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Abstract—In previous work we developed the Ryu Ac-
tion Node (RAN), a DIFFUSE Action Node capable of
deploying prioritisation within a Software Defined Net-
working (SDN) environment. We now extend the previous
RAN implementation, separating it from the Ryu Simple
Switch application which limited its capabilities and future
development. To improve SDN support within DIFFUSE,
additional functionality was added to the RAN to enable
deployment of DIFFUSE messages with multiple flow rules
and increased OpenFlow version support. Our tests verify
that the RAN functions correctly without affecting other
concurrently running Northbound Applications.

I. INTRODUCTION

Software Defined Networking (SDN) [1] is a frame-
work used to abstract the functionality of lower-level
computer networking into layers. Abstraction introduces
flexibility in managing and designing for an agile net-
work, as restrictions on low-level access to switch-
ing/routing hardware is lifted and programming the
hardware can be achieved through well-defined APIs.
The network is split into three layers:
Application Plane - Systems that program the network
Control Plane - Controllers which manage the network
Data Plane - SDN switches which forward the packets
In the SDN network the Control Plane and Data Plane are
separated. A centralised controller manages the network
while the SDN hardware implements the switching/rout-
ing.

A commonly used standard for communication be-
tween these two layers is OpenFlow [2, 3], a standardised
communications protocol bridging the Control plane and
Data plane together.

Northbound applications manage the network through
a centralised controller via well-defined APIs. This al-
lows the network to be more dynamic and flexible in
responding to changing network conditions.

Ryu [4] is a popular centralised SDN controller with
access to OpenFlow APIs. It also includes a Simple
Switch and Router Northbound Applications.

DIFFUSE (Distributed Firewall and Flow-shaper Us-
ing Statistical Evidence) [5] is a network prioritisation
scheme constructed around ML-based techniques. It seg-
regates network traffic by 5-tuple identifier, classifies
flow types, and subsequently deploys prioritisation [6].

DIFFUSE has two main modules making up its archi-
tecture; the Classifier Node (CN) and Action Node (AN).
The CN classifies live traffic, while the AN subsequently
implements network traffic prioritisation, DIFFUSE was
originally supported on FreeBSD [5] and OpenWRT [7].

The Ryu Action Node (RAN) [6] is a standalone
Northbound Application based on the original DIFFUSE
AN. The current RAN implementation is an extension
of the Ryu Simple Switch application providing both
AN capabilities and switching functionality. It listens for
DIFFUSE Remote Actions Protocol (RAP) [5] messages,
and deploys prioritisation in the SDN Flow Table.

The current RAN implementation has a number of
limitations.

1) Restricted compatibility with other applications
2) Unsupported Multi-Message parsing capabilities
3) Limited OpenFlow protocol version support

We have rewritten the RAN as a standalone Northbound
Application1. Support for the DIFFUSE Multi-Message
has been added, as has support for an increased number
of OpenFlow protocol versions.

We ran a variety of tests to verify the functionality
of the RAN remained intact following the separation of
the RAN and Simple Switch application. The RAN was
tested with the REST Router and Simple Switch appli-
cations to verify it is capable of running as a standalone
RYU application. We tested the Multi-Message and
Multi-Version features to confirm correct functionality.

This report is organised as follows. Section II outlines
the improvements made to the RAN application. Section
III describes our testing schedule. Section IV outlines our
test and verification results.

1Available at http://caia.swin.edu.au/urp/diffuse/sdn
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II. RAN IMPROVEMENTS

Improvements were made to the RAN to enhance the
compatibility between the DIFFUSE and SDN ecosys-
tems. These improvements aim to facilitate extensibility
for future RAN development and in supporting new
OpenFlow revisions.

Version 1.0 of the RAN was tightly integrated with
Ryu’s Simple Switch application, enabling both network
switching and prioritisation within the same application.
For this version, the RAN was separated from the Simple
Switch application to allow for concurrent use with other
Northbound Applications.

Version 1.01 of the RAN can be downloaded at
http://caia.swin.edu.au/urp/diffuse/sdn.

Support was also added for parallel use with different
OpenFlow version SDN switches, increasing the range
of compatible SDN devices for the RAN. The final
improvement involved adding support for the Multi-
Message feature of DIFFUSE, enabling the parsing and
processing of packets containing multiple DIFFUSE
message flow rules.

A. Northbound Support

Northbound Applications are high level programs that
program the Control plane and Data plane through an
SDN controller (using an API such as Ryu) in order
to provide the intelligence of the SDN system. Multiple
Northbound Applications can be used concurrently to
control different aspects of an SDN system.

Following our modifications, the RAN is now a stan-
dalone Ryu Northbound Application, by designing the
RAN to be an independent and unbounded application,
a greater range of Ryu Northbound Routing Applications
can be used concurrently.

The RAN’s Simple Switch integration was removed
such that its sole purpose is now to perform DIFFUSE
message parsing and priority implementation. This al-
lows us to focus on developing the prioritisation and
statistics features of the RAN without being constricted
by the structure of the Simple Switch application.

Although the RAN is now separated from the Sim-
ple Switch, slight modifications to other Northbound
Applications may be required to allow them to run
concurrently with the RAN. The RAN is programmed to
implement its functionality using 5-tuple flow rules on
the SDN switch Flow Table 0. This requires deployment
of routing/switching flow rules in the subsequent SDN
switch Flow Table 1.

The use of sequential Flow Tables allows network
traffic to first be prioritised in the SDN switch Flow Table

0 before being routed/switched by rules installed in Flow
Table 1 by another Northbound Application. If both the
RAN and other Northbound Routing Applications were
to run on the same table, conflicting flow rules may result
in compatibility issues.

B. Multi-Message Support

DIFFUSE employs a variety of methods to deliver
DIFFUSE messages containing 5-tuple and class in-
formation (generated by the Classifier Node) to the
RAN. Previously unsupported was the feature to decode
multiple information element sets within a single DIF-
FUSE message and parse the containing the 5-tuple class
configuration.

The RAN was upgraded to handle DIFFUSE messages
containing a single template with multiple information
element sets including the classified class. Each infor-
mation element set contains 5-tuple information that is
parsed by the RAN using the configuration file and will
configure the SDN Flow Table as separate flow rules.

C. Multi-Version Support

The RAN application may also encounter a wide of
range of OpenFlow SDN switches running different ver-
sions of the OpenFlow protocol. Multi-Version support
allows for the use of compatible OpenFlow switches
with different versions, as well as dealing with unsup-
ported versions. This support allows the introduction of
new switches in a running RAN implementation with
increased stability and reliability.

If an RAN parses a DIFFUSE message the output flow
rules are implemented onto all supported and connected
SDN switches. SDN switches running an unsupported
version the OpenFlow protocol will not have flow rules
installed but the SDN switch can still be controlled by
other supported Northbound Applications.

The implementation of Multi-Version support also
facilitates additional future OpenFlow versions through
the use of a more modular programming structure where
new OpenFlow versions can be easily added.

III. RAN TESTS

Following the modifications made to the RAN, it is
necessary to confirm that the application functions as
expected under a variety of test conditions. The RAN
relies on other Northbound Applications to perform the
routing/switching functionality in an SDN network, our
tests ensure that the RAN does not affect the function-
ality of these applications, thus confirming compatibility
between them.
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This section describes the set up for each test. All
RAN tests use the same conf.ini file (see Figure 1)
configuration for prioritising flows. Specific prioritisation
techniques such as Metering and DSCP [6] were not
deployed as the RAN’s functionality was being tested
rather than the SDN switch’s prioritisation ability. These
tests are to verify the RAN’s capability to create correct
flow rules from 5-tuple information, and consequently
confirmed by checking the implemented SDN flow rules
and gathered statiastics for matching network traffic.

The tests were run on a physical SDN switch (Pica8
P-3295) running PicOS 2.6.3 and connected to a Ryu
controller running ryu-manager v4.3. Two hosts running
Debian 8.2 were also connected to the SDN switch to
generate traffic and verify results.

Tests requiring more than one SDN switch, multiple
subnets, or multiple versions, were run on a virtual test
bed. The virtual test bed was used in place of the physical
test bed as it made topology configuration easier and
reduced errors due to poor network configuration. The
Multi-Version support test was also run on the virtual
test bed due to the virtual test bed supporting a greater
number of OpenFlow protocol versions.

The virtual test bed consists of Mininet 2.2.1rc1
running on an Ubuntu 16.04 machine. Mininet is used to
virtualise the controller, SDN switch and host machines.
The virtual controller utilises ryu-manager v4.0, while
the SDN switch ran Open vSwitch v2.5.0. Two hosts
were also virtualised as separate running instances of
the Ubuntu 16.04 machine.

DIFFUSE messages were sent to both Ryu controllers
using the Fake Classifier Node (FCN) [8] on a separate
Ubuntu 16.04 machine.

[default]
queue = 0

[myclass0]
queue = 0

[myclass1]
queue = 1

[myclass2]
queue = 2

Figure 1. RAN Configuration Settings

A. Single Simple Switch

The aim of this test is to verify the RAN’s function-
ality when running concurrently with the Simple Switch
application, and checks that the Simple Switch applica-

tion’s functionality remains unaffected when paired with
the RAN.

The network configuration for this test (see Figure
2 and Table I) consists of two hosts connected to a
single SDN switch, programmed by the Ryu controller.
In this configuration the Ryu controller runs the RAN
and Simple Switch (OpenFlow v1.3) applications, whilst
an FCN sends DIFFUSE messages to the RAN.

The Simple Switch application was responsible for
detecting flows and programming the SDN switch Flow
Table 0 to forward traffic. The RAN was responsible
for receiving DIFFUSE messages from an FCN and
deploying prioritisation rules to the SDN switch Flow
Table 1.

The RAN’s functionality is verified by sending four
different DIFFUSE messages to the RAN as per Table
II and inspecting the SDN switch Flow Table 0 for
correctness. Initially there are two default rules on the
SDN switch Table 0. The RAN’s functionality is verified
if four more flow rules are found to be added onto the
SDN switch Table 0 with 5-tuple and class configurations
matching our DIFFUSE messages from Table II.

To verify that the Simple Switch application’s func-
tionality remains unchanged, the SDN switch Flow Table
1 is checked to contain the instantiated flow rules that
allow traffic flow. Live traffic is sent through the switch
so statistics can be gathered on the SDN switch Flow
Tables 0 and 1 to further verify the Simple Switch’s
compatibility with the RAN. The live traffic is sent
between the hosts using iPerf (UDP and TCP) and ping.

The SDN switch’s statistics initially start at zero. The
functionality of the SDN switch application is verified if
Host 1 can connect to Host 2 which can be seen when
the statistics (Number of Packets) by the forwarding
flow rules increases, demonstrating that network traffic
is being forwarded between the two hosts.

 FCN

 RYU

192.168.2.2 192.168.2.5

192.168.2.1

Control Layer

Data Layer

Figure 2. Physical Testbed Single Simple Switch
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Table I
SINGLE SIMPLE SWITCH NETWORK CONFIG

IP Route MAC Address
H1 192.168.2.2/24 192.168.2.1 08:00:27:93:18:de
H2 192.168.2.5/24 192.168.2.1 08:00:27:7a:00:e3

Table II
SINGLE SIMPLE SWITCH FCN COMMANDS

SRC IP DST IP DST PORT PROTO CLASS
192.168.2.2 192.168.2.5 5001 UDP myclass0
192.168.2.2 192.168.2.5 - TCP myclass1
192.168.2.5 192.168.2.2 - TCP myclass1
192.168.2.2 192.168.2.5 - ICMP myclass2

B. Multiple Connecting Switches

This test confirms the same functionality as in Section
III-A except with a more complex networking scenario.
Here we confirm that both the RAN and Simple Switch
applications are able to function correctly in a multiple
switch environment. The network configuration is shown
in Figure 3 and Table III.

As multiple switches are required, this test is executed
in the Mininet test environment. As with the test from
Section III-A, the Simple Switch application detects
flows and programs traffic forwarding on the SDN switch
Flow Table 1 on both switches. Similarly, the RAN
deploys prioritisation rules from the FCN to SDN Flow
Table 0 on both switches.

The verification for the RAN’s functionality in this
test is similar to Section III-A, however Flow Table 0
on both SDN switches needs to be inspected to confirm
the RAN implemented flow rules have been correctly set
up. Four DIFFUSE messages as per Table IV are sent
to the RAN to be parsed. The RAN’s functionality in
a multiple connecting switch scenario is verified if four
more flow rules matching Table IV are found to have
been added to Flow Table 0 on both SDN switches.

Just as in Section III-A, checking that the Simple
Switch application’s functionality still remains unaf-
fected when running multiple switches is important. The
SDN switches’ statistics are reset to zero. Live network
traffic is sent from Host 1 to Host 2 through the two SDN
switches. The Simple Switch application is verified when
Host 1 is able connect to Host 2. This is checked through
Flow Table 1 on both SDN switches for increasing
packet/byte counts in instantiated forwarding rules.

 FCN

 RYU

10.0.0.10 10.0.0.20

H1
H2

Control Layer

Data Layer

Figure 3. Virtual Testbed Two Connected Simple Switches

Table III
MULTIPLE CONNECTING SWITCHES NETWORK CONFIG

IP Route MAC Address
H1 10.0.0.10/24 10.0.0.1 ee:7b:c2:4a:d5:b9
H2 10.0.0.20/24 10.0.0.1 3e:2d:c4:e3:59:2d

Table IV
MULTIPLE CONNECTING SWITCHES FCN COMMANDS

SRC IP DST IP DST PORT PROTO CLASS
10.0.0.10 10.0.0.20 5001 UDP myclass0
10.0.0.10 10.0.0.20 - TCP myclass1
10.0.0.20 10.0.0.10 - TCP myclass1
10.0.0.10 10.0.0.20 - ICMP myclass2

C. Single Router Same Subnet

This test aims to verify the RAN’s functionality when
running the RAN concurrently with the REST Router
application and to ensure the REST Router application’s
functionality remains unaffected.

The network configuration for this test (see Figure 4
and Table V) consists of two hosts connected to a single
SDN switch and programmed by the Ryu controller.
The Ryu controller runs the RAN and REST Router
applications, while an FCN sent DIFFUSE messages to
the RAN.

As only one SDN switch is required, this test is
executed on the physical testbed. Similar to Section
III-A, the RAN deploys prioritisation rules from the FCN
to SDN Flow Table 0 on both switches.

The virtual router instantiated by the REST Router
application detects and deploys routing flow rules on the
SDN switch Table 1 for the subnet 192.168.2.1/24.
In this SDN configuration the two hosts are set in
the same subnet with IP address 192.168.2.2 and
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192.168.2.5 respectively. This results in host com-
munications through the SDN switch being logically the
same as in a Layer 2 network.

The expected outcomes of this test should match those
in Section III-A. We expect to see all flows specified
by the FCN programmed into Flow Table 0 of the
SDN Switch by the RAN. Similarly, we expect that
traffic routing rules be installed as expected by the
Router application into Flow Table 1, and that the switch
correctly routes traffic between the two end hosts. All
tests are further verified through the collection of packet
statistics for individual rules programmed into both Flow
Tables 0 and 1.

 FCN

 RYU

192.168.2.2 192.168.2.5

192.168.2.1

Control Layer

Data Layer

Figure 4. Physical Testbed Single Router Same Subnet

Table V
SINGLE ROUTER SAME SUBNET NETWORK CONFIG

IP Route MAC Address
H1 192.168.2.2/24 192.168.2.1 08:00:27:39:e5:6d
H2 192.168.2.5/24 192.168.2.1 08:00:27:7a:00:e3

Table VI
SINGLE ROUTER SAME SUBNET FCN COMMANDS

SRC IP DST IP DST PORT PROTO CLASS
- - 5001 UDP myclass0
- - 5001 TCP myclass1

D. Single Router Different Subnets

This test expands the verification tests from Section
III-C by moving the two hosts to different subnets,
thereby testing the actual routing component of the
REST Router applications in conjunction with the RAN.
A single SDN switch is deployed with Flow Tables 0
and 1 programmed as per Section III-C.

The actual network configuration is set up as per
Figure 5 and Table VII, the same outcomes are expected
as from the previous test.

 FCN

 RYU

10.0.1.20 10.0.2.30

10.0.1.1 10.0.2.1

Control Layer

Data Layer

Figure 5. Virtual Testbed Single Router Different Subnet

Table VII
SINGLE ROUTER DIFFERENT SUBNETS NETWORK CONFIG

IP Route MAC Address
H1 10.0.0.10/24 10.0.1.1 86:14:99:18:c4:de
H2 10.0.1.20/24 10.0.2.1 56:bd:0c:f5:5f:22

Table VIII
SINGLE ROUTER DIFFERENT SUBNETS FCN COMMANDS

SRC IP DST IP DST PORT PROTO CLASS
- - 5001 UDP myclass0
- 10.0.0.10 5001 TCP myclass1
- 10.0.1.20 5001 TCP myclass1
- 10.0.1.20 - ICMP myclass2

E. Multiple Routers Different Subnets

This test achieves the same purpose as the test from
Section III-B while using the REST Router Northbound
application. This test is designed to confirm that both
the RAN and the REST Router applications continue to
correctly program the SDN switches in a multiple switch
environment. The network configuration for this set up
is shown in Figure 6 and Table IX.

In this case, the Router Application continues to
operate as per the configurations from the tests in Section
III-C and Section III-D. Forwarding rules are expected to
be appropriately programmed into Flow Table 1 on both
SDN switches. As with the test from Section III-B, we
expect the RAN to program prioritisation rules in Flow
Table 0 on both switches as per Table X).

Verification is done as per the test in Section III-B,
confirming all expected rules are being programmed
into all tables on both switches. Further verification is
achieved by confirming that traffic flow still functions for
flows between the two tests hosts, while also confirming
that traffic is being appropriately counted by flow rules
programmed into both SDN Flow Tables.
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 FCN

 RYU

10.0.0.10 10.0.1.20

10.0.0.1 10.0.1.1

192.168.1.20 192.168.1.30

Control Layer

Data Layer

Figure 6. Virtual Testbed Multiple Routers Different Subnets

Table IX
MULTIPLE ROUTERS DIFFERENT SUBNETS NETWORK CONFIG

IP Route MAC Address
H1 10.0.0.10/24 10.0.0.1 f2:e8:9e:73:dd:70
H2 10.0.1.20/24 10.0.1.1 3a:8d:8c:0c:59:06
S1 10.0.0.1 6e:d3:4a:4a:1d:2f

192.168.1.20 192.168.1.30 ae:22:ea:74:5b:1b
S2 10.0.1.1 a2:3a:c3:f9:bc:14

192.168.1.30 192.168.1.20 0e:15:d3:67:4f:ad

Table X
MULTIPLE ROUTERS DIFFERENT SUBNETS FCN COMMANDS

SRC IP DST IP DST PORT PROTO CLASS
10.0.0.10 10.0.1.20 5001 UDP myclass0
10.0.1.20 10.0.0.10 - TCP myclass1
10.0.0.10 10.0.1.20 - TCP myclass1

- - ICMP myclass2

F. Multi-Messages Support

The aim of this test is to verify the RAN’s new
feature to correctly parse and implement multiple 5-tuple
flow rules that are contained within a single DIFFUSE
message.

The network configuration for this experiment in-
volves the Ryu controller running the RAN application,
programming a single SDN switch and a custom Multi-
Message DIFFUSE packet sent to the RAN for imple-
mentation.

In order to test Multi-Message Support, a custom
Multi-Message DIFFUSE packet was created and em-
bedded with multiple SDN switch Flow Table rules.

No traffic was generated through the switch, as we
are only confirming that all updates contained within
a Multi-Message DIFFUSE packet are correctly parsed
and implemented by the RAN into the SDN switch Flow

Table. Previous tests confirm that the switch behaves
correctly with live traffic.

The structure of the custom Multi-Message DIFFUSE
packet includes the same Header and Template structure
as found in the single DIFFUSE message [5]. In addition,
three sets of information elements are appended to this
packet containing the 5-tuple parameters as per Table XI.

To confirm that the Multi-Message is supported, the
custom Multi-Message DIFFUSE packet is sent to the
RAN. The SDN switch Flow Table 0 is checked for the
three installed rules with correct 5-tuple match parame-
ters and class configurations. If the rules are found on
the table we have validated that Multi-Message support
is functioning as expected.

 RYU

SDN
Switch

Custom RAP
Packet

Control Layer

Figure 7. Multi-Message Testbed

Table XI
MULTI-MESSAGE FCN

SRC IP DST IP SRC PORT DST PORT PROTO CLASS

10.0.0.1 10.0.0.2 80 8000 UDP myclass1

192.168.1.1 192.168.1.2 22 30000 TCP default

130.156.213.64 123.246.18.54 - - TCP myclass5

G. Multi-Version Support

The aim of this test is to ensure that RAN can handle
DIFFUSE message implementations when connected to
SDN switches running a variety of OpenFlow protocol
versions.

The network configuration (see Figure 8) for this test
contains three SDN switches running OpenFlow v1.0,
v1.3 and v1.4 respectively. Each switch is controlled by
a single Ryu controller running the RAN application.
The SDN switch running OpenFlow v1.0 represents an
unsupported switch, while the SDN switches running
Open Flow v1.3 and v1.4 are supported by the RAN.
An FCN was used to send DIFFUSE messages to the
RAN for implementation.
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Four different DIFFUSE messages were sent to the
RAN as per Table XII. The 5-tuple of the FCN messages
varies between messages.

The RAN installation of the parsed DIFFUSE mes-
sages are checked in the SDN switch Flow Tables. The
test is verified if the rules are correctly implemented in
the supported switches, and no rules are deployed to the
OpenFlow v1.0 switch.

 RYU

OpenFlow v1.0 OpenFlow v1.3 OpenFlow v1.4

 RYU

 FCN

Control Layer

Figure 8. Multi-Version Testbed

Table XII
MULTI-VERSION FCN COMMANDS

SRC IP DST IP DST PORT PROTOCOL CLASS
- 10.0.0.20 5001 UDP myclass0
- 10.0.0.10 5001 TCP myclass1
- 10.0.0.20 5001 TCP myclass1
- 10.0.0.20 - ICMP myclass0

IV. RESULTS

In this section we outline the results seen when
running the experiments to verify the functionality of
the modifications made to the RAN.

A. Single Simple Switch

The aim of this test is to verify the RAN’s function-
ality when running concurrently with the Simple Switch
application, and checks if the Simple Switch application
remains unaffected when paired with the RAN.

Table XIII lists the contents of Flow Table 0 and
1 on the SDN switch following the experiment. We
can visually confirm that the rules match the DIFFUSE
messages from Table II while the corresponding actions
match the configuration file from Figure 1. The table
also lists the packet and byte count of traffic matching
each rule as seen by the switch.

Based on the throughput traffic generated by iPerf and
ping, we can confirm that the rules in Flow Table 0 are
correctly matching flows as they pass through the switch.

Similar results are seen in Flow Table 1 as pro-
grammed by the Simple Switch application. In this
case appropriate forwarding rules are programmed and
packet/byte counts match the generated traffic.

This confirms not only that both applications are func-
tioning as expected, but that they are able to do so when
run concurrently in a single SDN switch deployment.

B. Multiple Connecting Switches

Expanding upon Section IV-A, the aim of this test
seeks to determine the RANs functionality when running
the RAN concurrently with the Simple Switch applica-
tion across two connecting SDN switches and checks
if the Simple Switch applications functionality remains
unaffected.

Table XIV lists Flow Tables 0 and 1 of both switches
following our experiment. We can visually confirm that
the rules match the DIFFUSE messages from Table IV
while the corresponding actions match the configuration
file from Figure 1. The table also lists the packet and
byte count of traffic matching each rule as seen by the
switches.

Throughput traffic from iPerf and ping can be used
again to confirm the rules in Flow Table 0 for both
switches are correctly matched as they pass through the
SDN switches.

Similar results also occur on Flow Tables 1 on both
switches as the forwarding rules programmed by the
Simple Switch application and packet/byte counts match
the throughput traffic.

This confirms both the RAN and Simple Switch appli-
cation are compatible with multiple concurrently running
SDN switches and also verifies they are functioning as
expected.

C. Single Router Same Subnet

This test verifies the RAN’s functionality when run-
ning concurrently with the REST Router application and
ensures that the REST Router’s functionality remains
unaffected.

The contents of Flow Tables 0 and 1 on the Switch
after the experiment are displayed in Table XV. We can
visually confirm that rules from the DIFFUSE messages
are correctly formed as are appropriate rules installed by
the REST Router. In both cases, rules are installed in the
correct Flow Table.

Proper network functionality is confirmed through
successful transfer of test flows and proper packet/byte
counts on the associated rules in the Flow Tables.
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This confirms that both applications function as ex-
pected, and are able to do so when run concurrently on
flows within a single subnet on a single SDN Switch
deployment.

D. Single Router Different Subnet

This test expands from Section IV-C by increasing the
subnets used, thereby testing the routing component of
the REST Router applications in addition to the previous
verifications.

As in Section IV-C, Table XVI lists the RAN deployed
flow rules in Flow Table 0 and the REST Router de-
ployed rules in Flow Table 1.

Flow Tables 0 and 1 in Table XVI also confirm proper
network functionality as packet/byte counts increase for
matched forwarding rules during network test traffic.

The routing ability of the REST Router application
remains unaffected when it runs concurrently with the
RAN. Both applications are verified to run correctly in
a multi-subnet single SDN Switch environment.

E. Multi Router Different Subnet

Continuing from Section IV-D, additional complexity
is added to the network configuration to verify the REST
Router application’s compatibility with the RAN in a
multiple SDN switch scenario. This further validates
the functionality of the RAN and REST Router when
running concurrently.

Similar to Section IV-C and Section IV-D, Table XVII
lists implemented DIFFUSE messages in Flow Table 0
and REST Router forwarding rules in Flow Table 1 in
both switches. We visually confirm the RAN’s and REST
Router rule deployment across both switches.

Network functionality is also verified through inspect-
ing network traffic statistics for corresponding flow rules
in Flow Table 0 and 1 as the packet/byte counts increase
during live traffic flow.

This confirms that both the RAN and REST Router
applications function correctly together in a multiple
SDN switches environment.

F. Multi-Message Support

The aim of this test is to verify the RANs new
feature to correctly parse and implement multiple 5-tuple
flow rules that are contained within a single DIFFUSE
message.

The custom DIFFUSE message was sent to the RAN
for parsing. The output SDN switch Flow Table 0 (see
Table XIX) was inspected and listed the three correctly
implemented rules with 5-tuple matching Table XI, in-
cluding action configurations as per Figure 1.

This confirms the RAN is able to parse multiple rules
embedded in a single DIFFUSE message and is able to
deploy the rules to the SDN switch correctly.

G. Multi-Version Support
The aim of this test is to ensure the RAN can imple-

ment DIFFUSE messages to the correct SDN switches in
a network where a variety of SDN switches are running
different OpenFlow protocol versions.

FCN messages (as per Table XII) were sent to the
RAN. The SDN switches Flow Table 0 (see Table XX)
lists the implemented flow rules.

Flow Table 0 verifies that the DIFFUSE messages
have been parsed and implemented correctly as the two
switches running OpenFlow v1.3 and v1.4 contained
the expected flow rules and the SDN Switch running
OpenFlow v1.0 contained no FCN rules.

This confirms the RAN is able to identify supported
and unsupported SDN switches and can correctly deploy
SDN flow rules to only the supported SDN switches.

V. CONCLUSION

In previous work a Ryu Action Node (RAN) was
developed [6] to provide support for deployment of
DIFFUSE [5] prioritisation rules in an OpenFlow based
SDN network. While functional, this tool contained a
number of deficiencies in that:

• Tight integration with the Simple Switch application
limited its application and future development

• No support for DIFFUSE RAP messages with mul-
tiple rules

• Only OpenFlow v1.3 was supported
In this paper we have demonstrated a new version of
the RAN (v1.01), where the Northbound Application
has been separated from the Simple Switch Application
to create a fully functional stand-alone Ryu application.
The application has also been extended to support Multi-
Messages and multiple OpenFlow protocol versions.

We have tested our new RAN implementation in con-
junction with the Ryu Simple Switch and REST Router
applications and verified that it functions correctly both
in its respective tasks, but also in ensuring the other
application’s functionality has not been compromised.

Furthermore, support for multi-rule embedded DIF-
FUSE messages and multiple OpenFlow protocol ver-
sions has been verified in our test network.

This new tool will allow for deployment of DIFFUSE
in an SDN controller network with full support for all
actions requested by a current DIFFUSE Classifier Node.

The SDN DIFFUSE Ryu Action Node can be found
at http://caia.swin.edu.au/urp/diffuse/sdn.
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Table XIII
PICA8 SWITCH OUTPUT TABLE - SINGLE SIMPLE SWITCH

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 20 0x0 udp,

nw_src=192.168.2.2,
nw_dst=192.168.2.5,
tp_dst=5001

set_queue:0,
goto_table:1

223.721s 46967 71201972

0 21 0x0 tcp,
nw_src=192.168.2.5,
nw_dst=192.168.2.2

set_queue:1,
goto_table:1

223.678s 21184 1631412

0 21 0x0 tcp,
nw_src=192.168.2.2,
nw_dst=192.168.2.5

set_queue:1,
goto_table:1

223.699s 25173 32951943

0 22 0x0 icmp,
nw_src=192.168.2.2,
nw_dst=192.168.2.5

set_queue:2,
goto_table:1

223.657s 70 10092

0 0 0x0 - goto_table:1 226.618s 86 22456
1 0 0x0 - CONTROLLER:65535 226.618s 0 0
1 1 0x0 in_port=10,

dl_dst=08:00:27:93:18:de
output:13 188.251s 21259 1653160

1 1 0x0 in_port=13,
dl_dst=08:00:27:7a:00:e3

output:10 215.116s 72387 104414255
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Table XIV
PICA8 SWITCH OUTPUT TABLE - MULTIPLE SIMPLE SWITCHES

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 21 0x0 tcp,

nw_src=10.0.0.10 ,
nw_dst=10.0.0.20

set_queue:1,
goto_table:1

220.757s 25375 73647790

0 21 0x0 tcp,
nw_src=10.0.0.20 ,
nw_dst=10.0.0.10

set_queue:1,
goto_table:1

220.738s 24290 1603404

0 22 0x0 icmp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20

set_queue:2,
goto_table:1

220.722s 60 5880

0 20 0x0 udp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20,
tp_dst=5001

set_queue:0,
goto_table:1

225.554s 49609 75008808

0 0 0x0 CONTROLLER:65535 226.554s 0 0
0 1 0x0 goto_table:1 227.554s 77 8064
1 1 0x0 in_port=1,

dl_dst=ee:7b:c2:4a:d5:b9
output:2 228.554s 24359 1611132

1 1 0x0 in_port=2,
dl_dst=3e:2d:c4:e3:59:2d

output:1 229.554s 75058 148671914

1 0 0x0 CONTROLLER:65535 230.554s 3 214

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 21 0x0 tcp,

nw_src=10.0.0.10,
nw_dst=10.0.0.20

set_queue:1,
goto_table:1

223.283s 25378 73647988

0 21 0x0 tcp,
nw_src=10.0.0.20,
nw_dst=10.0.0.10

set_queue:1,
goto_table:1

223.264s 24290 1603404

0 22 0x0 icmp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20

set_queue:2,
goto_table:1

223.248s 60 5880

0 20 0x0 udp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20,
tp_dst=5001

set_queue:0,
goto_table:1

223.303s 49609 75008808

0 0 0x0 CONTROLLER:65535 233.079s 0 0
0 1 0x0 goto_table:1 233.079s 77 8064
1 1 0x0 in_port=2,

dl_dst=ee:7b:c2:4a:d5:b9
output:1 210.600s 24359 1611132

1 1 0x0 in_port=1,
dl_dst=3e:2d:c4:e3:59:2d

output:2 210.565s 75057 148667480

1 0 0x0 CONTROLLER:65535 233.079s 11 10902
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Table XV
PICA8 SWITCH OUTPUT TABLE - SINGLE ROUTER SAME SUBNET

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 20 0x0 udp,

tp_dst=5001
set_queue:0,
goto_table:1

197.427s 49347 74808422

0 21 0x0 tcp,
tp_dst=5001

set_queue:1,
goto_table:1

197.407s 22122 31157386

0 1 0x0 goto_table:1 204.377s 19949 1546422
0 0 0x0 CONTROLLER:65535 204.377s 0 0
1 0 0x0 NORMAL 204.368s 0 0
1 35 0x1 ip,

nw_dst=192.168.2.5
dec_ttl,
set_field:08:9e:01:93:a5:21->eth_src,
set_field:08:00:27:7a:00:e3->eth_dst,
output:10

21.687s 63165 94179306

1 1037 0x1 ip,
nw_dst=192.168.2.1

CONTROLLER:65535 197.453s 0 0

1 35 0x1 ip,
nw_dst=192.168.2.2

dec_ttl,
set_field:08:9e:01:93:a5:21->eth_src,
set_field:08:00:27:39:e5:6d->eth_dst,
output:13

21.397s 17982 1393025

1 1 0x0 arp CONTROLLER:65535 204.372s 0 0
1 1 0x0 ip drop 204.372s 142 12070
1 36 0x1 ip,

nw_src=192.168.2.0/24,
nw_dst=192.168.2.0/24

NORMAL 197.456s 0 0

1 2 0x1 ip,
nw_dst=192.168.2.0/24

CONTROLLER:65535 197.457s 10129 11927829
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Table XVI
PICA8 SWITCH OUTPUT TABLE - SINGLE ROUTER DIFFERENT SUBNET

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 21 0x0 tcp,

nw_src=10.0.0.10,
nw_dst=10.0.1.20

set_queue:1,
goto_table:1

199.653s 23677 73521250

0 21 0x0 tcp,
nw_src=10.0.1.20,
nw_dst=10.0.0.10

set_queue:1,
goto_table:1

199.636s 22563 1489174

0 22 0x0 icmp,
nw_src=10.0.0.10,
nw_dst=10.0.1.20

set_queue:2,
goto_table:1

199.609s 60 5880

0 20 0x0 udp,
nw_src=10.0.0.10,
nw_dst=10.0.1.20,
tp_dst=5001

set_queue:0,
goto_table:1

199.673s 49565 74942280

0 0 0x0 CONTROLLER:65535 204.428s 0 0
0 1 0x0 goto_table:1 204.428s 69 7728
1 1037 0x1 ip,

nw_dst=10.0.0.1
CONTROLLER:65535 199.702s 0 0

1 1037 0x2 ip,
nw_dst=10.0.1.1

CONTROLLER:65535 199.695s 0 0

1 35 0x1 ip,
nw_dst=10.0.0.10

dec_ttl,
set_field:52:8b:b7:ee:0b:2b->eth_src,
set_field:86:14:99:18:c4:de->eth_dst,
output:1

85.624s 22623 1496492

1 35 0x2 ip,
nw_dst=10.0.1.20

dec_ttl,
set_field:82:67:9e:31:b0:d4->eth_src,
set_field:56:bd:0c:f5:5f:22->eth_dst,
output:2

8.010s 73301 148469336

1 36 0x1 ip,
nw_src=10.0.0.0/24,
nw_dst=10.0.0.0/24

NORMAL 199.702s 0 0

1 36 0x2 ip,
nw_src=10.0.1.0/24,
nw_dst=10.0.1.0/24

NORMAL 199.695s 0 0

1 2 0x1 ip,
nw_dst=10.0.0.0/24

CONTROLLER:65535 199.702s 1 74

1 2 0x2 ip,
nw_dst=10.0.1.0/24

CONTROLLER:65535 199.696s 1 74

1 1 0x0 arp CONTROLLER:65535 204.420s 8 336
1 1 0x0 ip drop 204.420s 0 0
1 0 0x0 NORMAL 204.420s 0 0
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Table XVII
PICA8 SWITCH OUTPUT TABLE - MULTI ROUTER DIFFERENT SUBNET

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 22 0x0 icmp set_queue:2,

goto_table:1
198.879s 120 11760

0 21 0x0 tcp,
nw_src=10.0.0.10,
nw_dst=10.0.1.20

set_queue:1,
goto_table:1

198.916s 10945 73205218

0 21 0x0 tcp,
nw_src=10.0.1.20,
nw_dst=10.0.0.10

set_queue:1,
goto_table:1

198.897s 9873 651626

0 20 0x0 udp,
nw_src=10.0.0.10,
nw_dst=10.0.1.20,
tp_dst=5001

set_queue:0,
goto_table:1

198.933s 49471 74800152

0 0 0x0 CONTROLLER:65535 207.247s 0 0
0 1 0x0 goto_table:1 207.247s 6 1722
1 1037 0x1 ip,

nw_dst=10.0.0.1
CONTROLLER:65535 199.014s 0 0

1 1037 0x2 ip,
nw_dst=192.168.1.100

CONTROLLER:65535 199.006s 0 0

1 35 0x1 ip,
nw_dst=10.0.0.10

dec_ttl,
set_field:6e:d3:4a:4a:1d:2f->eth_src,
set_field:f2:e8:9e:73:dd:70->eth_dst,
output:2

132.536s 9934 659018

1 36 0x1 ip,
nw_src=10.0.0.0/24,
nw_dst=10.0.0.0/24

NORMAL 199.014s 0 0

1 36 0x2 ip,
nw_src=192.168.1.0/24,
nw_dst=192.168.1.0/24

NORMAL 199.006s 0 0

1 2 0x1 ip,
nw_dst=10.0.0.0/24

CONTROLLER:65535 199.014s 0 0

1 2 0x2 ip,
nw_dst=192.168.1.0/24

CONTROLLER:65535 199.006s 0 0

1 1 0x0 arp CONTROLLER:65535 207.241s 5 210
1 1 0x10000 ip dec_ttl,

set_field:ae:22:ea:74:5b:1b->eth_src,
set_field:0e:15:d3:67:4f:ad->eth_dst,
output:1

198.979s 60476 148011250

1 0 0x0 NORMAL 207.241s 0 0
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Table XVIII
PICA8 SWITCH OUTPUT TABLE - MULTI ROUTER DIFFERENT SUBNET - 2

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 22 0x0 icmp set_queue:2,

goto_table:1
199.618s 120 11760

0 21 0x0 tcp,
nw_src=10.0.0.10,
nw_dst=10.0.1.20

set_queue:1,
goto_table:1

199.655s 10945 73205218

0 21 0x0 tcp,
nw_src=10.0.1.20,
nw_dst=10.0.0.10

set_queue:1,
goto_table:1

199.636s 9873 651626

0 20 0x0 udp,
nw_src=10.0.0.10,
nw_dst=10.0.1.20,
tp_dst=5001

set_queue:0,
goto_table:1

199.672s 49472 74801664

0 0 0x0 CONTROLLER:65535 207.987s 0 0
0 1 0x0 goto_table:1 207.986s 10 1890
1 1037 0x1 ip,

nw_dst=10.0.1.1
CONTROLLER:65535 199.729s 0 0

1 1037 0x2 ip,
nw_dst=192.168.1.200

CONTROLLER:65535 199.721s 0 0

1 35 0x1 ip,
nw_dst=10.0.1.20

dec_ttl,
set_field:a2:3a:c3:f9:bc:14->eth_src,
set_field:3a:8d:8c:0c:59:06->eth_dst,
output:1

8.233s 60476 148011250

1 36 0x1 ip,
nw_src=10.0.1.0/24,
nw_dst=10.0.1.0/24

NORMAL 199.729s 0 0

1 36 0x2 ip,
nw_src=192.168.1.0/24,
nw_dst=192.168.1.0/24

NORMAL 199.720s 0 0

1 2 0x1 ip,
nw_dst=10.0.1.0/24

CONTROLLER:65535 199.730s 1 1512

1 2 0x2 ip,
nw_dst=192.168.1.0/24

CONTROLLER:65535 199.721s 0 0

1 1 0x0 arp CONTROLLER:65535 207.981s 9 378
1 1 0x10000 ip dec_ttl,

set_field:0e:15:d3:67:4f:ad->eth_src,
set_field:ae:22:ea:74:5b:1b->eth_dst,
output:2

199.712s 9934 659018

1 0 0x0 NORMAL 207.980s 0 0

Table XIX
PICA8 SWITCH OUTPUT TABLE - MULTI-MESSAGE SUPPORT

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 20 0x0 udp,

nw_src=10.0.0.1,
nw_dst=10.0.0.2,
tp_src=80,
tp_dst=8000

set_queue:1,
goto_table:1

3.979s 0 0

0 20 0x0 tcp,
nw_src=192.168.1.1,
nw_dst=192.168.1.2,
tp_src=22,
tp_dst=30000

set_queue:0,
goto_table:1

3.979s 0 0

0 20 0x0 tcp,
nw_src=130.156.213.64,
nw_dst=123.246.18.54

set_queue:0,
goto_table:1

3.978s 0 0

0 0 0x0 CONTROLLER:65535 21.919s 0 0
0 1 0x0 goto_table:1 21.918s 0 0
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Table XX
PICA8 SWITCH OUTPUT TABLE - MULTI-VERSION SUPPORT

ovs-ofctl -O OpenFlow10 dump-flows s1 NXST_FLOW reply (xid=0x4):

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 0 0x0 CONTROLLER:65535 102.783s 0 0
0 1 0x0 resubmit(,1) 102.783s 0 0

ovs-ofctl -O OpenFlow14 dump-flows s2 OFPST_FLOW reply (OF1.4) (xid=0x2):

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 21 0x0 tcp,

nw_src=10.0.0.10,
nw_dst=10.0.0.20

set_queue:1,
goto_table:1

3.410s 0 0

0 21 0x0 tcp,
nw_src=10.0.0.20,
nw_dst=10.0.0.10

set_queue:1,
goto_table:1

3.383s 0 0

0 22 0x0 icmp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20

set_queue:2,
goto_table:1

3.363s 0 0

0 20 0x0 udp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20,
tp_dst=5001

set_queue:0,
goto_table:1

3.426s 0 0

0 0 0x0 CONTROLLER:65535 148.653s 0 0
0 1 0x0 goto_table:1 148.652s 0 0

ovs-ofctl -O OpenFlow13 dump-flows s3 OFPST_FLOW reply (OF1.3) (xid=0x2):

Table Priority Cookie Match Fields Actions Duration Packets Bytes
0 21 0x0 tcp,

nw_src=10.0.0.10,
nw_dst=10.0.0.20

set_queue:1,
goto_table:1

4.127s 0 0

0 21 0x0 tcp,
nw_src=10.0.0.20,
nw_dst=10.0.0.10

set_queue:1,
goto_table:1

4.100s 0 0

0 22 0x0 icmp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20

set_queue:2,
goto_table:1

4.080s 0 0

0 20 0x0 udp,
nw_src=10.0.0.10,
nw_dst=10.0.0.20,
tp_dst=5001

set_queue:0,
goto_table:1

4.143s 0 0

0 0 0x0 CONTROLLER:65535 101.912s 0 0
0 1 0x0 goto_table:1 101.912s 0 0
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