
Developing a Fake Classifier Node for DIFFUSE
Dzuy Pham∗, Jason But

Centre for Advanced Internet Architectures, Technical Report 160422A
Swinburne University of Technology

Melbourne, Australia
dhpham@swin.edu.au, jbut@swin.edu.au

Abstract—DIFFUSE (Distributed Firewall and Flow-
shaper Using Statistical Evidence) is a network prioriti-
sation system which implements Machine-Learning (ML)
based techniques to classify and subsequently prioritise
flows. Inefficient testing methodologies impacts on future
development, making it difficult to upgrade and expand.
We have developed a Fake Classifier Node (FCN) that
enables manual creation of DIFFUSE messages, bypassing
the ML components, leading to more efficient testing and
more reliable results. Tests confirm that the FCN is able
create DIFFUSE messages and that they are correctly
processed by existing DIFFUSE Action Nodes.

I. INTRODUCTION

Machine Learning (ML) based classifiers have made
significant progress recently and are steadily moving
network management towards automation [1]. DIFFUSE
(Distributed Firewall and Flow-shaper Using Statistical
Evidence) [2], a network prioritisation scheme con-
structed around ML-based techniques was developed
to segregate network traffic by 5-tuple inspection into
classes and consequently deploy prioritisation. In its
current state, DIFFUSE is constrained to FreeBSD [2]
and OpenWRT [3] systems and thus problematic to
deploy and test.

Additionally, testing and verifying each component
inside DIFFUSE is complicated. DIFFUSE lacks testing
programs, making it difficult to extend and develop
for. DIFFUSE requires live traffic to be analysed by a
Classifier Node before a classification can be made and
prioritisation implemented. As such the testing of Action
Nodes - which administer the prioritisation - is unreliable
due to the dynamic nature of the ML-based classifier, and
the reliance on live flow classification.

To tackle these problems, we developed a Fake Classi-
fier Node (FCN) that is able to test any Action Node and
verify its functionality. The FCN is a python based tool
that is able to send customisable DIFFUSE messages.

∗This work was performed while the author was an undergraduate
summer intern under the supervision of Dr Jason But.

The FCN sends classification messages to the AN via
the command line interface, effectively bypassing the
statistical analysis of live flows in a traditional CN. The
ability to create a customisable message results in more
consistent outcomes in the AN without being dependant
on ML classification.

This paper is organised as follows. Section II will
provide more detail on DIFFUSE and its structure, as
well as explaining some of the challenges in extending
DIFFUSE. Section III outlines the design of the Fake
Classifier Node and the structure of AN compatible
messages. While section IV covers the verification of
the FCN and testing methodology. Finally, section V
concludes with some remarks and future development
opportunities.

II. DIFFUSE

DIFFUSE [2] is a system which uses statistical anal-
ysis and Machine Learning based techniques to first
classify, and then prioritise selected flows in the net-
work. DIFFUSE is split into two main components, the
Classifier Node (CN) and the Action Node (AN).

Exporter

Classifier

Collector

Filter/Shaper

Classifier Node Action Node

Userspace

Kernel

Figure 1. DIFFUSE Components

A. Classifier Node

The CN classifies flows using ML-based techniques
based on statistical analysis of similar flows. The CN

CAIA Technical Report 160422A April 2016 page 1 of 5

mailto:dhpham@swin.edu.au
mailto:jbut@swin.edu.au


is made up of two components, 1) the classifier which
performs statistical analysis to assign a particular flow
to a class, and 2) the exporter which sends outbound
messages to a specified AN.

The CN runs within the kernel using IPFW [4] to
collect packets for processing. The CN filters packets
into flows based on the 5-tuple to perform per-flow
statistical analysis. The statistics are then passed to the
ML-based classifier where they are matched to a class.

Once a classification is made, a Remote Action Pro-
tocol (RAP) (see Section III-A) packet is created to be
sent by the exporter to a collector module in an AN to
be acted upon. Communications with the AN can use a
variety of transport layer protocols including TCP, UDP,
and SCTP.

Currently CN implementations only exist for FreeBSD
[2] and OpenWRT [3].

B. Action Node

The AN is also made up of two components, 1) the
collector module which receives RAP messages from a
CN, and 2) the filter/shaper which implements an action.

The action taken by the filter/shaper is based on the
flow class as reported by the CN, and instructions based
on the contents of an actions file that is loaded during
the AN setup. The resultant action is then applied to
Dummynet [5] in order to create the rule in the IPFW
[4] table. All subsequent packets of this flow will now
be (de)prioritised based on the classification.

Current AN implementations also only exist for
FreeBSD [2] and OpenWRT [3].

C. Extending DIFFUSE

One problem with further development of DIFFUSE
is that testing the AN is complex. This is due to the
nature of needing to:

1) Deploy a CN with a trained ML-based classifier
2) Generate live traffic flow, to create a classification
3) Wait for the CN to classify traffic and inform the

AN to take action
To address this problem, we have developed the FCN
to make future testing of any AN easier. The FCN is
able to create RAP packets to classify flows based on
command line parameters. This allows complete testing
of all configured classes within an AN without the
dependance on a full CN with ML-based classification.

*Information Element IDs can be found in [2]

Information Elements (IE)
Set ID = 256
Length of set
Export Name
Message Type
IPv4 Source Address
IPv4 Destination Address
Source Port
Destination Port
Protocol
Packet Count
Kilobyte Count
Class Tag (Contains: length, name, priority)
Timeout Type
Timeout
Action Name
Action Flag
Action Parameters

Information Elements in the order they appear in the
RAP packet

Figure 2. Remote Actions Protocol layout

III. DESIGN OF THE FAKE CLASSIFIER NODE

The Fake Classifier Node (FCN) generates packets that
conform to the Remote Actions Protocol structure III-A.
The AN can now be programmed directly bypassing the
machine learning components completely. The FCN is
coded in python and accessible from the command line.
Flow classifications created by the FCN can be sent to
any ANs that are listening.

The FCN is designed to be compatible with any AN,
including the FreeBSD and OpenWRT. Although DIF-
FUSE allows a CN to send specific actions to the AN,
this wasn’t implemented into the FCN as that function

CAIA Technical Report 160422A April 2016 page 2 of 5



can also be performed by the actions file. The FCN
can be used to either add or delete a flow classification
from the AN. These classifications and any associated
parameters can be specified from the Command Line
Interface (CLI) (See Section III-B) and sent using the
specified protocol to any AN.

A. Remote Action Protocol

The Remote Action Protocol (RAP) is an application
layer protocol, the payload is formatted using the RAP
protocol definition [2]. For typical UDP messages, the
template is sent along with the data to create a flow,
allowing the AN to know what the format of the data
is before parsing its payload. For a TCP message, the
template may be sent at the beginning of the connection
and subsequent messages will only contain the flow
classification information.

There exist three main components to the payload. For
the FCN, we used the format as shown in Figure 2.

While DIFFUSE is capable of sending multiple flow
classifications within a packet, the FCN setabds only one
flow classification per instantiation. This simplifies the
CLI and aids in the debugging of the AN, as only one
action will occur per message from the FCN.

B. About the Program

The FCN is written in Python and connects to any AN
using either UDP or TCP. A CLI was implemented to
allow customisable RAP messages. Once the parameters
have been set, the FCN will create the RAP message,
connect to a specified AN and send the message to the
AN.

The FCN command line options are summarised in
Figure 3). A more detail description can be found in
Table I.

IV. VERIFICATION

Verifying that the FCN is compatible with a DIFFUSE
AN confirms its functionality and that it is a viable
tool for future development of DIFFUSE. Each function
of the FCN was made sure to work correctly with the
original DIFFUSE with multiple different parameters set.

A. Testing the FCN

The FCN needs to be able to correctly perform the
output function of a DIFFUSE CN. In order to test this,
we need to confirm that messages from the FCN are
being properly implemented in a DIFFUSE AN. This is
done by sending flow update messages for nominated
5-tuples to an AN, and then checking to see if the
appropriate rules are being created in IPFW.

To test the FCN, a copy of FreeBSD 9.0 was loaded
onto a virtual machine, with DIFFUSE and Dummynet
[5] installed. The IPFW table was initialised using the
commands in Figure 4. In this example, flows allocated
to queue 2 are prioritised over flows allocated to queue
1, the default rule allocates all flows to queue 1. The AN
was configured to listen for RAP messages on UDP port
5000. The AN configuration file (see Figure 5) specifies
two traffic classes, myclass and other.

kldload dummynet
ipfw pipe 1 config bw 100Mbit/s
ipfw queue 1 config pipe 1 weight 100
ipfw queue 2 config pipe 1 weight 10
ipfw add 900 accept ip from any to any
in via em0
ipfw add 2100 queue 1 ip fron any to
any via em0

Figure 4. IPFW Initial Configuration

default queue 2
myclass:1 queue 1
other:1 queue 2

Figure 5. DIFFUSE Action File

We then used the FCN running on a second computer
to send different messages to the AN. We incremented
the RAP sequence number for each message. In total,
five different messages were sent using the commands
in Figure 6. Figure 7 shows the contents of the IPFW
table after the FCN commands were executed. We can
visually verify that the appropriate rules have been added
to the IPFW table.

We also tested sending a flow removal command via
the FCN and verifying that the corresponding rule was
deleted from the IPFW table.

Our testing indicates that the RAP messages formed
by the FCN are properly constructed. All messages
resulted in rules being properly processed by the AN and
subsequent prioritisation rules being installed/removed.
This gives us confidence that the FCN can be used in
future testing of any DIFFUSE compatible ANs.

V. CONCLUSIONS

This report focuses on addressing some of the chal-
lenges in testing DIFFUSE. In order to facilitate future
development of DIFFUSE, we created a Fake Classifier
Node to easily and efficiently test Action Nodes. The
FCN exists to minimise unexpected variables that can

CAIA Technical Report 160422A April 2016 page 3 of 5



Table I
FCN PARAMETERS

Command Name Description
–i Source IPv4 Set the Source IPv4 address for matching. (5-tuple)
–j Destination IPv4 Set the Destination IPv4 address for matching.(5-tuple)
–u Protocol Type Set the protocol type number for matching. The full list of protocols and their corresponding

numbers can be found here [6]. (5-tuple)
–k Source Port Set the Source Port number for matching. (5-tuple)
–l Destination Port Set the Destination Port number for matching. (5-tuple)
–s Sequence No. The sequence number determines the order RAP packets were sent to the AN. The FCN

requires the sequence number increased with every message sent for DIFFUSE or the message
will be ignored.

–e Export Name The name of the exporter, which sent the packet in the CN.
–c Class Name The Classification Name given for this set of 5-tuple
–a Msg Type 0 - AN adds the single rule to the rule table

1 - AN deletes all rules which match the 5-tuple
2 - AN deletes all rules in the flow table (Only available in RAN)

–t Timeout Value Time the flow rules in the AN will expire (Default: 60 seconds)
–n Priority Match The order in which flow table rules would match, higher numbers will match first and the action

coresponding to the rule applied
–x Host IPv4 IPv4 Address of the AN we want to connect to
–y Host Port No. Port Number of the AN we want to connect to
–z Host Protocol Protocol used to connect to the AN

usage: fakecnode.py [-h] [-i Source IP] [-j Destination IP] [-s Sequence Number] [-k Source
port] [-l Destination port] [-u Protocol Type] [-a Msg Type] [-t Timeout Value] [-e Export] [-c
Class] [-n Priority] [-x Host] [-y Port] [-z Proto]

Figure 3. FCN CLI

occur from a ML-based CN by performing the same
functions as the CN but in a controlled environment.
Testing of ANs no longer requires a working CN as they
are replaced by the FCN.

Our testing using existing DIFFUSE Action Nodes
demonstrates that the FCN is capable of creating cus-
tomisable AN compatible messages. These messages
were successfully processed by a working AN and
prioritisation was able to be implemented by the AN.

Our work will allow testing of any ANs irrespective of
their operating system. This also aids in the development
of ANs in environments that currently do not have a
working CN. Testing of multiple ANs can be made more
efficient, whereby one FCN is able to easily program
multiple installed ANs.

REFERENCES

[1] T. T. Nguyen and G. Armitage, “A survey of techniques
for internet traffic classification using machine learning,”
Communications Surveys & Tutorials, IEEE, vol. 10, no. 4, pp.
56–76, 2008. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=4738466

[2] S. Zander and G. Armitage, “Design of DIFFUSE v0.4
- Distributed Firewall and Flow-shaper Using Statistical
Evidence,” Centre for Advanced Internet Architectures,
Swinburne University of Technology, Melbourne, Australia,

Tech. Rep. 110704A, 04 July 2011. [Online]. Available:
http://caia.swin.edu.au/reports/110704A/CAIA-TR-110704A.pdf

[3] N. Williams and S. Zander, “Real Time Traffic Classification
and Prioritisation on a Home Router using DIFFUSE,” Centre
for Advanced Internet Architectures, Swinburne University of
Technology, Melbourne, Australia, Tech. Rep. 120412A, 12
April 2012. [Online]. Available: http://caia.swin.edu.au/reports/
120412A/CAIA-TR-120412A.pdf

[4] U. J. Antsilevich, P.-H. Kamp, A. Nash, A. Cobbs, and
L. Rizzo, “ipfw – user interface for firewall, traffic shaper,
packet scheduler, in-kernel nat,” FreeBSD System Manager’s
Manual, 2011. [Online]. Available: https://www.freebsd.org/cgi/
man.cgi?query=ipfw&manpath=FreeBSD+9.0-RELEASE

[5] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM
SIGCOMM Computer Communication Review, vol. 40, no. 2,
pp. 12–20, 2010. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1764876

[6] IANA, Protocol Numbers, Std., 2016. [Online].
Available: http://www.iana.org/assignments/protocol-numbers/
protocol-numbers.xhtml

CAIA Technical Report 160422A April 2016 page 4 of 5

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4738466
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4738466
http://caia.swin.edu.au/reports/110704A/CAIA-TR-110704A.pdf
http://caia.swin.edu.au/reports/120412A/CAIA-TR-120412A.pdf
http://caia.swin.edu.au/reports/120412A/CAIA-TR-120412A.pdf
https://www.freebsd.org/cgi/man.cgi?query=ipfw&manpath=FreeBSD+9.0-RELEASE
https://www.freebsd.org/cgi/man.cgi?query=ipfw&manpath=FreeBSD+9.0-RELEASE
http://dl.acm.org/citation.cfm?id=1764876
http://dl.acm.org/citation.cfm?id=1764876
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml


FCN CLI INPUTS
python fake_cnode.py -i 10.0.0.1 -j 10.0.0.1 -k 8000 -l 80 -t 60 -s 10 -c myclass -x
192.168.1.2 -y 5000 -z udp
python fake_cnode.py -i 10.0.0.2 -j 10.0.0.1 -k 22 -l 22 -t 60 -s 11 -c other -x 192.168.1.2 -y
5000 -z udp
python fake_cnode.py -i 10.0.0.3 -j 10.0.0.1 -k 22 -l 22 -t 60 -u 17 -c myclass -s 12 -x
192.168.1.2 -y 5000 -z udp
python fake_cnode.py -i 10.0.0.4 -j 10.0.0.1 -k 1234 -l 1234 -t 60 -u 1 -c unknown -s 13 -x
192.168.1.2 -y 5000 -z udp

Figure 6. FCN Verification Diffuse

Output from DIFFUSE at 192.168.1.2
usage: ipfw show
00900 0 0 allow ip from any to any in via em0
01000 0 0 queue 1 tcp from 10.0.0.1 8000 to 10.0.0.1 dst-port 80 keep-state
01001 0 0 queue 2 tcp from 10.0.0.2 22 to 10.0.0.1 dst-port 22 keep-state
01002 0 0 queue 1 udp from 10.0.0.3 22 to 10.0.0.1 dst-port 22 keep-state
01003 0 0 queue 2 icmp from 10.0.0.4 1234 to 10.0.0.1 dst-port 1234 keep-state
02100 0 0 queue 1 ip from any to any via em0

*Bold Text shows that these rules were added after CLI inputs

Figure 7. DIFFUSE IPFW OUTPUT

CAIA Technical Report 160422A April 2016 page 5 of 5


	Introduction 
	DIFFUSE
	Classifier Node
	Action Node
	Extending DIFFUSE

	Design of the Fake Classifier Node
	Remote Action Protocol
	About the Program

	Verification
	Testing the FCN

	Conclusions
	References

