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Abstract—At the home, more and more devices are
connecting to the internet via their home gateway to utilise
a variety of different services. Online gaming, in particular
first person shooter games (FPS), require a low latency
connection with only a small percentage of tolerable packet
loss in order to keep the game state feeling responsive.
Today, this is becoming difficult to maintain with the
internet usage patterns and available upload/download
speeds for a typical household. With all traffic being
funnelled to one bottleneck in the home gateway, when
congestion does occur, there is a spike in the delay time,
causing game traffic to lose its responsiveness. Emerging
technologies such as Active Queue management (AQM),
are being tested and used in order to mitigate this problem
by getting TCP to react sooner through the implementation
of early packet drops. Via using the CAIA developed
tool TEACUP, for running experimental research on TCP,
we can explore what impacts, both positive and negative,
different types of AQM’s have on FPS games.

Index Terms—CAIA, TEACUP, AQM, FPS

I. INTRODUCTION

In the world of today, the need to have everything
at our fingertips, and going simultaneously, is causing a
significant impact on networking infrastructure. As more
applications are being introduced and utilised, users at
the home are starting to notice that these services do not
work as optimally as they used to. Different applications
have different requirements, but online video games, and
first person shooter (FPS) games in particular, are being
greatly effected by having multiple services running at
the same time over a fixed internet connection. Increas-
ing the download and upload speed would resolve these
problems, however FPS game traffic only sends out its
User Datagram Protocol (UDP) packets in small, semi-
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regular updates to inform all players of the current game
state.

This inherently makes it so that round trip time (RTT),
packet-loss and jitter, are the only key requirements for
FPS traffic, and that as long as every packet can get
through in a timely matter, the speed of the connection is
unimportant. One technique that can be used to facilitate
game traffic meeting these key requirements is Active
Queue Management (AQM), used at the home gateway
bottleneck to shape all traffic that passes through it.

In this report we will explore what different AQM
methods can be implemented in order to remove this
problem, and the effect they have on game traffic. Section
II will cover what prior research has been done in the
field, as well as some information on the technologies
that will be implemented. Section III will describe the
testbed being used to conduct the experimental research,
as well as the various components and elements used.
From this, Section IV will illustrate and comment on
all the results obtained by the various experiments run,
with finally Section V summarising and concluding the
findings of this report.

II. BACKGROUND AND PRIOR RESEARCH

Online multiplayer games are something that have
constantly been on the rise in terms of its impact on
network infrastructure, however it is not something that
requires heaps of bandwidth available for it, simply just
a stable connection without long delays. The key goal
of a video game is to offer the player an immersive and
interactive experience that makes the user feels in control
of their character at all times. When it’s simply a local
connection that isn’t a problem as there is only very
small RTT being experienced, somewhere in the range
of 1 to 10 ms. For however online games, in which the
user is geographically separated from the other players,
suddenly a more significant RTT is being introduced
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based on this physical distance, ranging typically from
10 ms up. This will be represented as RTTbase in this
report.

To check some of the RTTbase introduced from phys-
ical distances in Melbourne, Australia, we found a web-
site for public Counter Strike Source Servers [10] (which
is a type of online FPS game), which where pinged from
a residential address in Melbourne. Table I features the
RTTbase found by conducting this search.

Table I
RTTBASE FOR COUNTER STRIKE SOURCE SERVERS FROM

MELBOURNE

Location RTT
Sydney 20 ms

California 167 ms
Washington 239 ms

London 330 ms

From Table I, it illustrates the general idea that from
Melbourne to Sydney, there is an RTTbase introduced of
20 ms, so regardless of any additional RTT experienced,
when playing on that server from Melbourne, a user will
see at least a delay of 20 ms. The same applies for the
other servers in Table I as well, when playing on the
London server there will always be a delay of 330ms or
more. This will inherently change based on where a user
is physical located with respect to their nearest game
server, but their total RTT experienced will always be
factored in by this distance.

When a user is playing an online game, there are three
ways in which traffic is typically communicated. First
being the Peer-to-Peer model, in which every client is
connected to every other client in the game, transmitting
their game state to each other, creating potentially a lot
of overhead for each client as more clients are added
[3]. The more common or typical model is the client-
to-server model, in which each client only sends it’s
personal updates to the server, which then gathers all
that information and only sends relevant information of
the current game state back to each client. Finally there
is a variant on the model called distributed client-to-
server, which can have multiple servers communicating
information between each other, otherwise exhibiting the
exact same properties as a client-to-server model.

Since game server status updates only care about the
now, and any information lost in the past is too late to
matter, UDP is often used for its transportation. This
is because UDP doesn’t re-transmit lost packets, unlike
Transport Control Protocol (TCP) [3], allowing it to
maintain a better RTT for FPS games. This works well

with UDP additionally, as online FPS games do not need
flow control, and only require that the game state updates
as frequently as required by the server in order to keep
the experience immersive.

Most of the main functional components in game
traffic are all facilitated via the UDP protocol. The
first being how the client probes to find the available
servers. The clients machine essentially contacts the
master server for a given game, which then proceeds
to probe its list of active servers, of which the client
can then select and join [3]. As the game commences
there is basically small UDP packets being sent back
and forth between the clients and server, in order for the
match to be propagated to all users equally. This is where
performance requirements such as low latency, minimum
packet loss and jitter all effect the players, ruining the
perceived shared world if this criteria isn’t meet.

A. Research on online multiplayer game traffic

With online gaming being such a growth industry,
unsurprisingly there has been a lot of prior research [4]
quantifying online multiplayer games and determining
what elements have the greatest effect. Interestingly, the
paper [17], studies the effect of latency on a non FPS
called Warcraft III. This game is what is known as a
Real Time Strategy (RTS) game, and games in this genre
are more in the lines of chess, then a shooter game.
Because of this it was found that latency was tolerable
to a reasonably high level, with users in their study only
being effect by RTT between 500ms - 800ms.

Another study conducted by the Institute of Informa-
tion Science [9], explored the sensitivities of a Massive
Multiplayer Online (MMO) game, and seeing the effect
that latency, loss and jitter had on a users playtime. The
findings from their study can be found in Figure 1.

From Figure 1, it was clear that they found a direct
correlation between the length that a user wanted to
consume a game for, and the effect latency, loss and
jitter had on the user. In the report [5], it was found
that even though jitter would possibly have an effect on
a players experience, it may be insignificant compared
to the latency effecting the game. This is because that
in order for a user to experience any significant jitter,
they would already be suffering from excessive latency,
which in turn is most likely what the user is noticing the
most. For this reason, the experiments in this report will
just be focused on packet loss and latency.

A number of game traffic studies have been performed
at CAIA, such as [2] where it was found by comparing
two servers that appeared identical except for their
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Figure 1. Player Sensitivity to latency, loss and jitter [9]

RTTbase, one in California and the other in London, that
the majority of players would always select the server
with the smaller RTTbase. Once again highlighting the
sensitivities of players to RTT, and how in the gaming
culture there is already a understanding that less latency
equals better performance.

Different papers have explored different kinds of FPS
games, for example [7] explored the effect of latency
and packet loss on Unreal Tournament, finding loss rates
where unnoticed up to 3%, and that latency of 100 ms
where noticeable on shooting, but not movement until
around 300 ms.

Other papers such as [18] and [21], focused on Quake
IV and Quake III respectively. For Quake III, it was
found that a latency was tolerable up to 150ms, and that a
packet loss wasn’t noticed until around 35%. This would
suggest that Quake III has particularly good server-side
recovery, and be able to deal with multiple losses in UDP
packet’s.

To see the effects ourself, we set-up our own little
test scenario with two players, with one of them being
aware of the traffic shaping occurring. This was done by
following the process described in [19], in order to play
a Quake III multiplayer match, on the custom map of
the CAIA EN605 lap room. We used the tool dummy-
net on a FreeBSD machine in order to shape the traffic
to various simulated delays and losses [16]. Table II
illustrates the latency and packet loss rates we iterated
over.

Table II
DELAY AND LOSS ITERATED OVER FOR QUAKE III EXPERIMENT

Delays (ms) Loss (%)
0, 10, 25, 50, 100, 150, 200 0, 1, 3, 5, 10, 20, 30, 40

We randomly went through the the different values
in the table, assessing how one felt the game played
in each case and comparing it to the other player who
had no knowledge of what was changing, he was just
looking at how his performance was effected with each
alteration. We found, like research before us [21], that
between a latency of 50 ms to 150 ms, there was a delay
that was noticeable, after which the latency caused the
game to became very difficult to play, with the shooting
constantly having a delayed rate of fire.

In terms of packet loss though, it wasn’t noticeable at
all between the 1-10 % range, but after that, occasionally
in a match a shot would not collide, or a user would jump
position slightly, not to mention the increase in time it
would take to join a match. Although not as frequent, or
immediately obvious as the effect latency has on a FPS
game, it is definitely something that can have an impact
on a player, and depending on how efficient a game is
with dealing with packet loss, may cause an negative
experience.

For all these reasons above, both latency and loss are
the fields this report has focused on when looking at
AQM’s effect on FPS traffic.

B. Active Queue Management

One of the key ways in which typical home gateways
manage the constant arrival of packets is to queue them
in a buffer. The most common and simplest way to do
this is via the packet first in first out (FIFO) method, in
which there is a fixed line, and only the packet at the
end moves along, sequentially going through the line.
If the fixed bandwidth speed is significant enough, then
a queue might rarely form or fill up, however if it is
less then what traffic is being pushed down it, then a
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bottleneck is created, and the buffer acts as a way to
deal with this.

As technology has improved, it has become easier and
cheaper to make these buffers excessively large in order
to make sure nothing is dropped. Since TCP uses packet
loss as a way of determining a path capacity, it will
constantly fill up these buffers, causing a rise in RTT as
it fills up, until TCP finally detects congestion and backs
off. As highlighted in section 2.1, the delay introduced
in these larger buffers will have a significant impact
on game traffic. This phenomenon is what is known as
Bufferbloat [15], and is driving the need to utilise smarter
queue management in order to better manage network
congestion.

This is where AQM’s comes in, as it is essentially the
idea of getting TCP to back off early through pre-emptive
packet drops and marking, in order to prevent the buffer
from ever filling up to the stage where significant RTT
could occur. The following is a list of different AQM’s
that can be implemented:

1) Proportional Integral controller Enhanced (PIE)
- Randomly drops a packet from the tail end
of a queue based on a latency calculation [15].
The latency calculation involves using the delay
samples over a period of time to predict whether or
not the latency in a particular queue is increasing
or decreasing, and thus whether to increase the
drop probability, or decrease it. In addition to
this, PIE supports a level of burst tolerance, by
accommodating for brief periods where the queue
can be filled above it’s target delay.

2) Controlled Delay Management (CoDel) - Identifies
whether a packet has been in a queue too long, and
then drops the packet from the head of the queue
if this is the case. CoDel essentially does this by
time-stamping packets that enter the queue to get
the local delay (sojourn time), and comparing it
to the set target delay [14]. Provided the local
delay is below the target delay, then packets are
forwarded fine, however, if this delay is above the
target threshold, a time drop (Td) value will be
set for the next packet, which if the condition is
meet again, will be dropped. Like PIE, CoDel also
features support for burst tolerance.

3) Flow Queuing CoDel (FQ-CoDel) - Adds the
benefits of a modified scheduling algorithm DRR
(Deficit Round Robin) to create different sub-
queues to fairly share between for each form of
traffic, which CoDel is then applied on. These
queues are essentially formed by hashing the

packets source, destination IP address and port
numbers, in addition to the IP protocol number
and a randomly assigned number when the hashing
commenced [11]. This allows different types of
traffic to have its own queue, and if they occur
infrequently enough, potentially never queue more
than one packet at a time.

4) Flow Queuing PIE (FQ-PIE) - Recently being
tested at CAIA, it is essentially the same process
as FQ-CoDel, except the sub-queue’s are utilising
the PIE algorithm instead of CoDel [1].

III. EXPERIMENTAL TESTBED

In order to conduct this research, a tool was required
that could emulate realistic traffic generators and observe
the effect with various AQM’s. Thankfully a tool de-
veloped by CAIA already exist, known as TCP Experi-
ment Automation Controlled Using Python (TEACUP).
In addition to this, a physical testbed had already been
set-up at CAIA, illustrated in Figure 2, to run these
experiments.

10.1.1.0

172.16.10.0 172.16.11.0

Data and control server
NAT router
DHCP+TFTP server

Router
Dummynet (FreeBSD)
Netem/tc (Linux)

Host1 HostNHostM HostM+1

Control
Network

Experiment
Networks

Host2 HostM+2

Internet

……

Figure 2. TEACUP testbed topology [6]

Additional documentation on TEACUP and how to
configure or setup experiments can be found via the
following references [13], [20], [22]–[24]. This docu-
mentation was used as resource in order to set-up the
experiments for this report.

A. TEACUP Tools

For the experiments conducted in this report, the three
main tools that that where used to generate different
types of traffic where:

1) Pktgen - Developed at CAIA in order to generate
synthetic game traffic based on pre-existing traffic
[12]. This in itself was based on prior research
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done at CAIA on using Autoregressive moving av-
erage (ARMA) models to use empirically gathered
two and three player game length traffic, to gen-
erate a realistic version of that game with more
player in it [8].

2) Iperf - TEACUP uses a slightly modified version
of the iperf tool for the generation of TCP or UDP
flows [23].

3) Httperf - Used to emulate HTTP type traffic, a
modified version is used in TEACUP to set-up
DASH like traffic for streaming content at different
representation rates [23].

B. Case Scenario

For this experimental research, analysis of a case
scenario with a variety of different requirements was
required in order to fully understand the effects of a
AQM on game traffic. Figure 3 highlights what a typical
household may be using at once, which I used as the
basis to form all the experiments to run. AQM’s were
set-up at router where the bottleneck is, for which all
flows will go through.

Figure 3. Possible Home network

From the CAIA TEACUP testbed I utilised four
devices. One was acting as a client on subnet 172.16.10.0
(from Figure 2), another was acting as a server on the
other subnet 172.16.11.0, and then a router was used to
facilitate all communication between them. In addition
to this, a control host is required in order to set-up and
gather all of the experimental data.

Pktgen was used to generate all of the game traffic,
being the key traffic being analysed in the experiments.
This was done by telling TEACUP that one of the host
was acting as a game client, and the other was acting as
the game server. As game traffic needs to both send and

receive status updates, this effects both the downstream
and upstream direction.

Iperf was used to generate a bulk TCP upload to
emulate typical traffic such as uploading files from a
phone to the cloud. This occurred 10 seconds into each
experiment, and occurred for the remaining time the
experiment was captured for. As this was simulating a
cloud upload, this traffic’s impact is on the upstream
connection.

Additionally, iperf was also used to generate random
bursts of TCP traffic to emulate someone doing web
browsing. Every 10 seconds of the experiment a different
TCP connection would occur for a amount of time
calculated using pseudo-random numbers, to emulate the
variance of time required to download different web
pages. This connection was acting as retrieval of web
pages, and thus its effect is in downstream direction.

Finally httperf was used to set up a DASH stream of
different rates to produce a streaming like application
such as Netflix. A HTTP server was started on the host
emulating a web server, and DASH like content was
created on it in terms of five second chunks, with the
representation rates of 500, 1000 and 5000 Kbps. In
order to emulate DASH like traffic, these five second
chunks occurred two seconds apart, going from lower
to higher rates, before repeating the process again every
10 seconds to represent a adaptive type stream. As the
httperf was acting as bursts of DASH like traffic, its
impact is in the downstream connection.

The following is all the main parameters that where
set-up for this reports experiments:

• Hosts & Router OS: FreeBSD
• Congestion Control Algorithm: NewReno
• Bandwidths: 12/1 and 50/20 Mbps down/up to see

the effects of AQM’s on both a smaller and larger
available bandwidth. As the upsteam connection
speed is smaller than the downsteam, this is more
likely where queuing delays will be introduced.

• RTTBase (ms): 0, 20, 40, 100, 160, 200, 300 and 400
• AQM: FIFO, PIE, CoDel, FQ-PIE and FQ-CoDel
• Buffer-size: 100 & 1000 packet buffer
• Games: Quake III & IV, Half life death match 1 &

2, Half life counter strike 1 & 2 and Wolfenstein
Enemy Territory 2 Pro

The FPS game traffic was emulated as a four player
game for each case, with the server sending out a single
UDP stream with a packet size distribution equivalent to
if it had four clients. On the other end, one machine
was acting as a single client, receiving the servers
updates and sending back periodically its own state.
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TEACUP iterated through all of these experiments in
every combination, each being captured for 60 second
intervals.

IV. EXPERIMENTAL RESULTS

All graphs shown for this section where done using
Quake III synthetic game data, as all the other games
showed very similar graphs, or there wasn’t anything
particularly unique about their traffic.

A. Just Game traffic

In this sub-section, only Quake III synthetic game data
is featured, with no additional traffic to highlight what
the game traffic looks like captured in TEACUP without
being effected by other traffic.

Figure 4. FPS Game RTT vs Time for 12/1 Mbps down/up, 0 ms
RTTbase and 100 pkt buffer FIFO queue

Figure 4 shows that in the absence of competing
traffic, that FPS game traffic experiences below 2ms of
RTT, on a path with 0ms RTTbase. Additionally this is
using simple FIFO queuing, as AQM’s wouldn’t have an
impact on one form of FPS traffic at this speed.

From Figure 5, the throughput footprint isn’t very
large for game data, which is what you would expect
from traffic that only sends small updates of the current
game state. As the UDP steam for the server to client
side needs to incorporate more game state data to inform
a player of multiple other players states, its throughput
is at a higher rate compared to just the client to server
side.

With only a single game traffic flow, there was no
packet loss observed in either direction during the 60
second trial.

Figure 5. FPS Game Throughput vs Time for 12/1 Mbps down/up,
0 ms RTTbase and 100 pkt buffer FIFO queue

B. Game traffic in combination with other traffic

For this subsection, in addition to Quake III game
traffic, a bulk TCP upload acting as a cloud upload
is being transmitted, as well as random bursts of TCP
web browsing traffic every 10 seconds, and a DASH
video stream with a chunk size of five seconds at the
representation rates of 500, 1000 and 5000 kbps.

Figure 6. All traffic RTT vs Time for 12/1 Mbps down/up, 40 ms
RTTbase and 100 pkt buffer FIFO queue

In Figure 6, all the traffic has been included to high-
light the effect that a combination of traffic has on RTT.
Compared to that seen in Figure 4, there is a significant
jump in RTT. Since congestion is now occurring, RTT
for all traffic sharing the link has increased. As the
connection has a bandwidth of 12 Mbps downstream, and
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1 Mbps upstream, the upstream link is greatly effecting
the RTT being experienced for all other traffic.

Since the bulk TCP cloud upload is the main contrib-
uting factor to the upstream, as Figure 4 and 5 showed
FPS traffic consumes only very minor bandwidth, then
the cloud upload is the main traffic causing the RTT
to greatly rise for game traffic. Though DASH and the
web traffic still have an effect, since they are in the
downstream direction which has a lot more bandwidth,
their impact isn’t as noticeable. Additionally the web
traffic only occurs briefly every 10 seconds, and the
DASH traffic is adjusting between 500 to 5000 Kbps
about every 10 seconds as well, so their combined impact
has a greater effect around every 10 second or so.

Figure 7. FPS Game RTT vs Time for 12/1 Mbps down/up, 40 ms
RTTbase and 100 pkt buffer FIFO queue

Figure 7 highlights just the game traffic, as opposed to
Figure 6, which also features the additional competing
traffic. It can be seen after the initial web traffic and
DASH traffic commences, the game traffic starts and
takes the form that can be seen after about eight seconds
onwards in Figure 6. In Figure 7 it can be more clearly
seen its effect on game traffic specifically, and that with
simple FIFO queuing, the delay is sitting at a peak RTT
of around 570 ms.

The throughput, as shown in Figure 8, is of a similar
form to what it is was before the extra traffic, which is
good as the same amount of game data is being pushed
through. It does however fluctuate now, once again due
to the congestion that is now occurring at the bottleneck.

Having illustrated the effects of a simple FIFO queue
when dealing with multiple flows of traffic under a
smaller bandwidth speed, Figure 9 shows the RTT over
the same traffic, but applying the PIE AQM. Straight

Figure 8. FPS Game Throughput vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 100 pkt buffer FIFO queue

Figure 9. FPS Game RTT vs Time for 12/1 Mbps down/up, 40 ms
RTTbase and 1000 pkt buffer PIE queue

away it can be seen that the RTT has reduced itself from
around 570 ms peak, to about 420 ms peak, with the
majority of the RTT being experienced in the 50 to 60
ms range. Due to PIE tolerance for random bursts of
traffic, when DASH is acting at it higher representation
rate around every 10 seconds, PIE would be allowing it
briefly through, causing the queue to fill up and the RTT
spikes to occur.

Like PIE, Figure 10 shows the RTT vs Time, but now
for CoDel. Similar to PIE, it performs a lot better in
terms of average RTT then FIFO, but its peak RTT is at
about 250ms. This is because it doesn’t utilise random
properties to cause it to drop packets, so even though
it does still get a greater RTT when those spikes occur,
they are not quite as large as for PIE.
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Figure 10. FPS Game RTT vs Time for 12/1 Mbps down/up, 40
ms RTTbase and 1000 pkt buffer CoDel queue

Figure 11. FPS Game Throughput vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 1000 pkt buffer CoDel queue

Looking now at the throughput, Figure 11 shows how
the throughput takes a slightly better form when using
CoDel in this case, compared to FIFO shown in Figure
8. As game traffic is now going through in a more timely
manner, its throughput is a bit smoother.

Like Figure 11, the PIE version of the throughput
graph featured in Figure 12 also takes on a very similar
form with smaller fluctuations in the throughput. In gen-
eral though, both of these Figures match the throughput
for the same game traffic generated as when it was just
game traffic.

Figure 13 indicates how now when using FIFO
queuing, packet loss is happening due to the competing
traffic forcing TCP to back off when a congestion occurs,
and packets are being lost in this transition. These short
bursts of packets being lost are likely to cause players

Figure 12. FPS Game Throughput vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 1000 pkt buffer PIE queue

Figure 13. FPS Game Packet loss vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 100 pkt buffer FIFO queue

of certain FPS games to start to notice that there is
something effecting game play.

In Figure 14, interestingly PIE is experiencing more
packet loss than FIFO. This would definitely cause
noticeable effect to FPS games without efficient server
recovery mechanisms in place for lost packets. Also
this puts it above FIFO, which would be because there
is a chance the packets are getting dropped just from
congestion, then on top of that PIE is dropping packets
early which potentially could be game packets.

In Figure 15, the CoDel packet loss figure, like the
PIE and FIFO ones before it is experiencing a packet
loss. Like PIE, is appears to be performing slightly worse
than FIFO when it comes to packet loss, as the packet
it drops based on its latency calculation could end up
being a game packet.
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Figure 14. FPS Game Packet loss vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 1000 pkt buffer PIE queue

Figure 15. FPS Game Packet loss vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 1000 pkt buffer CoDel queue

Shown in Figure 16, FQ-PIE takes on a significantly
smaller RTT then that of PIE, CoDel and FIFO. Aver-
aging at around 60 ms, with a maximum at around 75
ms, with a RTTbase of 40 ms means only about 20 to
35 ms of RTT is introduced through the congestion. As
discussed in section II, the lower the RTT, the better
experience for a game player, and RTT’s of this level
would be acceptable, making this AQM effective for FPS
online games.

Likewise, Figure 17 features RTT vs time for the FQ-
CoDel version, generating a very similar graph to Figure
16 , just going a bit higher at around 80 ms. Even
at this level, FQ-CoDel is more than efficient enough
for this type of traffic. Both FQ versions highlight how
good the separation of the flows into their own queue
thorough FlowQueue isolation and then using the DRR

Figure 16. FPS Game RTT vs Time for 12/1 Mbps down/up, 40
ms RTTbase and 1000 pkt buffer FQ-PIE queue

Figure 17. FPS Game RTT vs Time for 12/1 Mbps down/up, 40
ms RTTbase and 1000 pkt buffer FQ-CoDel queue

scheduler to manage them is for reducing RTT. Since
each queue deals with a specific type of traffic, they
can be effectively managed without each traffic effecting
each other.

The throughput shown in Figure 18 applies to both
FQ-CoDel and FQ-PIE, as they were practically the same
graph. As can be seen by this Figure, the throughput
has mostly smoothed its self out, and is close to what
it was in Figure 5 when it was just game traffic. Since
each the flow is being individually queued, certain traffic
like game UDP packets are able to get through with
mostly the same throughput each time, smoothing it out
compared to their non-FQ counterparts.

The FQ-CoDel and FQ-PIE versions of Figure 19
produced the exact same graph for every game variant
and delay. As illustrated, no packet loss at all occurred
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Figure 18. FPS Game Throughput vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 1000 pkt buffer FQ-CoDel queue

Figure 19. FPS Game Packet loss vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 1000 pkt buffer FQ-CoDel queue

for both versions of FQ, indicating these are by far the
best AQM’s for FPS games. Because game traffic has
gaps between each update it sends, this packet would
be treated as a unique sub flow each time it hits the
bottleneck. This in turn would then allow the packet to
get through without a significant delay, or being dropped,
before a new packet arrives creating yet another sub flow
for this traffic, and the cycle repeats.

Having gathered data for a variety of different base
delays, we plotted the boxplots of RTT vs time for FQ-
CoDel, as FQ-PIE was essentially the same, for these
different delay as shown in Figure 20. The Figure shows
the general idea that using one of the better AQM’s to
reduced RTT, with the RTTbase already introduced via
the physical distance, a user could look at this graph

Figure 20. Boxplots for FPS Game RTT vs Time for 12/1 Mbps
down/up and 1000 pkt buffer FQ-CoDel queue

and see with this AQM the typical RTT they would
expect to get for servers with a certain RTTbase. This
is under the condition of a smaller download and upload
bandwidth, and a variety of different traffic congesting
the bottleneck.

Figure 21. Boxplots for FPS Game RTT vs Time for 50/20 Mbps
down/up, 40 ms RTTbase and 1000 pkt buffer FQ-CoDel queue

In Figure 21, the graph illustrates the same point as
Figure 20, except that this was for faster bandwidth
speeds. As shown, the boxplots size are a fair bit smaller
than their 12 Mbps down version, since the available
bandwidth allows a lot more traffic to be on a link
without queuing in the buffer. This in turn highlights
how with greater speeds, AQM’s don’t necessarily have
an effect, as the congestion causing the spike in RTT
to happen may not occur if all the traffic happily goes
down or up a link.

From Figure 19 and 20, it is clear to see that for the
FQ variants of PIE and CoDel, they only have a positive
impact on FPS game traffic, and even when there is a
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lot traffic going down a link of smaller capacity, they
can effectively reduce RTT and packet loss to acceptable
levels.

C. Impact of upstream vs downstream traffic on FPS
game traffic

As certain types of traffic exhibit different traits, we
also wanted to explore the effect that just traffic in the
smaller 1 Mbps upstream direction had, compared to
traffic in 12 Mbps downstream direction. For this, DASH
like traffic was used for the competing game traffic in
the downstream direction, and a bulk TCP upload was
used in the upstream direction separately.

DASH operates in small chunks, in this case of five
seconds, with different representation rates, in the down-
stream direction, so it’s may only have minor impact
compared to something like a bulk TCP upload which
will consume all bandwidth it can in the upstream direc-
tion. For this sub-section, we have graphs illustrating the
different effects that DASH traffic has on game traffic,
compared to a simple bulk TCP upload.

Figure 22. FPS Game RTT vs Time for 12/1 Mbps down/up, 40
ms RTTbase and 100 pkt buffer FIFO queue with competing DASH
traffic

From Figure 22, the RTT experienced is already a lot
lower then was found in Figure 7, in which there where
four competing forms of traffic. As the DASH like traffic
used in this TEACUP experiment is essentially three
representation rates operating at 10 second intervals for
five seconds, the graph is slowly growing and decreasing
based on these rate forming the graph seen. Additionally
because DASH utilises the downstream connection, and
12 Mbps is available, the game traffic is performing
better even for just simple FIFO, as its impact on the
upstream isn’t significant.

Figure 23. FPS Game RTT vs Time for 12/1 Mbps down/up, 40 ms
RTTbase and 100 pkt buffer FIFO queue, with competing Bulk TCP
traffic

Comparing Figure 23, to Figure 22, it can be seen how
the bulk TCP upload is one of the main factors causing
the RTT to be a lot higher when all these forms of traffic
are combined. This is because the bulk TCP upload is
simply consuming all available bandwidth it can in the
upstream direction which is limited to 1 Mbps, for as
long as it can, before TCP experiences a congestion and
backs of, and then proceeds to do the same thing again
for the entirety of the experiment.

Additionally, the throughput from the game traffic and
DASH traffic, compared to with the bulk upload, take on
a different form. With the DASH traffic, the game traffic
throughput remains mostly smooth as game traffic is able
to more easily get through without fluctuations. The bulk
upload on the other hand, introduces a lot of fluctuations
in the throughput for the game traffic, getting something
very similar to what was found in Figure 8. Once again
this is because the bulk TCP upload is significantly in-
creasing the RTT being experienced by the game traffic,
and thus the more significant fluctuations in throughput.

Figure 24 shows how for the bulk upload, a packet
loss is being experience in the game traffic for a simple
FIFO queue. For the same situation with DASH traffic
though, no loss is being experience at all. Once again,
showing how DASH is able to operate along side game
traffic, without too much impact on it’s RTT, and with
no packet loss being experiences for this connection
provided enough speed is present. Since the speed is
more limited in the upload direction, it also is not as
surprising that the bulk TCP upload is creating greater
RTT for the game traffic compared to the DASH traffic
in the downstream, and thus the packet loss occurring.
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Figure 24. FPS Game Packet loss vs Time for 12/1 Mbps down/up,
40 ms RTTbase and 100 pkt buffer FIFO queue, with competing Bulk
TCP traffic

Figure 25. FPS Game RTT vs Time for 12/1 Mbps down/up, 40
ms RTTbase and 1000 pkt buffer PIE queue, with competing DASH
traffic

Illustrated in Figure 25, the RTT is being reduced a
little bit when using PIE compared to RTT experienced
for simple FIFO queue, shown in Figure 22. In addi-
tion to this though, a tiny packet loss is being experi-
enced, which would be due to the random probability
latency calculation causing a couple game packets to get
dropped.

The CoDel version of this graph reduces the RTT
experienced to about 80 ms, with no packet loss, making
it similar to what is experienced by FQ-PIE and CoDel
with all traffic, as shown in earlier Figures. With just
the extra DASH traffic through, FQ-PIE and CoDel are
performing even better, adding only minimum RTT, close

to what was found in the upload and download speeds
of Figure 21.

The bulk TCP on the other hand, for each AQM,
essentially takes on a form that is very close to the
Figures when all traffic was added, illustrating how
big of an impact that this traffic has on the emulated
experiment. Since this was consuming all that it could
in the upstream direction, and game traffic needs to be
able to upload small amounts of packets in that direction,
it’s impact is a lot more noticeable than the DASH like
traffic, at least for a 12/1 Mbps down/up link.

All this goes to show how certain traffic have different
traits, and that depending on what type of traffic a
household consumes, determines whether certain AQM’s
will work, or even whether just FIFO queuing will be
efficient enough for a user when playing an online FPS
game.

V. CONCLUSIONS

From this report, it can be seen how certain AQM’s
effect online FPS game traffic. By using old research
conducted, as well as some quick experiments on shaping
Quake III game traffic, we confirmed that latency has
the most significant effect on a players game experience.
Packet loss on the other hand did have an impact, but to
what extent depends upon how efficient the server side
is with dealing with lost game state packets.

By running experiments using TEACUP, we found
that all AQM’s have some beneficial impact compared
to simple FIFO, especially over a smaller upload and
download speed for a combination of bandwidth con-
suming traffic. It is clear that the FQ versions of PIE and
CoDel operate very effectively, and are able to reduce
RTT significantly to an operational level for FPS gamers.
In addition to this, due to the way they separate flows and
add in a scheduling algorithm, as well as the frequency
of game state updates, no packet loss was found at all.

The normal version of PIE and CoDel did reduce RTT
a bit, however due to the packet loss they induce, while
running other applications simultaneously, the would
have an effect on a players experience. We also found
that the impact for certain types of traffic, such as ones
using DASH simultaneously, are not nearly as severe
to FPS game traffic when under a limited bandwidth
compared to traffic such as a bulk TCP upload.

This indicates that not only the amount of traffic
being sent down a link of a fixed available bandwidth
plays a factor in the effectiveness of an AQM for game
traffic, but also what type of form does it take in terms
of consuming a users bandwidth in the downstream or
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upstream direction. As the upstream link has a smaller
capacity, this is where typically the congestion and rise in
RTT occurs, and is a key direction the FPS game traffic
operates in. To what extent this effects game traffic can
be significantly reduced through the use of FQ-PIE or
FQ-CoDel at the home.
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