
Supporting SDN and OpenFlow within DIFFUSE
Dzuy Pham∗, Jason But

Centre for Advanced Internet Architectures, Technical Report 160429A
Swinburne University of Technology

Melbourne, Australia
dhpham@swin.edu.au, jbut@swin.edu.au

Abstract—Software Defined Networking (SDN) has the
potential to change the way in which networks are man-
aged through the use of centralised control. DIFFUSE is
an existing system that can dynamically classify traffic
flows in real-time using Machine Learning based tech-
niques, and subsequently (de-)prioritise those flows. We
developed a RYU Action Node (RAN) as an OpenFlow
compatible DIFFUSE Action Node to allow for dynamic
traffic management in an SDN. Our tests have verified
the correct functionality of the RAN in combination with
DIFFUSE and live traffic.

I. INTRODUCTION

Software Defined Networking (SDN) [1,2] is becom-
ing more mainstream, with many hardware vendors
releasing SDN compatible products. The concept behind
SDN architecture is to abstract the network management
into layers, moving the responsibility for management of
infrastructure to centralised control infrastructure.

SDN has the potential to provide an agile network
that is liberated from proprietary hardware. This also
allows for dynamically customisable networking which
can be managed more efficiently and optimised for better
performance.

DIFFUSE (Distributed Firewall and Flow-shaper Us-
ing Statistical Evidence) [3], a network prioritisation
scheme constructed around ML-based techniques was
developed to segregate network traffic by 5-tuple inspec-
tion into classes and consequently deploy prioritisation.
In its current state, DIFFUSE is currently constrained to
FreeBSD [3] and OpenWRT [4] systems. [5]

This report documents our work to extend DIFFUSE
to integrate with RYU [6] – an SDN framework con-
troller. This will allow dynamic management of network
bandwidth and improved responsiveness to network be-
haviour based on automated traffic classification by the
DIFFUSE Classifier Nodes.

∗This work was performed while the author was an undergraduate
summer intern under the supervision of Dr Jason But.

We developed a RYU Action Node (RAN) to parse
DIFFUSE messages and subsequently program an SDN
switch. The RAN also manages the deployment of clas-
sification based prioritisation rules and was tested using
the DIFFUSE Fake Classifier Node (FCN) [5].

This report is organised as follows. The background
information on Software Defined Networking, RYU and
OpenFlow can be found in section II. Section III outlines
some more information on DIFFUSE and the problems
with integrating DIFFUSE to SDN. Section IV contains
an overview of the RYU Action Node and was verified
in Section V. Section VI concludes with some notes and
future plans for the complete DIFFUSE integration to
SDN.

II. BACKGROUND

The primary concept behind Software Defined Net-
working (SDN) is to separate the control and data
planes within the network, allowing a central control
system to manage multiple network switches using a
well-defined API. SDN Applications can use centralised
logic to determine outcomes and use the Northbound
API to communicate network control decisions to the
SDN Controller. The outcomes are then managed by the
controller which uses the Southbound API to program
the flow tables on the switches. (see Figure 1)

A. Software Defined Networking

Software Defined Networking provides a modern ap-
proach towards networking architecture, enabling flex-
ibility and ease of use through software abstractions.
Traditionally, the Control Plane and the Data Plane of a
piece of network infrastructure resides within the same
switch/router. The Control Plane handles the decision
making and programs the Data Plane to forward those
packets accordingly. This approach results in devices that
are restricted by the manufacturer’s firmware. SDN seeks
to overcome these limitations by separating the Data

CAIA Technical Report 160429A April 2016 page 1 of 9

mailto:dhpham@swin.edu.au
mailto:jbut@swin.edu.au

Plane from the Control Plane in order to have complete
control over network behaviour.

The current methodology within SDN is to split the
network into three distinct layers [1,2]:
Application Layer - Hosts all the systems which are

used to program the SDN
Control Layer - Contains the controllers which manage

the SDN and programs the switches
Infrastructure Layer - Contains the switches which

forwards the data programmed by controller.
Advantages of this abstraction include:

• A centralised controller capable of configuring mul-
tiple connected switches

• A switch that is capable of being programmed by
multiple controllers

• A dynamic network that is able to respond to
different network conditions

• Highly customised network implementations, as the
Control Layer is no longer bound to proprietary
firmware

Network Operating SystemNetwork Operating System

Packet Forwarding
HW/SW

Packet Forwarding
HW/SW

Packet Forwarding
HW/SW

Packet Forwarding
HW/SW

Packet Forwarding
HW/SW

Packet Forwarding
HW/SW

AppApp AppApp AppApp

Northbound API

Southbound API

SDN Reference Model

Application

Control

Data

Figure 1. SDN Reference Model

B. RYU and OpenFlow

OpenFlow [7] is a well-defined Southbound API (see
Figure 1) protocol commonly used in many SDN im-
plementations to connect the Control and Infrastructure
Layers. As OpenFlow standardises the communication
between the Control and Infrastructure Layer, we can
use any OpenFlow based controller.

RYU [6] is an open source Northbound API (See Fig-
ure 1) which allows the deployment of multiple applica-
tions within a common framework. The RYU framework
contains a number of OpenFlow software components
that are easily accessible by SDN applications to control
the network. This allows a RYU controller to manage

multiple applications as well as monitor any messages
sent by the switches from the Control Layer.

III. DIFFUSE

DIFFUSE [3] is a system which uses statistical ana-
lysis and machine based learning techniques to first
classify, and then prioritise selected flows in the network.
Diffuse is split into two main components, the Classifier
Node (CN) and the Action Node (AN).

Exporter

Classifier

Collector

Filter/Shaper

Classifier Node Action Node

Userspace

Kernel

Figure 2. DIFFUSE Components

A. Classifier Node

The CN classifies flows using ML-based techniques
based on statistical analysis of similar flows.

The CN runs within the kernel using IPFW [8] to
collect packets for processing.

Once a classification is made, a Remote Action Proto-
col (RAP) [3] packet is created to be sent by the exporter
to a collector module in an AN to be acted upon.

The DIFFUSE Fake Classifier Node (FCN) [5], is able
to send customisable Remote Action Protocol (RAP) [3]
messages to ANs. This allows more thorough testing of
a DIFFUSE deployment.

Currently CN implementations only exist for FreeBSD
[3] and OpenWRT [4], while the FCN operates on any
platform supporting Python 3 [9].

B. Action Node

The AN is made up of two components, 1) the
collector module which receives RAP messages from a
CN, and 2) the filter/shaper which implements an action.

The action taken by the filter/shaper is based on the
flow class as reported by the CN, and instructions based
on the contents of an actions file that is loaded during
the AN setup. The resultant action is then applied to
Dummynet [10] in order to create the rule in the IPFW
[8] table. All subsequent packets of this flow will now
be (de)prioritised based on the classification.

CAIA Technical Report 160429A April 2016 page 2 of 9

Current AN implementations also only exist for
FreeBSD [3] and OpenWRT [4].

C. An OpenFlow based DIFFUSE Action Node

The RYU Action Node (RAN) (see Section IV)
was developed to extend DIFFUSE to support the
SDN/OpenFlow framework. This will allow for full
DIFFUSE ML-based classification using SDN to deploy
prioritisation.

The current DIFFUSE program prioritises traffic using
a software-based approach (IPFW) and is therefore per-
formance limited. Extending DIFFUSE to support SDN
will allow hardware-based prioritisation through direct
configuration using the OpenFlow API. This also allows
DIFFUSE to directly program multiple switches from a
single AN.

By extending DIFFUSE to support OpenFlow, we can
combine the benefits of automatic traffic classification
with high performance hardware-based traffic prioritisa-
tion.

IV. RYU ACTION NODE

The RYU Action Node (RAN) is coded as an ex-
tension of the existing RYU simple switch code [11]
provided by the RYU SDN Framework [6]. The simple
switch program handles forwarding of packets and learn-
ing MAC addresses of connected hosts. Behaving as
a regular switch, received packets are either forwarded
directly to the destination or flooded on all ports.

The RAN runs alongside the simple switch listening
for RAP flow information packets [3] and programs the
hardware switch accordingly. Since the RAN is coded
as an application using the RYU framework, other RYU
applications can also be used in conjunction with the
RAN.

A. Overview

The RAN is an SDN application that is able to
decode RAP messages from DIFFUSE [3]. It utilises
the RYU software components in order to both monitor
and modify the SDN switch. In order to modify the
switch, the RAN must first establish a connection with
the switch. This is accomplished by running the RYU
manager command, where all the RYU controller ap-
plications, including the RAN, will be instantiated. The
RAN is able to accept RAP packets, decode the message
and deploy an action.

The RAN currently only supports one flow informa-
tion within the packet at a time, unlike the original AN
which supports multiple flow messages within the same
packet.

B. Design of Ryu Action Node

The RAN runs as an additional thread outside of the
simple switch program, binding onto TCP port 5000
to listen for RAP flow information packets. When a
RAP message is received, the contents of the message
is decoded where a 5-tuple flow ID and flow class is
extracted. The class is used to specify which action to
take (see Section IV-D). This action, along with the 5-
tuple information, is used to create an OpenFlow 1.3
message using RYU’s API to deploy the action as a
rule within the SDN hardware. All future traffic which
matches the rule will be subject to the SDN flow table
entry.

C. Supporting Multiple Prioritisation Techniques

The RAN supports a limited number of prioritisation
techniques due to the hardware limitations on switches
that provide OpenFlow. We explored the use of both
queuing and metering within the RAN. The RAN is
flexible in that it allows the utilisation of either queues,
meters, or both. These options are specified in the RAN
configuration file and can be specified on a per-class
basis.

1) Queues: Each physical switch port can support up
to eight Queues (also known as slices), where each queue
is given a portion of the available bandwidth. This is
achieved by either defining the maximum bandwidth of
each queue or giving a minimum bandwidth to the queue
which it will try to abide by. Using maximum bandwidth
settings will throttle a queue, limiting the maximum
achievable bandwidth. Using minimum bandwidth will
attempt to limit the throughput of other queues such
that queues with defined minimum bandwidth can be
achieved.

2) Meters: Metering works by monitoring the aggreg-
ate bandwidth of each flow attached to it. When the
threshold has been reached, the meter will perform the
nominated action on the given flows. Actions supported
by the Pica8 OVS Switch using Open vSwitch 2.3.0 are
Drop and DSCP Remark.
Drop meter Limits the bandwidth of any aggregate flow

that exceeds the threshold and discard any
packets to maintain bandwidth limits.

DSCP Remark Changes the Differentiated Services
Code Point (DSCP) [12] in the packet
header.

DSCP Remark was not tested due to the lack of a
configured DiffServ network [13]. In a DiffServ, each
queue would be assigned DSCP numbers with different

CAIA Technical Report 160429A April 2016 page 3 of 9

configurations. If a flow were to exceed the threshold
set for their flow they would have their DSCP number
increased by a certain amount and consequently this
may place the flow into another queue with different
properties.

D. Configuration File Format

The RAN actions are defined by entries in the RAN
Configuration File. The file is formatted using the stand-
ard INI notation [14], where INI sections are defined per
traffic class (as parameters specified by the Classifier
Node) and action details for that class are specified
within each corresponding section.

The RAN supports a “default” (case sensitive)
class which is deployed when the CN sends flow inform-
ation for an unspecified class. Alternatively, the RAN
will allocate unknown classes to queue 0 with no other
parameters.

For each class, traffic can be allocated to queues (0-7),
multiple classes may be allocated to each queue. Classes
not assigned to a queue will be allocated to queue 0.
Queue configuration does not support bandwidth settings
as this can only be specified manually either using a CLI
(such as the RYU REST API [15]) or directly at the
switch.

Meters are able to be assigned to each class and will
activate when the aggregate bandwidth of each class
assigned to a meter surpasses the set threshold.

It is also possible to combine a queue with an SDN
meter by different settings in the configuration file.
Parameters that can be set on a meter include

• Type - Either Drop or DSCP Remark
– Drop will limit the maximum bandwidth

through a meter when active
– DSCP Remark will increase the DSCP number

when active
• Rate - The bandwidth threshold
• Dscp - The DSCP amount that will be added to the

existing DSCP number
Up to 100 meters can be assigned a unique numeric
meterid. If a single meter is used across multiple classes,
the actual configuration will be taken from the first
instance in the configuration file.

An example configuration file is provided in Figure
3. In this example we have 3 classes a Web, Voip
and a default class. The web class has the following
parameters: any traffic in the Web class is placed in
queue 0 with a meter also attached to it numbered 1. The
threshold bandwidth at which the meter will activate is

100000 bits/s and the meter type will be a drop meter.
Traffic classed as Voip will be placed into queue 1 with
no meter attached. The default class will place traffic
into queue 0, and meter 2 will be set as DSCP. The
threshold bandwidth at which it activates is 50000 bits/s,
it will increase the DSCP number by 12, if active, for
any traffic classed as default.

The available parameters and their allowed values are
listed in Table I.

Table I
CONFIGURATION PARAMETERS

Field Description
Queue Number between 0-7
MeterID Number between 1-100
Rate Maximum bandwidth in bits per second
Type Drop or DSCP
DSCP Any numeric value

[Web]
queue = 0
meterid = 1
rate = 100000
type = drop

[Voip]
queue = 1

[default]
queue = 0
meterid = 2
rate = 50000
type = dscp
dscp = 12

Figure 3. Example Configuration File

V. VERIFICATION

To be useful, the RAN needs to be capable of properly
processing incoming RAP messages, and subsequently
correctly program the SDN hardware.

A. Base Testing of the RAN

The DIFFUSE FCN [5] is used to test the RAN.
There are two steps involved in confirming that the RAN
is functioning correctly, the first requires verifying that
the RAN can correctly process RAP packets and then
implement appropriate rules on the SDN switch using
OpenFlow. In this test there will be no live traffic flowing
through the switch, and verification is via visual inspec-
tion of the switch output table following the receipt of
the flow message from the FCN.

CAIA Technical Report 160429A April 2016 page 4 of 9

RYU

SDN Switch

RYU Action
Node

Fake Classifier
 Node

Application Plane

Control Plane

Data Plane

Figure 4. SDN Overview

For the purposes of this test we configure the RAN
using the example configuration file in Figure 3. The
configuration file defines three classes Web, Voip and
default, each implementing the following prioritisation
settings within the SDN switch:
Web Traffic is place into queue 0 using meter 1, con-

figured as a drop meter.
Voip Traffic is not managed using meters but is placed

into queue 1
Default Traffic is placed into queue 0 using meter 2,

configured as a DSCP meter.
These tests will not confirm if traffic is being correctly
processed by the switch but instead confirm that the
appropriate changes are made to the output table based
upon messages from the FCN.

To test the RAN, we built a testbed as per Figure 6.
An FCN was instantiated on a PC loaded with FreeBSD
9.0 and the RAN & simple switch application loaded
onto the RYU controller on a virtual machine running
Ubuntu 13.34. The RYU controller was connected to a
Pica8 OVS Switch running on Open vSwitch 2.3.0. The
Switch was configured with the commands in Figure 5.
As rules are added/removed, we can see the changes
being made to the switch flow table.

ovs-vsctl set Bridge br0 protocols=OpenFlow13
ovs-vsctl set-manager ptcp:6632
ovs-vsctl set-controller br0
tcp:136.186.93.25:6633

Figure 5. Switch Configuration

At the start of the experiment, the RAN initialised
communications with the SDN switch via the RYU
controller, and the SDN Switch rule table was empty.

Three RAP messages were sent using the FCN to the
RAN (see Figure 7). Each RAP message contains both

FCN RYU

SDN Switch

Figure 6. Testbed

a unique 5-tuple and traffic class to ease identification
of flows in the Switch table. Furthermore, the last RAP
message contains a traffic class not configured in the
RAN configuration file.

As the three test RAP messages were sent to the RAN,
we can see the switch rule table being populated. Upon
completion of all three tests, the rule table contained the
information shown in Table II. Further examination of
the meters installed on the switch are shown in Figure
8. Through visual inspection, we can see that the meters
are being created based on the information in the RAN
configuration file and that the rules in the table correctly
match the corresponding 5-tuple information and class
configuration options.

We note that the FCN message containing the
”unknown” class was assigned the ”default” class
(see Figure 3) in the switch rule table (see Table II).
This shows that the default function works as intended
and classes that are not specified in the action file are
correctly assigned to the ”default” class.

OFPST_METER_CONFIG reply (OF1.3)
(xid=0x2):
meter=1 kbps bands=
type=drop rate=1000000

meter=2 kbps bands=
type=dscp_remark rate=50000 prec_level=12

Figure 8. Pica8 Switch Output Meters

Further testing was done by using the FCN to incre-
mentally remove each flow from the RAN. Upon each
FCN execution, the appropriate rule was removed from
the SDN switch rule table and any required meters were
removed from the meter output.

Finally, the RAN is required to auto-expire rules in
the switch rule table if no regular updates are receipt
from the FCN. It was confirmed by visual inspection of
the SDN table that rules were appropriately removed 60
seconds after the rule was implemented.

At this stage we have verified that the RAN can prop-
erly parse RAP messages received from a DIFFUSE CN,

CAIA Technical Report 160429A April 2016 page 5 of 9

FCN CLI INPUT
python fake_cnode.py -i 10.0.0.1 -j 10.0.0.2 -k 8000 -l 8001 -t 60 -c Web -u 6 -x
136.186.93.25 -y 5000 -z tcp -n 20
python fake_cnode.py -i 10.0.0.1 -j 10.0.0.3 -k 5000 -l 80 -t 60 -c Voip -u 17 -x
136.186.93.25 -y 5000 -z tcp -n 21
python fake_cnode.py -i 10.0.0.1 -j 10.0.0.4 -k 66 -l 666 -t 60 -c unknown -u 17 -x
136.186.93.25 -y 5000 -z tcp -n 22

Figure 7. FCN Commands

Table II
PICA8 SWITCH OUTPUT TABLE 0 - ADD

Priority Cookie Match Fields Actions Duration Packets Bytes

22 0x0

ipv4_dst=10.0.0.4, hard_timeout=60,
ipv4_src=10.0.0.1, idle_timeout=60,
eth_type=0x0800, tp_dst=666, ip_proto=17,
tp_src=66,

meter:2,set_queue:0,goto_table:1 6.921s n/a 0

21 0x0

ipv4_dst=10.0.0.3,
hard_timeout=60,ipv4_src=10.0.0.1,
idle_timeout=60, eth_type=0x0800,
tp_dst=80, ip_proto=17, tp_src=5000,

set_queue:1,goto_table:1 9.391s n/a 0

20 0x0

ipv4_dst=10.0.0.2,
hard_timeout=60,ipv4_src=10.0.0.1,
idle_timeout=60, eth_type=0x0800,
tp_dst=8001, ip_proto=6, tp_src=8000,

meter:1,set_queue:0,goto_table:1 9.970s n/a 0

0 0x0 goto_table:1 1186.355s n/a 0

and correctly create and remove rules on a connected
OpenFlow switch via the RYU controller.

B. Testing the RAN in an SDN scenario

The second aspect of confirming RAN functional-
ity is to confirm that it functions properly with other
OpenFlow applications in the RYU architecture, and that
live traffic flows are correctly processed by the switch
following implementation of a rule.

The testbed used for this experiment is shown in
Figure 8. The FCN is running on a dedicated FreeBSD
9.0 host which is communicating using the DIFFUSE
RAP protocol to a RYU controller running on a Ubuntu
13.34 virtual host. The RYU controller is running both
our RAN application and the simple switch application
as provided within RYU. The SDN switch was a Pica8
OVS Switch running on Open vSwitch 2.3.0. Two virtual
hosts running a standard Debian install are connected to
the switch in order to generate and sink traffic flows.

Host1 is configured to send a UDP stream to host2 at
10 Mbps using iperf [16]. In order to ensure that there
are no bottlenecks on our physical hardware or virtual
hosts generating traffic, the link speed for each port on
the Switch was limited to 10 Mbps. Throughput speed
was measured using iperf at a 1 sec interval on host2.

It is expected that the simple switch application run-
ning on the RYU controller will correctly result in the
switch being programmed to switch traffic between the
two test hosts. Following this, the FCN host will be
used to program queue and/or meter settings within the
SDN switch to manage the UDP flow. This will verify
both that the RAN can happily co-exist with other RYU
applications, and that the flow rule programmed by the
RAN has the desired effect.

FCN RYU

SDN Switch

host1

host2

Figure 9. Testbed QoS

1) Queue Test : In this experiment we are confirming
basic functionality in that the queues are behaving as
expected. The switch was configured with 6 queues as

CAIA Technical Report 160429A April 2016 page 6 of 9

outlined in Table III. The RAN was then configured with
6 different traffic classes as per Figure 10, with classes
0 through 5 mapping to the corresponding queues.

Table III
BANDWIDTH LIMIT

Queue No. Max BW(Mbps) Section in Figure 11
0 Unlimited 1, 7
1 1 2
2 6 3
3 3 4
4 2 5
5 5 6

Initially, the live traffic was classified as class0,
and was therefore being handled by queue 0. After brief
periods, the FCN was used to change the classification
of the flow through the sequence class0, class1,
class2, class3, class4, class5,
class0. Throughput measurements from iperf
for the duration of this test are shown in Figure 11.

[default]
queue = 0
[class0]
queue = 0
[class1]
queue = 1
[class2]
queue = 2
[class3]
queue = 3
[class4]
queue = 4
[class5]
queue = 5

Figure 10. RAN Action File II

Initially, the traffic flow was observed to be using
nearly all the available bandwidth. This is expected as
queue 0 does not implement any bandwidth limitations.
We can see during each change in classification, after a
short transition period, the achieved throughput appears
to be correctly limited by the corresponding queue
bandwidth limits. Additionally, during the brief transition
period, we can see a spike in throughput which appears
to reach the overall bandwidth limit programmed on the
port.

While the RAN was simply changing the queue al-
located to the traffic via OpenFlow, it appears as though
the process of changing the queue results in a two step
process of first removing the queue rule from the flow

table followed by immediately creating a replacement
rule. This might explain the short period whereby the
traffic does not appear to be managed. Further invest-
igation is required to confirm this. This artefact is an
outcome of the implementation of the SDN switch and
not of the RAN controller. Furthermore, the brief period
of default performance is equivalent to the outcome,
should no prioritisation be in place.

It is also evident that when the queues were not
limiting bandwidth, that there are occasional dips in
measured throughput. We speculate that this is due to
the bandwidth limitation programmed on the switch port
being slightly mismatched to the bandwidth limitation
employed by iperf, resulting in occasional packet loss
due to overflow. In order to confirm this, further tests
are required.

This test confirms that flows passing through the
switch can be dynamically classified, and subsequently
be moved into different queues subject to bandwidth
limitations while traffic is flowing. The test also con-
firms that bandwidth limitation via queues is functional,
despite a brief transition period when classification, and
therefore queue allocation, changes dynamically.

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500

B
an

d
w

id
th

(M
b

it
/s

)

Time(seconds)

UDP Max Bandwidth Queue Test 10Mbps

H2

10Mbps

1Mbps

6Mbps

3Mbps

2Mbps

5Mbps

10Mbps

1 2 3 4 5 6 7

Figure 11. Queue Test Results

2) Meter Test: This experiment is to confirm that the
SDN meters are performing as expected. The meters
monitor live traffic and drop packets above the bandwidth
threshold based on class. Two meters were configured as
per Figure 12, both set with meter type drop and using
queue 0. The two meters activate at bandwidth thresholds
of 3 Mbps and 5 Mbps respectively. Throughput band-
width was measured on host2 at 1 second intervals using
iperf.

Initially traffic is allocated to the default class. Figure
13 shows that all the available bandwidth was being
consumed, this behaviour is expected as the default
class has no prioritisation schemes attached. As traffic

CAIA Technical Report 160429A April 2016 page 7 of 9

is reclassified to class0 or class1 the output as measured
by iperf drops to 3 Mbps and 5 Mbps respectively.

[class0]
queue = 0
meterid = 1
type = drop
rate = 3000000

[class1]
queue = 0
meterid = 2
type = drop
rate = 5000000

Figure 12. RAN Action File III

Our testing confirms that the RAN can correctly
program an SDN switch to use meters and consequently
subject live traffic to drop packets at a certain threshold.
The measurements also confirm that the drop meter
function is working as intended with stable transitions
between meters and also output consistent throughput
bandwidth.

0

2

4

6

8

10

12

0 80 100 120 140

B
an

d
w

id
th

 (
M

b
it

/s
)

Time (Seconds)

Simple UDP Drop Test 10Mbps
No meter

Meter 1 @
3Mbps

Meter 2 @
5Mbps

No meter

2 3 4

H2

20 40 60

1

Figure 13. Meter Test Results

VI. CONCLUSIONS

This report explores the process of supporting DIF-
FUSE on SDN hardware, the testing methodology and
the outcome of the results to verify the implementation.

To provide SDN-DIFFUSE compatibility, we de-
veloped the RYU Action Node to receive and parse
DIFFUSE RAP messages. The RYU Action Node was
successful at managing the DIFFUSE messages and was
able to deploy the correct configured rules to an SDN
switch.

Multiple Quality of Service parameters were tested to
review the performance of the SDN switch and determine

if QoS rules can be implemented dynamically and rap-
idly. The Queue test determined that flow throughputs
were inconsistent when transitioning between queues,
exhibiting spikes and drops during the test, whilst the
Meter test worked as expected without any abnormal
behaviour.

Future work can be done to better understand the
unexpected behaviour from the Queue test. The RAN
only provides the foundation for DIFFUSE to connect to
the SDN network and will required further development
on classification and machine learning in SDN to bring
us closer to complete DIFFUSE integration.

REFERENCES

[1] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined
networking (sdn): A reference architecture and open apis,” in
ICT Convergence (ICTC), 2012 International Conference on.
IEEE, 2012, pp. 360–361.

[2] B. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past,
present, and future of programmable networks,” Communica-
tions Surveys & Tutorials, IEEE, vol. 16, no. 3, pp. 1617–1634,
2014.

[3] S. Zander and G. Armitage, “Design of DIFFUSE v0.4
- Distributed Firewall and Flow-shaper Using Statistical
Evidence,” Centre for Advanced Internet Architectures,
Swinburne University of Technology, Melbourne, Australia,
Tech. Rep. 110704A, 04 July 2011. [Online]. Available: http:
//caia.swin.edu.au/reports/110704A/CAIA-TR-110704A.pdf

[4] N. Williams and S. Zander, “Real Time Traffic Classification
and Prioritisation on a Home Router using DIFFUSE,” Centre
for Advanced Internet Architectures, Swinburne University of
Technology, Melbourne, Australia, Tech. Rep. 120412A, 12
April 2012. [Online]. Available: http://caia.swin.edu.au/reports/
120412A/CAIA-TR-120412A.pdf

[5] D. Pham and J. But, “Developing a Fake Classifier Node
for DIFFUSE,” Centre for Advanced Internet Architectures,
Swinburne University of Technology, Melbourne, Australia,
Tech. Rep. 160422A, 22 April 2016. [Online]. Available: http:
//caia.swin.edu.au/reports/160422A/CAIA-TR-160422A.pdf

[6] Ryu Framework Community, “Ryu SDN Framework,” 2016.
[Online]. Available: http://osrg.github.io/ryu/index.html

[7] B. Pfaff, B. Lantz, B. Heller et al., “Openflow switch
specification version 1.3.0,” Open Networking Foundation,
2012. [Online]. Available: https://www.opennetworking.
org/images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-spec-v1.3.0.pdf

[8] U. J. Antsilevich, P.-H. Kamp, A. Nash, A. Cobbs, and
L. Rizzo, “ipfw – User interface for firewall, traffic shaper,
packet scheduler, in-kernel NAT,” FreeBSD System Manager’s
Manual, 2011. [Online]. Available: https://www.freebsd.org/
cgi/man.cgi?query=ipfw&manpath=FreeBSD+9.0-RELEASE

[9] Python Software Foundation, “Python,” 2016. [Online].
Available: https://python.org/

[10] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 2, pp.
12–20, 2010.

[11] Ryu Framework Community, “Simple switch 1.3 source,” 2015.
[Online]. Available: https://github.com/osrg/ryu/tree/master/ryu/
app

CAIA Technical Report 160429A April 2016 page 8 of 9

http://caia.swin.edu.au/reports/110704A/CAIA-TR-110704A.pdf
http://caia.swin.edu.au/reports/110704A/CAIA-TR-110704A.pdf
http://caia.swin.edu.au/reports/120412A/CAIA-TR-120412A.pdf
http://caia.swin.edu.au/reports/120412A/CAIA-TR-120412A.pdf
http://caia.swin.edu.au/reports/160422A/CAIA-TR-160422A.pdf
http://caia.swin.edu.au/reports/160422A/CAIA-TR-160422A.pdf
http://osrg.github.io/ryu/index.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.freebsd.org/cgi/man.cgi?query=ipfw&manpath=FreeBSD+9.0-RELEASE
https://www.freebsd.org/cgi/man.cgi?query=ipfw&manpath=FreeBSD+9.0-RELEASE
https://python.org/
https://github.com/osrg/ryu/tree/master/ryu/app
https://github.com/osrg/ryu/tree/master/ryu/app

[12] K. Nichols, S. Blake, F. Baker, and D. Black, “Rfc
2474: Definition of the differentiated services field (ds
field) in the ipv4 and ipv6 headers, december 1998,”
Obsoletes RFC1455 [47], 1998. [Online]. Available: https:
//www.ietf.org/rfc/rfc2474.txt

[13] D. Grossman, “New terminology and clarifications for diffserv,”
2002. [Online]. Available: https://www.ietf.org/rfc/rfc3260.txt

[14] Python Software Foundation, “Configparser,” 2016. [Online].
Available: https://docs.python.org/3/library/configparser.html

[15] Ryu Development Team, Ryu Documentation Release 4.1,
2016. [Online]. Available: https://media.readthedocs.org/pdf/
ryu/latest/ryu.pdf

[16] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhum,
“iperf3,” 2010. [Online]. Available: https://iperf.fr

CAIA Technical Report 160429A April 2016 page 9 of 9

https://www.ietf.org/rfc/rfc2474.txt
https://www.ietf.org/rfc/rfc2474.txt
https://www.ietf.org/rfc/rfc3260.txt
https://docs.python.org/3/library/configparser.html
https://media.readthedocs.org/pdf/ryu/latest/ryu.pdf
https://media.readthedocs.org/pdf/ryu/latest/ryu.pdf
https://iperf.fr

	Introduction
	Background
	Software Defined Networking
	RYU and OpenFlow

	DIFFUSE
	Classifier Node
	Action Node
	An OpenFlow based DIFFUSE Action Node

	Ryu Action Node
	Overview
	Design of Ryu Action Node
	Supporting Multiple Prioritisation Techniques
	Queues
	Meters

	Configuration File Format

	Verification
	Base Testing of the RAN
	Testing the RAN in an SDN scenario
	Queue Test
	Meter Test

	Conclusions
	References

