (ms)
=
5
|

Figure 41. RTT Boxplot for Demo 1 FPS Game traffic for FQ-CoDel at full range of down/up speed tiers, with a 20 ms RTTpase

SPP RTT (ms)

SPP RTT (ms)

Figure 43. RTT Boxplot for Demo 2 FPS Game traffic for FQ-CoDel at full range of down/up speed tiers, with a 20 ms RTTpase

SPP RTT (ms)

HIH
I §

l 3
| B
1
i
i
]
]
|
|
I
|
i
i
| 1
i
|
i
i}
i
i
|
il
ik
]
i
i
1
i
i
1
i
[|
]
|
i
|

- _ .

SPP RTT (ms)

Figure 45. RTT Boxplot for Demo 3 FPS Game traffic for FQ-CoDel at full range of down/up speed tiers, with a 20 ms RTTpase

CAIA Technical Report 161107A November 2016 page 25 of 32

SPPRTT (ms)

SPP RTT (ms)

SPP RTT (ms)

SPP RTT (ms)

SPPRTT (ms)

SPP RTT (ms)

1500 o

1000

a

&

8
L

04

down

T T
8mbit 12mbit 12mbit 12mbit 12mbit 16mbit 20mbit 25mbit 25mbit 25mbit 25mbit 25mbit 25Mbit 25mbit 25mbit 25mbit 25mbit 25mbit 25mbit 30mbit 3EMbiL 40mbit 4Smbit SOmbit SOt SOmbit SOmbit SOmbit S5mbit GOmbit GSMbiL 7Ombit 75mbit BOmbit 8Smbit 90mbit 9SMbit 100mbit 100mbit 100Mbit 100Mbit 100mbit

Imbit imbit 2mbit Smbit 10mbit imbit lmbit imbit 2mbit 3mbit 4mbit Smbit 6mb 7mbit Smbit Ombit 10mbit 1lmbit 12mbit 2mbit 2mbit Imbit 3mbit imbit 2mbit Smbit 10mbit 20mbit 4mbit Ambit Ambit Ambit 4mbit A4mbit Ambit A4mbit 4mbit imbit 2mbit Smbit 10mbit 40mbit

Figure 46. RTT Boxplot for Demo 4 FPS Game traffic for FIFO at full range of down/up speed tiers, with a 20 ms RTTpase

HiH
HIH

Figure 47. RTT Boxplot for Demo 4 FPS Game traffic for FQ-CoDel at full range of down/up speed tiers, with a 20 ms RTTpase

1500

1000

@

g

3
L

°
L

Figure 48. RTT Boxplot for Demo 5 FPS Game traffic for FIFO at full range of down/up speed tiers, with a 20 ms RTTpase

| X

B el e oo e T 5 0 5 i i e e S e i N i 0 i e B e o

Figure 49. RTT Boxplot for Demo 5 FPS Game traffic for FQ-CoDel at full range of down/up speed tiers, with a 20 ms RTTpase

Figure 51. RTT Boxplot for Demo 6 FPS Game traffic for FQ-CoDel at full range of down/up speed tiers, with a 20 ms RTTpase

CAIA Technical Report 161107A November 2016 page 26 of 32

Simple experiment with two tcp flows with two hosts and one

router

#

$Id: config-scenariol.py,v acl50f598540 2015/05/21 06:45:42 sebastian $

import sys
import datetime from fabric.api
import env

#
Fabric config
#

User and password
env.user = 'root’
env.password = "testr00t’

Set shell used to execute commands
env.shell = ’/bin/sh -c’

#
Testbed config
#

Path to TEACUP scripts

TPCONF_script_path = ’/usr/home/test/TEACUP-1.0"
DO NOT remove the following line
sys.path.append (TPCONF_script_path)

Set debugging level (0 = no debugging info output)
TPCONF_debug_level = 0

Host 1ists
TPCONF_router = [7192.168.1.4",]
TPCONF_hosts = [7192.168.1.2", 7192.168.1.3",]

Map external IPs to internal IPs

TPCONF_host_internal_ip = {

7192.168.1.4": [’172.16.10.1", 7172.16.11.1"],
7192.168.1.2": ["172.16.10.2"7,
7192.168.1.3": ["172.16.11.2"],

#
Reboot configuration

#

#
Experiment settings
#

Maximum allowed time difference between machines in seconds
experiment will abort cause synchronisation problems
TPCONF_max_time_diff = 4

TPCONF_bc_ping_enable="1"

TPCONF_bc_ping_rate=1

TPCONF_bc_ping_address=’224.0.1.199

Experiment name prefix used if not set on the command line
The command line setting will overrule this config setting
now = datetime.datetime.today ()

TPCONF_test_id = now.strftime ("%Y$m%d-%H%M%S") + ’_scenariol’

CAIA Technical Report 161107A November 2016

page 27 of 32

Directory to store log files on remote host

TPCONF_remote_dir " /tmp/’

Number of runs for each setting
TPCONF_runs 2

#
#
#

List of router queues/pipes

S

Each entry is a tuple. The first value is the queue number and the second value
is a comma separated list of parameters (see routersetup.py:init_pipe()).
Queue numbers must be unique.

SN

Note that variable parameters must be either constants or or variable names
defined by the experimenter. Variables are evaluated during runtime. Variable
names must start with a ’V_’. Parameter names can only contain numbes, letter
(upper and lower case), underscores (_), and hypen/minus (-).

HH H R H

All variables must be defined in TPCONF_variable_ list (see below).

Note parameters must be configured appropriately for the router OS,
is no CoDel on FreeBSD;

e.g. there
otherwise the experiment will abort witn an error.

TPCONF_router_gueues [
Set same delay for every host

("1’, " source='172.16.10.0/24", dest='172.16.11.0/24", delay=V_delay,"
" loss=V_loss, rate=V_up_rate, queue_disc=V_aqgm, qgqueue_size=V_bsize "),
(2", " source='172.16.11.0/24", dest="172.16.10.0/24', delay=V_delay, "

n

loss=V_loss, rate=V_down_rate, queue_disc=V_agm, queue_size=V_pbsize "),

HH H

List of traffic generators

=

Each entry is a 3-tuple. the first value of the tuple must be a float and is the
time relative to the start of the experiment when tasks are excuted. If two tasks
have the same start time their start order is arbitrary. The second entry of the
tuple is the task number and must be a unique integer (used as ID for the process).
The last value of the tuple is a comma separated list of parameters (see the tasks
defined in trafficgens.py); the first parameter of this list must be the

task name.

C N

Client and server can be specified using the external/control IP addresses or host
names. Then the actual interface used is the _first_ internal address (according to
TPCONF_host_internal_ip). Alternativly, client and server can be specified as
internal addresses, which allows to use any internal interfaces configured.

HH H R H

traffic_total [
#HD Movie Downloads
#App Updates
#Cloud Services

60 second download starting at t=0. iPerf TCP DOWN
20 second update starting at t=5. iPerf TCP DOWN
40 second transfer starting at t=0. iPerf TCP UP

#General Web 1 second
#E-mail: 3 second burst
#0nline Gaming Pktgen
#Netflix SD 50 second

selected further down

#HD MOVIE
(’1.0",
duration=60
#APP UPDATES

n

)y

Il!,

"

CAIA Technical Report 161107A

start_iPerf,

burst every 15 seconds starting at t=5.
every 25 seconds starting at t=0. iPerf TCP UP.

quake 3 game traffic (4 player game) starting at t=15.
stream starting at t=10. Chunk sizes can be 1,2,4,6,10

client="192.168.1.3", server="192.168.1.2", port=

November 2016

iPerf TCP DOWN.

and 15s

5020,

page 28 of 32

(’5.0", 2", " start_iPerf, client="192.168.1.3", server='192.168.1.2", port=5025,

duration=20 "),

#CLOUD

(’0.0", "3", " start_iPerf, client="192.168.1.2", server='192.168.1.3", port=5030,
duration=40 "),

#WEB

(’5.0", "4, " start_iPerf, client="192.168.1.3", server='192.168.1.2', port=5035,
duration=1 "),

(’20.0", 5", " start_iPerf, client="192.168.1.3", server="192.168.1.2", port=5040,
duration=1 "),

(735.0", "6’, " start_iPerf, client="192.168.1.3", server='192.168.1.2", port=5045,
duration=1 "),

(’50.0", 77, " start_iPerf, client="192.168.1.3", server='192.168.1.2", port=5050,
duration=1 "),

#Email

(’0.0", 8", " start_iPerf, client="192.168.1.2", server='192.168.1.3", port=5055,
duration=3 "),

(’25.0", "9, " start_iPerf, client="192.168.1.2", server='192.168.1.3", port=5060,
duration=3 "),

("50.07, "10", " start_iPerf, client='192.168.1.2', server='192.168.1.3",
port=5065, duration=3 "),

#GAMING

(’15.0", 117, " start_fps_game, clients='192.168.1.2:10000",
server="192.168.1.3:27960’, game_type=’'g3’, duration=45 , noclients_game="4" "),
#Netflix SD

(’70.0", "127, " start_http_server, server='192.168.1.3’, port=’8000",
docroot=’/data/dash_dataset’ "),

(710.0", "13", " start_dash_streaming dashjs, client=’192.168.1.2",
dest="192.168.1.3", serv_port="8000’, chunk_size=V_chunksize, mpd=V_mpd, duration=50

THIS is the traffic generator setup we will use TPCONF_traffic _gens = traffic total
Traffic parameters

Duration in seconds of traffic
TPCONF_duration = 60

TCP congestion control algorithm used

Possible algos are: default, host<N>, newreno, cubic, cdg, hd, htcp, compound, vegas
Note that the algo support is 0OS specific, so must ensure the right O0S is booted

Windows: newreno (default), compound

FreeBSD: newreno (default), cubic, hd, htcp, cdg, vegas

Linux: newreno, cubic (default), htcp, vegas

Mac: newreno

If you specify ’default’ the default algorithm depending on the 0S will be used

If you specify ’“host<N>’ where <N> is an integer starting from 0 to then the

algorithm will be the N-th algorithm specified for the host in TPCONF_host_TCP_algos
(in case <N> is larger then the number of algorithms specified, it is set to 0
TPCONF_TCP_algos = [’newreno’, ’cubic’, 1]

Specify TCP congestion control algorithms used on each host
TPCONF_host_TCP_algos = {

Specify TCP parameters for each host and each TCP congestion control algorithm

Each parameter is of the form <sysctl name> = <value> where <value> can be a constant
or a V_ variable

TPCONF_host_TCP_algo_params = {

n

)

CAIA Technical Report 161107A November 2016 page 29 of 32

#
#
#
#
TPCONF_host_init_custom_cmds

}

Emulated delays in ms
TPCONF_delays = [10, 75, 125]

Emulated loss rates
TPCONF_loss_rates = [0]

Specify arbitray commands that are executed on a host at the end of the host
intialisation (after general host setup,
executed in the shell as written after any V_ variables have been replaced.
LIMITATION: only one V_ variable per command

= {

Emulated bandwidths (downstream, upstream)

TPCONF_bandwidths = [

(" 8mbit’, ’lmbit’),
"12mbit’, "1lmbit’),
"12mbit’, '2mbit’),
"12mbit’, ’5mbit’),
"12mbit’, ’10mbit’),
l16mbit’, ’lmbit’)
20mbit’, ’Imbit’)
25mbit’, ’/Imbit’)
25mbit’, ’'2mbit’)
25mbit’, ’'3mbit’),
25mbit’, ’"4dmbit’),

)
)
)
)

’
I4

’
4

e

I4
’

+

25mbit’, ’5mbit’
25mbit’, ’émbit’
"25mbit’, ’7mbit’

’
4
4
’
! 4
! ’
4
"25mbit’, ’8mbit’
"25mbit’, ’9mbit’),

"25mbit’, ’10mbit’),
"25mbit’, ‘1lmbit’),
"25mbit’, ’12mbit’),
4

4

4

30mbit’, '1lmbit’

4

30mbit’, '2mbit’),
35mbit’, ‘1mbit’),
r

)
)
)
35mbit’, ’2mbit’),
"40mbit’, ’lmbit’),
)
)
)
)
)

e

"40mbit’, ’3mbit’
"45mbit’, ’1lmbit’
"45mbit’, ’3mbit’
"50mbit’, ‘I1lmbit’

r
4
4
’
"50mbit’, ’2mbit’),
"50mbit’, ’5mbit’),
"50mbit’, ’10mbit’),
"50mbit’, ’20mbit’),
"55mbit’, ’lmbit’)
"55mbit’, ’3mbit’)
" 60mbit’, ’lmbit’)
7 60mbit’, ’4mbit’)
65mbit’, ’lmbit’)
65mbit’, ’4mbit’),
70mbit’, ’lmbit’),
)
)
)
)
)
)

I4
4

’
4

-+

4
’

4

"70mbit’, ’‘4mbit’

"75mbit’, ’1lmbit’

"75mbit’, ’‘4mbit’

"80mbit’, ’1lmbit’

.

4
4
r
4
"80mbit’, ’4mbit’
’85mbit’, ’1lmbit’

4

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

I4

CAIA Technical Report 161107A

November 2016

ecn and tcp setup). The commands are

page 30 of 32

"85mbit’, ’4mbit’)
"90mbit’, "1lmbit’),
90mbit’, ’4mbit’)
95mbit’, ’lmbit’)
95mbit’, ’4mbit’),
100mbit’, ’1lmbit’),
"100mbit’, '2mbit’),
"100mbit’, ’'Smbit’),
"100mbit’, ’10mbit’),
7100mbit’, ’40mbit’),

’
’
’
’

(
(
(
(
(
(
(
(
(
(

AQM

Linux: FIFO (mapped to pFIFO), pFIFO, bFIFO, fq CoDel, CoDel, PIE, red,
(see tc man page for full 1list)

FreeBSD: FIFO, red

TPCONF_agms = [/FIFO’]

Buffer size

If router is Linux this is mostly in packets/slots, but it depends on AQM

(e.g. for bFIFO it’s bytes)

If router is FreeBSD this would be in slots by default, but we can specify byte sizes
(e.g. we can specify 4Kbytes)

TPCONF_buffer sizes = [500]

Video chunk size and MPD pair
TPCONF_chunksize_mpd = [
(’1’,’BigBuckBunny_Ils.mpd’),
(2" ,"BigBuckBunny_2s.mpd’),

(74’,’BigBuckBunny_4s.mpd’),
(76’,’BigBuckBunny_6s.mpd’),
(/10’,’BigBuckBunny_10s.mpd’),
(715’,’BigBuckBunny_15s.mpd’),
]
#
List of all parameters that can be varied and default values
#
The key of each item is the identifier that can be used in TPCONF_vary_parameters
(see below).
The value of each item is a 4-tuple. First, a list of variable names.
Second, a list of short names uses for the file names.
For each parameter varied a string ’/_<short_name>_<value>’ is appended to the log
file names (appended to chosen prefix). Note, short names should only be letters
from a-z or A-Z. Do not use underscores or hyphens!
Third, the list of parameters values. If there is more than one variable this must
be a list of tuples, each tuple having the same number of items as teh number of
variables. Fourth, an optional dictionary with additional variables, where the keys
are the variable names and the values are the variable values.
TPCONF_parameter_list = {
Vary name V_ variable file name values extra vars
"delays’ : (["V_delay’], ["del”], TPCONF_delays, 41D
’loss’ g (["V_1loss’], ["1loss’], TPCONF_loss_rates, {1,
"tcpalgos’ : (["V_tcp_cc_algo’], ["tcp’1, TPCONF_TCP_algos, 41) o
"agms’ : ([’'V_aagm’1], ["agm'], TPCONF_aqgms, {1,
"bsizes’ : (["V_bsize’], ["bs’], TPCONF_buffer_ sizes, {1,
"runs’ : (["V_runs’], ["run’], range (TPCONF_runs), {}),
"bandwidths’ : ([’V_down_rate’, ’'V_up_rate’], [’'down’, ’'up’], TPCONF_bandwidths, {}),
"chunksize_mpd’ : ([’V_chunksize’,’V_mpd’], [’chunksize’,’mpd’], TPCONF_chunksize_mpd,

{tH,

CAIA Technical Report 161107A November 2016 page 31 of 32

Default setting for variables (used for variables if not varied)

parameter value used if the variable is not varied.

TPCONF_variable_defaults = {

V_ variable value
’V_duration’ g TPCONF_duration,
'V_delay’ : TPCONF_delays|[0],
'V_loss’ : TPCONF_loss_rates[0],
'V_tcp_cc_algo’ : TPCONF_TCP_algos|[0],
'V_down_rate’ 8 TPCONF_bandwidths[0] [0],
"V_up_rate’ : TPCONF_bandwidths[0] [11],
'V_aqm’ S TPCONF_agms[0],
'V_bsize’ : TPCONF_buffer_sizes[0],
’V_chunksize’ : TPCONF_chunksize_mpd[0] [O],
''V_mpd’ : TPCONF_chunksize_mpd[0] [1],

Specify the parameters we vary through all values, all others will be fixed

according to TPCONF_variable_ defaults

TPCONF_vary_parameters = ["agms’ , ’'bsizes’ , ’‘chunksize_mpd’, ’bandwidths’
runs’, 1]

The key of each item is the parameter name. The value of each item is the default

"delays’, '

CAIA Technical Report 161107A November 2016

page 32 of 32

	Introduction
	Background
	Apparent Need for Speed
	Transmission Control Protocol
	Active Queue Management
	TEACUP

	Demographics
	Australian Household Background
	Categories of speed and latency requirements
	Demographics

	Methodology
	Testbed
	Configuration

	Results
	Traffic Types
	High RTT with FIFO: flooded downstream
	High RTT with FIFO: flooded downstream and upstream
	Low RTT with AQM: flooded downstream and upstream
	Demographic Comparisons
	AQM penalises throughput to/from distant servers

	Real world implications of AQM
	Conclusions
	References
	Appendix

