Dummynet AQM v0.2 — CoDel, FQ-CoDel, PIE and
FQ-PIE for FreeBSD’s ipfw/dummynet framework

Rasool Al-Saadi, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 160418A
Swinburne University of Technology
Melbourne, Australia
ralsaadi@swin.edu.au, garmitage @swin.edu.au

Abstract—Controlled delay (CoDel) and Proportional
Integral controller Enhanced (PIE) are active queue man-
agement (AQM) schemes designed to control bottleneck
queueing delay. FlowQueue-CoDel (FQ-CoDel) is hybrid
scheme that hashes flows into one of N queues, applies
CoDel AQM on a per-queue basis and utilises modified
Deficit Round Robin (DRR) scheduling to share link capac-
ity between queues. We provide the first well-documented
implementations for FreeBSD’s ipfw/dummynet frame-
work, and confirm the utility of the IETF’s AQM working
group’s current CoDel, FQ-Codel and PIE Internet Drafts.
We also introduce a prototype “FlowQueue-PIE” (FQ-PIE)
implementation that combines FQ-CoDel’s FlowQueuing
with PIE’s individual queue management. We experimen-
tally compare our implementations against the current
Linux CoDel, FQ-CoDel and PIE and show plausible
results from FreeBSD FQ-PIE. Patches have been prepared
for FreeBSD11-CURRENT and FreeBSD-10.x-RELEASE.

Index Terms—AQM, Scheduler, CoDel, FQ-CoDel, PIE,
FQ-PIE, FreeBSD, Dummynet, IPFW

I. INTRODUCTION

Network routers use buffers to enhance routing per-
formance and increase overall throughput by absorbing
packet bursts and reducing packets drop. In recent years,
routers have used oversized buffer due to low memory
prices and this causes high latency in congested bottle-
necks if traditional tail drop is used. Researchers have
been attracted to find solutions to this problem by using
active queue management (AQM) to manage bottlenecks
buffers. AQM controls queue length by dropping/mark-
ing packets from bottleneck buffer when it becomes full
or queue delay becomes over a threshold value. Some
AQMs, such as RED (Random Early Detection) [1] and
its variations, use queue occupancy as an indicator of
how much a queue is congested. However, these types
of AQMs are hard to configure and perform badly in
certain scenarios [2].

CAIA Technical Report 160418A

April 2016

CoDel (Controlled delay) [3] and Proportional Integral
controller Enhanced (PIE) [4] are examples of a modern
AQM designed to remedy these limitations by using
queue delay, instead of queue length, to indicate standing
queues. FQ-CoDel [5] is a hybrid scheme — flows are
assigned to one of a pool of internal queues, each
active queue runs an independent instance of CoDel,
and a modified Deficit Round Robin (DRR) scheduler
shares outbound link capacity between the active queues.
Implementations of CoDel and FQ-CoDel have existed
in the Linux kernel since version 3.5 [6] and PIE
since version 3.14 [7]. FreeBSD11-CURRENT has had a
CoDel implementation in the pf/ALTQ framework' since
August 21st 2015 (merged into FreeBSD 10-STABLE?
on April 16th 2016).

This report introduces v0.2 of our AQM implemen-
tations for FreeBSD’s ipfw/dummynet framework [8].
Using current IETF Internet Drafts [3]-[5] we now have
independent implementations of CoDel, FQ-Codel and
PIE for FreeBSD. We have additionally taken PIE one
step further and implemented a hybrid “FQ-PIE” that
combines FQ-CoDel’s FlowQueuing with PIE queue
management on individual queues. Our initial FQ-PIE
experiments show good sharing of capacity between
competing flows, while achieving high throughput and
low queueing delay. Our work helps usefully enhance
FreeBSD and demonstrate that [3], [S] and [4] are clear
enough for implementation.

Our v0.2 patchset® can be applied to FreeBSD-
10.{0,1,2,3}-RELEASE and FreeBSD11-CURRENT
1297692%. We confirm the functionality of our v0.2

"https://svnweb.freebsd.org/base?view=revision&revision=287009

*https://svnweb.freebsd.org/base?view=revision&revision=298133

3http://caia.swin.edu.au/freebsd/aqm/patches/
dummynet-agm-patch-0.2.tgz

*And potentially later revisions of FreeBSD11-CURRENT

page 1 of 18

mailto:ralsaadi@swin.edu.au
mailto:garmitage@swin.edu.au
https://svnweb.freebsd.org/base?view=revision&revision=287009
https://svnweb.freebsd.org/base?view=revision&revision=298133
http://caia.swin.edu.au/freebsd/aqm/patches/dummynet-aqm-patch-0.2.tgz
http://caia.swin.edu.au/freebsd/aqm/patches/dummynet-aqm-patch-0.2.tgz

implementation by comparing our results with Linux
CoDel, FQ-CoDel and PIE implementation.

This technical report extends the v0.1 report [9],
and is organised as follows: Section II includes basic
information about ipfw/dummynet. Sections III, IV, V
and VI contain detailed information about configuring
CoDel, FQ-CoDel, PIE and FQ-PIE respectively. Section
VII summarises how to apply, test and install our patch.
Section VIII compares experimentally derived results
from the FreeBSD and Linux CoDel, FQ-CoDel and PIE
implementations, Section IX briefly demonstrates results
with FreeBSD FQ-PIE, and we conclude in Section X.

II. IPFW/DUMMYNET

FreeBSD’s IPFW firewall supports both IPv4 and
IPv6, and allows filtering, redirecting, NAT, forwarding,
and other operations on IP packets passing through
network interfaces [10]. IPFW is tightly integrated with
dummynet, providing traffic shaping, delay emulation,
packet scheduling and queue management functionality.

Originally a tool to run experiments in an emulated
network environment, Dummynet has been improved
over time to support emulation of complex network
configurations [11]. The latest version of Dummynet im-
plements three queue management schemes (Drop Tail,
RED and GRED) and supports dynamically loadable
packet schedulers with many schedulers implementation
including First In First Out (FIFO), Worst-case Weighted
Fair Queueing (WF2Q+), Quick Fair Queueing (QFQ),
and others.

Dummynet provides users with three objects:

1) Pipe: represents a link that supports traffic shaping
and delay emulation.
2) Queue: represents a queue of packets managed by
a queuing management scheme and connected to
a packet scheduler.
3) Scheduler: represents a packet scheduler con-
nected to a link and has one or more queues.
The user-space ipfw command is used to create, delete,
configure and show these objects. For simplicity and
compatibility reasons, dummynet creates additional ob-
jects when a certain objects is created. For example,
when new pipe is created, queue and scheduler objects

An AQM module must define two mandatory func-
tions (dequeue and enqueue) and could have a structure
for state variables (for each queue) to store AQM internal
variables and another for configuration parameters (for
flowset) to store AQM configurations. In our implemen-
tation, CoDel is implemented as an AQM module to
be configured for queues (or for implicit queues created
when pipes are created) while FQ-CoDel is implemented
as scheduler module that includes both FQ scheduler
code and CoDel AQM code.

III. CoDEL

CoDel drops or marks packets depending on packet
sojourn time in the queue, and aims to achieve high
throughput while controlling queue delay and to be
nearly insensitive to flow RTT. It was designed to be
parameterless and work properly on the Internet with-
out changing its default configurations. However, the
defaults in [3] are not always suitable (for example, when
path RTT is high) and can degrade TCP throughput.
Thus, our implementation provides options to change
CoDel parameters for each pipe/queue individually as
well as changing the defaults.

A. CoDel Parameters

CoDel has two primary parameters (target and
interval) and one option ([no]ecn) to enable or
disable Explicit Congestion Notification (ECN). target
is the minimum acceptable persistent queue delay that
CoDel allows. CoDel does not drop packets directly after
packets sojourn time becomes higher than target but
waits for interval before dropping. interval should
be set to maximum RTT for all expected connection. ecn
controls whether, for ECN-enabled TCP flows, CoDel
marks or drops packets when queue delay become high.

Table I shows our CoDel configuration parameters,
default values and sysctl control variables to change
the default value.

B. CoDel Synopsis

CoDel is used with dummynet ‘pipe’ or ‘queue’
and can be configured through ipfw [12] interface.
CoDel has the following synopsis:

are created as well. For more details see the ipfw(8) 1iPfw pipe/queue x config [...] codel [

FreeBSD Man Pages [12]. target t] [interval t] [ecn | noecn]
We implemented CoDel and FQ-CoDel in Dummynet where

due. to its pop}llarity and flexibility. To make the process t is time in seconds (s), milliseconds (ms) or

of implementing new AQMs for Dummynet easier, we microseconds (us). The default interpretation is

also added support for dynamically loadable AQM kernel milliseconds.

module similar Dummynet schedulers.

CAIA Technical Report 160418A April 2016 page 2 of 18

Table I: CoDel configuration parameters & options

Parameters | Default | Min | Max | sysctl variable names and units (to set defaults)

target Sms lus Ss net.inet.ipdummynet.codel.target (microseconds)
interval | 100ms lus Ss net.inet.ip.dummynet.codel.interval (microseconds)
Options

[no]ecn noecn -

Note: any token after ‘codel’ is considered a CoDel
parameter, so ensure all pipe/queue configuration options
are written before ‘codel’.

C. Examples of using CoDel

This subsection includes some examples of using
CoDel with ipfw/dummynet. It should be noted that
ipfw passes packets that match a classification rule of
dummynet pipe/queue to next rule by default. Thus, a
rule with ‘allow’ action should be added in some point
after pipe/queue rule.

1) One pipe controlled by CoDel AQM (default con-

figuration) and rate limit to 1 Mbits/s.

ipfw pipe 1 config bw Imbits/s codel
ipfw add 100 pipe 1 ip from any to
any

2) Two queues controlled by CoDel AQM using dif-
ferent CoDel configurations parameters. The pipe
that queue 1 and 2 use has rate limit to 10 Mbits/s
and 20ms emulated delay. In more details, queue 1
and 2 connected to an implicit WF2Q+ scheduler
that use pipe 1 for traffic shaping and adding
emulated delay.

ipfw pipe 1 config bw 10mbits/s delay
20ms

ipfw queue 1 config pipe 1 codel
target 7ms ecn

ipfw queue 2 config pipe 1 codel
target 8ms interval 160ms ecn

ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16

ipfw add 200 queue 2 ip from
172.16.0.0/16 to 172.16.0.0/16

3) Two queues - queue 1 controlled by CoDel AQM
and queue 2 uses droptail. Both queues are con-
nected to QFQ scheduler that uses pipe 1 for rate
limit to 5 Mbits/s.
ipfw
ipfw
ipfw

pipe 1 config bw 5Smbits/s

sched 1 config pipe 1 type gfqg

queue 1 config sched 1 codel

queue 2 config sched 1

ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16

ipfw

CAIA Technical Report 160418A

April 2016

ipfw add 200 queue 2 ip from
172.16.0.0/16 to 172.16.0.0/16

IV. FQ-CoDEL

As noted earlier, FQ-CoDel aims to control queu-
ing delays while sharing bottleneck capacity relatively
evenly among competing flows. FQ-CoDel’s modified
DRR (Deficit Round Robin) scheduler manages two lists
of queues — old queues and new queues — to provide
brief periods of priority to lightweight or short burst
flows. FQ-CoDel’s internal, dynamically created queues
are controlled by separate instances of CoDel AQM
(including separate state variables per queue).

The default parameters for FQ-CoDel in [5] are chosen
to be generally useful. However, they are not always suit-
able so our implementation provides options to change
FQ-CoDel parameters for each scheduler individually as
well as changing the defaults.

A. FQ-CoDel Parameters

FQ-CoDel has five primary parameters (target,
interval, quantum, 1limit and flows) and one op-
tion ([nolecn) to enable or disable ECN. target,
interval and [nolecn are per-queue CoDel param-
eters described in section III-A. quantum is number
of bytes a queue can be served before being moved to
the tail of old queues list. 1imit is the hard size limit
of all queues managed by an instance of the fq_codel
scheduler. £1ows is number of flow queues that fq_codel
creates and manages.

Table II shows our FQ-CoDel configuration param-
eters, default values and sysctl control variables to
change the default value.

B. FQ-CoDel synopsis

fq_codel is used with dummynet scheduler object
(‘schd’) and can be configured through ipfw interface.
fq_codel has the following synopsis:

ipfw sched x config [...] type fqg codel
[target t] [interval t] [ecn |
noecn] [quantum n] [flows
n]

[limit n]

page 3 of 18

Table II: FQ-CoDel configuration parameters & options

Parameters | Default | Min | Max sysctl variable names and units (to set defaults)

target Sms lus 5s net.inet.ip.dummynet.fgcodel.target (microseconds)
interval | 100ms lus 5s net.inet.ip.dummynet.fqgcodel.interval (microseconds)
quantum 1514 1 9000 net.inet.ip.dummynet.fgcodel.quantum (bytes)

limit 10240 1 20480 | net.inet.ip.dummynet.fgcodel.limit (packets)

flows 1024 1 65536 | net.inet.ip.dummynet.fgcodel.flows (queues)

Options

[no]ecn ECN -

where

is time in seconds (s), milliseconds (ms) or
microseconds (us). The default interpretation is
milliseconds.

n is an integer number

Note: any token after ‘fq_codel’ is considered an FQ-
CoDel parameter, so ensure all other scheduler configu-
ration options come before ‘fq_codel’.

C. Examples of using FQ-CoDel

This subsection includes some examples of using
fq_codel with ipfw/dummynet. Note that ipfw passes
packets that match a classification rule of dummynet
pipe/queue to next rule by default. Thus, a rule with
‘allow’ action should be added in some point after
pipe/queue rule.

1) One scheduler with one queue, 2048 fq_codel sub-
queues, target 7ms and quantum 2000 bytes

ipfw pipe 1 config bw 10mbits/s

ipfw sched 1 config pipe 1 type
fg _codel target 7ms quantum 2000
flows 2048

ipfw queue 1 config sched 1

ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16

2) One scheduler with two queues (1024 fq_codel
sub-queues by default), interval 150ms, ECN en-

abled

ipfw pipe 1 config delay 10ms

ipfw sched 1 config pipe 1 type
fg _codel interval 150ms ecn

ipfw queue 1 config sched 1

ipfw queue 2 config sched 1

ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16

ipfw add 200 queue 2 ip from
172.16.0.0/16 to 172.16.0.0/16

CAIA Technical Report 160418A

April 2016

V. PIE

PIE drops or marks packets depending on calculated
drop probability p during en-queue process, with the aim
of achieving high throughput while keeping queue delay
low. At regular time intervals (fupdate) a background
process (re)calculates p based on queue delay deviations
from target and queue delay trends. PIE approximates
current queue delay by using a departure rate estimation
method, or (optionally) by using a packet timestamp
method similar to CoDel. PIE was designed to work
properly on the Internet using the default configurations.
However, the defaults in [4] are not appropriate for
all network environments such as in datacenters due to
very low latency. Moreover, PIE configurations should
be tunable for studying and evaluation purposes. Thus,
our implementation provides options to change PIE
parameters away from the defaults for each pipe/queue
individually.

A. PIE Parameters

PIE has a number of configurable parameters and
options derived from [4] :

1) target: The acceptable persistent queue delay.
Drop probability increases as queue delay in-
creases higher than target.

tupdate: The frequency of drop probability re-

calculation.

3) alpha and beta are drop probability weights.

4) max_burst: The maximum period of time that
PIE does not drop/mark packets.

5) max_ecnth: When ECN is enabled, PIE drops
packets instead of marking them when drop proba-
bility becomes higher than ECN probability thresh-
old max_ecnth.

2)

PIE has the following options:

1) [nolecn: enable (ecn) or disable (noecn) ECN
marking for ECN-enabled TCP flows.

2) [no]lcapdrop: enable (capdrop) or disable
(nocapdrop) cap drop adjustment.

page 4 of 18

3) [nolderand: enable (derand) or disable
(noderand) drop probability de-randomisation.
De-randomisation eliminates the problem of
dropping packets too close or too far.

4) onoff enable turing PIE on and off depending on
queue load. PIE tunes on when over 1/3 of queue
becomes full.

5) [dre|ts]: Calculate queue delay using departure
rate estimation (dre) or timestamps (ts).

Table III shows our PIE configuration parameters and
options, default values and sysctl control variables to
change the default value.

B. PIE Synopsis

PIE is used with dummynet ‘pipe’ or ‘queue’ and
can be configured through ipfw [12] interface. PIE has
the following synopsis:

ipfw pipe/queue x config [...] pie [
target t] [tupdate t] [alpha m] [beta
m] [max_burst t] [max_ecnth m] [ecn |
noecn] [capdrop | nocapdrop] [drand |
nodrand] [onoff] [dre | ts]
where
t is time in second (s), millisecond (ms) or
microsecond (us). The default interpretation is
milliseconds.
m is a real number

Note: any token after ‘pie’ is considered a PIE parameter,
so ensure all pipe/queue configuration options are written
before ‘pie’.

C. Examples of using PIE

This subsection includes some examples of using PIE
with ipfw/dummynet. It should be noted that ipfw
passes packets that match a classification rule of dum-
mynet pipe/queue to next rule by default. Thus, a rule
with ‘allow’ action should be added in some point after
pipe/queue rule.

1) One pipe controlled by PIE AQM (default config-

uration) and rate limit to 1 Mbits/s.

ipfw pipe 1 config bw Imbits/s pie

ipfw add 100 pipe 1 ip from any to
any

2) Two queues controlled by PIE AQM using differ-
ent PIE configurations parameters. The pipe that
queue 1 and 2 use has rate limited to 10 Mbits/s
and 20ms emulated delay. In more details, queue 1
and 2 connected to an implicit WF2Q+ scheduler
that use pipe 1 for traffic shaping and adding
emulated delay.

CAIA Technical Report 160418A

April 2016

ipfw pipe 1 config bw 10mbits/s delay
20ms

ipfw queue 1 config pipe 1 pie target
25ms ecn

ipfw queue 2 config pipe 1 pie target
20ms tupdate 30ms ecn

ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16

ipfw add 200 queue 2 ip from
172.16.0.0/16 to 172.16.0.0/16

3) Two queues - queue 1 controlled by PIE AQM and
queue 2 uses CoDel. Both queues are connected to
QFQ scheduler that uses pipe 1 for rate limited to
5 Mbits/s.

pipe 1 config bw 5mbits/s
sched 1 config pipe 1 type gfqg
queue 1 config sched 1 pie
ipfw queue 2 config sched 1 codel
ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16
ipfw add 200 queue 2 ip from
172.16.0.0/16 to 172.16.0.0/16

ipfw
ipfw
ipfw

VI. FQ-PIE

In the absence of any normative reference implemen-
tation or Internet Draft, our implementation of FQ-PIE is
the combination of FQ-CoDel’s FlowQueue logic with
PIE queue management on every dynamically created
sub-queue. The goals are similar to FQ-CoDel — con-
trol queuing delays while sharing bottleneck capacity
relatively evenly among competing flows. We set each
instance of PIE to use timestamps (ts) rather than
departure rate estimation (dre) in the context of FQ-PIE,
as there have been doubts raised as to the accuracy of
dre in such a context [4].

Our implementation uses the same default parameters
for FQ-PIE as in [5], and provides options to change
FQ-PIE parameters for each scheduler individually as
well as changing the defaults.

A. FQ-PIE Parameters

Table IV shows our FQ-PIE configuration parameters
and options, default values and sysctl control vari-
ables to change the default value. Many are equivalent to
PIE parameters described in section V-A. The remaining
parameters are borrowed from FQ-CoDel: quantum is
number of bytes a queue can be served before being
moved to the tail of old queues list, 1imit is the hard
size limit of all queues managed by an instance of
the fq_pie scheduler and flows is the number of flow
queues that fq_pie creates and manages.

page 5 of 18

Table III: PIE configuration parameters/options

Parameter Default Min | Max | sysctl variable names and units (to set defaults)

target 15ms lus Ss net.inet.ipdummynet.pie.target (microseconds)

tupdate 15ms lus 5s net.inet.ip.dummynet.pie.tupdate (microseconds)

alpha 0.125 0 7 net.inet.ip.dummynet.pie.alpha (by 1000)

beta 1.25 0 7 net.inet.ip.dummynet.pie.beta (by 1000)

max_burst 150ms 0 10s net.inet.ip.dummynet.pie.max_burst (microseconds)

max_ecnth 0.1 0 1 net.inet.ip.dummynet.pie.max_ecnth (by 1000)

Options

[no]ecn noecn -

[no]capdrop | capdrop

[no]derand derand

onoff no onoff

[dre|ts] dre

Table IV: FQ-PIE configuration parameters/options

Parameter Default | Min | Max sysctl variable names and units (to set defaults)
target 15ms lus 5s net.inet.ipdummynet.fgpie.target (microseconds)
tupdate 15ms lus 5s net.inet.ip.dummynet.fgpie.tupdate (microseconds)
alpha 0.125 0 7 net.inet.ip.dummynet.fgpie.alpha (by 1000)
beta 1.25 0 7 net.inet.ip.dummynet.fgpie.beta (by 1000)
max_burst 150ms 0 10s net.inet.ip.dummynet.fgpie.max_burst (microseconds)
max_ecnth 0.1 0 1 net.inet.ip.dummynet.fgpie.max_ecnth (by 1000)
quantum 1514 1 9000 net.inet.ip.dummynet.fgpie.quantum (bytes)
limit 10240 1 20480 | net.inet.ip.dummynet.fgpie.limit (packets)
flows 1024 1 65536 | net.inet.ip.dummynet.fgpie.flows (queues)
Options
[no]ecn/noecn noecn -
[no] capdrop/nocapdrop | capdrop
[nolderand/nodrand derand
onoff no onoff
[dre|/ts] ts

B. FQ-PIE Synopsis

FQ-PIE is used with dummynet ‘pipe’ or ‘queue’
and can be configured through ipfw [12] interface. FQ-
PIE has the following synopsis:

ipfw sched x config

[oo

.] type fqg pie [

target t] [tupdate t] [alpha m] [beta
m] [max_burst t] [max_ecnth m] [
quantum n] [limit n] [flows n] [ecn
noecn] [capdrop nocapdrop] [drand
nodrand] [onoff] [dre | ts]
where
t is time in second (s), millisecond (ms) or
microsecond (us). The default interpretation is
milliseconds.
n is an integer number
m is a real number

Note: any token after ‘fq_pie’ is considered a FQ-PIE
parameter, so ensure all pipe/queue configuration options
are written before ‘fq_pie’.

CAIA Technical Report 160418A

April 2016

C. Examples of using FQ-PIE

This subsection includes some examples of using
fq_pie with ipfw/dummynet. Note that ipfw passes
packets that match a classification rule of dummynet
pipe/queue to next rule by default. Thus, a rule with
‘allow’ action should be added in some point after
pipe/queue rule.

1) One fq_pie scheduler, 2048 fq_pie subqueues, tar-

get 10ms, tupdate 10ms, and quantum 2000 bytes.
ECN is disabled

ipfw pipe 1 config bw 10mbits/s
ipfw sched 1 config pipe 1 type
fg _pie target 10ms tupdate 10ms
quantum 2000 flows 2048 noecn
ipfw queue 1 config sched 1
ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16

2) One scheduler with two queues (1024 fq_pie sub-
queues by default), ECN enabled, maximum ECN

threshold 50% and no capdrop.

page 6 of 18

ipfw pipe 1 config delay 10ms

ipfw sched 1 config pipe 1 type
fg pie max_ecnth 0.5 nocapdrop

ipfw queue 1 config sched 1

ipfw queue 2 config sched 1

ipfw add 100 queue 1 ip from
192.168.0.0/16 to 192.168.0.0/16

ipfw add 200 queue 2 ip from
172.16.0.0/16 to 172.16.0.0/16

VII. APPLYING THE
PATCH/TESTING/INSTALLATION
We have tested our FreeBSD11-based v0.2 patch [8]
against FreeBSD11-CURRENT 1297692, although it
may also work with earlier or later builds. To
build 1297692 from source you’ll need to checkout
FreeBSD11-CURRENT 1297692 source tree using:

svn checkout -r 295345 svn://svn.freebsd.
org/base/head/ /usr/src/

We also provide a version for FreeBSD 10.x-
RELEASE (10.0, 10.1, 10.2, 10.3) as a separate
patch file that combines our CoDel/FQ-CoDel/PIE/FQ-
PIE code with ECN marking code backported from
FreeBSD11-CURRENT r266941.

Once the patch is applied, you only need to (re)build
the dummynet.ko kernel module and ipfw userland
command (rather than rebuild a complete kernel and
world from source). As root user do the following steps:

A. Applying the patch
Apply the patch as follows:
1) Extract the patch file

tar —-xvf dummynet-agm-patch-0.2.tgz -
C /usr/src/ cd /usr/src

2) Apply the patch
a) For FreeBSD11-CURRENT

patch -pl < dummynet-agm-patch
-0.2/freebsdl1-r297692.patch

b) For FreeBSD 10.x-RELEASE

patch -pl < dummynet-agm-patch
-0.2/freebsdl0.x.patch

3) Copy ip_dummynet.h to /usr/include/netinet.

cp /usr/src/sys/netinet/ip_dummynet.h
/usr/include/netinet/

4) Build ipfw userland.

CAIA Technical Report 160418A

April 2016

cd /usr/src/sbin/ipfw
make

5) Build dummynet kernel module

cd /usr/src/sys/modules/dummynet/
make

B. Testing the patched ipfw/dummynet

Use the following steps to check whether the patch
applied cleanly and built both userland ipfw and dum-
mynet kernel module:

1) Check if old dummynet is already loaded

kldstat | grep dummynet

2) If dummynet is already loaded, unload it.
kldunload dummynet

3) Load the patched dummynet.ko into FreeBSD ker-
nel

kldload /usr/src/sys/modules/dummynet
/dummynet . ko

4) Check debug messages using ‘dmesg’ command:

dmesg | grep ’CODEL\ |PIE’

The Output should be something like:

load_dn_sched dn_agm PIE loaded

load_dn_agm dn_agm CODEL loaded

load_dn_sched dn_sched FQ_CODEL
loaded

load_dn_sched dn_sched FQ PIE loaded

5) Use the patched ipfw interface (specify a full
pathname when use ipfw):

/usr/src/sbin/ipfw/ipfw pipe 1 config
codel
/usr/src/sbin/ipfw/ipfw pipe 1 show

The Output should be something like:

00001: unlimited 0 ms burst 0

gl31073 50 sl. 0 flows (1 buckets)
sched 65537 weight 0 lmax O pri O
AQM CoDel target bSms interval 100
ms

sched 65537 type FIFO flags 0x0 O
buckets 0 active

C. Installing the patched ipfw and dummynet.ko
To use the patched ipfw/dummynet by default, install

them as follow:

1) Install ipfw interface, ignore any error if appears.

page 7 of 18

cd /usr/src/sbin/ipfw
make install

2) Install dummynet kernel module

cp /usr/src/sys/modules/dummynet/
dummynet .ko /boot/kernel/

3) (Optional) To avoid the warning “KLD ‘/boot/k-
ernel/dummynet.ko’ is newer than the linker.hints
file”, regenerate kernel loader hints with:

kldxref /boot/kernel

VIII. EXPERIMENTAL COMPARISONS OF CODEL,
FQ-CoDEL AND PIE IN LINUX AND FREEBSD

We used a TEACUP-based [13] testbed® to com-
pare the behaviour of our implementation with a Linux
implementation. Figure 1 shows our testbed’s network
topology, with three hosts®, one bottleneck router’ and a
control host. Experiment network links are 1Gbps Eth-
ernet, while the Control network used separate 100Mbps
Ethernet connections to each machine.

Each endhost could be booted into
FreeBSD10.1-RELEASE (for NewReno flows) or
Linux 4.2 (for CUBIC flows) while the control host ran
FreeBSD 10.1. The bottleneck router (with the AQM
under test) was booted into FreeBSD10.1-RELEASES? or
Linux 4.1 as required. When running CoDel, FQ-CoDel
and PIE under the Linux bottleneck router, TEACUP
uses the netem and tc modules to emulate our target
RTT and bottleneck bandwidths.’

192.168.1.254
f~, Control Host

ppm—

n
; 192.168.1.0)
. o 1921681200‘
Experiment T

Ty
172.16.10.0
Network (>—~—(172.16.11.0 ‘5

Control Network

192.168.1.103
Host 3
172.16.11.3

192.168.1.102
Host 2
172.16.11.2

192.168.1.101
Host 1
172.16.10.2

Dummynet/ipfw (FreeBSD)
Netem/tc (Linux)

Figure 1: TEACUP Testbed topology

STEACUP source is at https:/sourceforge.net/projects/teacup/

‘Intel Core 2 Duo @ 3GHz, 4GiB RAM, 1Gbps NICs

"Intel Core 2 Duo @ 2.33GHz, 1Gbps NICs

8We chose FreeBSD 10.1 because FreeBSD11-CURRENT is the
development branch with lots of debugging code enabled

°See section IV-B of [13] for details on how TEACUP configures
netem and tc for this purpose.

CAIA Technical Report 160418A

April 2016

A. Linux CoDel vs FreeBSD CoDel

In all our CoDel comparison experiments we used
iperf to generate one NewReno (using FreeBSD) or
CUBIC (using Linux) TCP flow running for 60 seconds
between Hosts 2 and 3 (Figure 1). The router applied in-
dependent instances of CoDel to 10Mbit/sec bottlenecks
in each direction, with each CoDel buffer set to 1000
packets. The router also emulated either 20ms or 40ms
of underlying path RTT.

Scenario 1: NewReno over CoDel @ 20ms RTT

In scenario 1 the end hosts booted into FreeBSD
and ran TCP NewReno over a 20ms RTT path. CoDel
was configured with target 5 ms, interval 100 ms and
no ECN. Figure 2 shows throughput'®, CWND and
smoothed TCP RTT versus time for both FreeBSD and
Linux implementations of CoDel. Our implementation
behaves very similarly to CoDel under Linux.

Scenario 2: NewReno over CoDel @ 40ms RTT

Scenario 2 is the same as scenario 1 except that the
emulated path RTT is 40 ms. Figure 3 shows throughput,
CWND and smoothed TCP RTT versus time, and again
the behaviour of our implementation is very similar to
CoDel under Linux.

Scenario 3: CUBIC over CoDel @ 20ms RTT

In scenario 3 the end hosts booted into Linux and ran
TCP CUBIC over a 20ms RTT path. CoDel was config-
ured with target 10ms, interval 100ms and ECN enabled.
We checked number of dropped packet and confirmed
that ECN is functional with nothing dropped during
the experiment. Figure 4 shows throughput, CWND,
smoothed TCP RTT versus time. Again our implemen-
tation behaves similarly to CoDel under Linux.

B. Linux FQ-CoDel vs FreeBSD FQ-CoDel

Similar to the CoDel experiments, we compared our
FQ-CoDel implementation results with Linux FQ-CoDel
to illustrate their similarities. In this case we used
multiple instances of iperf under Linux to generate
four TCP CUBIC flows with staggered start and end
times (starting at t=0, 10, 20, 30 seconds and each
flow lasting for 60 seconds). Each instance of fq-codel
was configured for target Sms, interval 100ms, no ECN,
quantum 1514 bytes and with 10240 packets of bottle-
neck buffering shared by 1024 fq_codel sub-queues.

All CoDel experiments throughputs were calculated using 3
seconds window moving forward in steps of 0.6 sec

page 8 of 18

https://sourceforge.net/projects/teacup/

10000

[e]
o
o
o

6000

4000

Throughput (kbps)

N
o
o
o

o

_| ¢ FreeBSD-Codel

Linux-Codel

0 10

I I
20 30

Time (s)

I
40

(a) Throughput vs. Time

I
50

* FreeBSD-Codel

Linux—Codel

200

150

100

CWND (K)

50

35
30
25
20

—| * FreeBSD-Codel
1

J

O adaat
iidddddddddddd

Linux—Codel

T T
0 1

T T T T
2 3 4 5

Time (s)

(b) CWND vs. Time from t=0 to t=5

~ + FreeBSD-Codel

Linux—Codel

- 80
\E/ &
E 60 I
(2 ¥
o i
2 404 |
% f g‘ﬂﬂﬂ:”h’h”ﬁd’.f’;fd’nMz.f&f%”lr‘lilih‘h’m;"ﬂﬂa?‘
g 204
n
0 I I I I I I
0 2 4 6 8 10

Time (s)
(c) smoothed TCP RTT vs. Time for first 10 seconds

15 —
10

Smoothed TCP RTT (ms)

Time (s)
(d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 2: One FreeBSD NewReno flow, 20ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer.
Linux and FreeBSD CoDel configured for target Sms, interval 100ms, ECN disabled (Scenario 1)

Scenario 4: 10Mbit/sec bottleneck

In scenario 4 the bottleneck was configured for
10Mbit/sec. Figure 5 shows throughput!!, CWND and
smoothed TCP RTT versus time for the experiment.
As with CoDel, our FQ-CoDel implementation behaves
similarly to the Linux implementation.

Scenario 5: IMbit/sec bottleneck

Scenario 5 repeats scenario 4 but with a 1Mbit/sec
bottleneck. Figure 6 shows throughput, CWND and
smoothed TCP RTT versus time for the experiment. For

TAll FQ-CoDel experiments throughputs were calculated using a
1.5 sec window moving forward in steps of 0.3 sec

CAIA Technical Report 160418A

April 2016

reasons we have yet to determine, our FQ-CoDel im-
plementation seems to actually share the limited 1Mbps
among multiple flows more consistently than the Linux
implementation.'?

C. Linux PIE vs FreeBSD PIE

Our FreeBSD PIE is based on the latest (version
06) PIE Internet Draft [4], whilst the current Linux
PIE implementation (as of kernel 4.5) is based on an
earlier PIE Internet Draft. Consequently, Linux PIE uses
different default parameters (20ms target, 30ms tupdate
and 100ms max_burst) and does not reflect subsequent

2Whether our FQ-CoDel implementation’s behaviour is more
correct is a separate question

page 9 of 18

10000

« FreeBSD-Codel - Linux—-Codel

PR VA e A VA A A A A e A A A A A A
8000 — /
[%2] |
(o} |
< 1
<6000 4 | |
= | |
sy | R
S4000 / \
3 !
£ j \
= 2000 | ,

0

I I I I I I I
0 10 20 30 40 50 60

Time (s)

(a) Throughput vs. Time

* FreeBSD-Codel

100 — -

Linux—Codel

i
80 4 4
i
60 - i

w0 P SV, W T, PR N N, W Y, T

20

Smoothed TCP RTT (ms)

Time (s)
(c) smoothed TCP RTT vs. Time for first 10 seconds

« FreeBSD-Codel
.

Linux—Codel

250 —

200 —

150 —

CWND (K)

100 —

50

e

0 1 2 3 4 5

Time (s)
(b) CWND vs. Time from t=0 to t=5

* FreeBSD-Codel - Linux—Codel

50 =23 =%

40

Smoothed TCP RTT (ms)
w
o
l

20
10
0 —
T T T T T
1 2 3 4 5
Time (s)

(d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 3: One FreeBSD NewReno flow, 40ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer.
Linux and FreeBSD CoDel configured for target Sms, interval 100ms, ECN disabled (Scenario 2)

changes to the “auto-tune drop probability” algorithm
in [4]. For greater similarity, we set our FreeBSD PIE
parameters to match the defaults used by current Linux
PIE for all experiments. Even so, FreeBSD PIE showed
consistently higher burst tolerance (particularly during
TCP slow-start) by following the [4] PIE specification.'?

In all our PIE comparison experiments we used
iperf to generate one NewReno (using FreeBSD) or
CUBIC (using Linux) TCP flow running for 60 seconds
between Hosts 2 and 3 (Figure 1). The router applied
independent instances of PIE to 10Mbit/sec bottlenecks

BMuch closer alignment of burst tolerance was seen when we
reverted FreeBSD PIE’s “auto-tune drop probability” to match the
older version used by Linux PIE

CAIA Technical Report 160418A

April 2016

in each direction, with each PIE buffer set to 1000
packets. The router also emulated either 20ms or 40ms
of underlying path RTT.

Scenario 6: NewReno over PIE @ 20ms RTT

In scenario 6 the end hosts booted into FreeBSD and
ran TCP NewReno over a 20ms RTT path. PIE was
configured with target 20ms, tupdate 30ms, max_burst
100ms and no ECN. Figure 7 shows throughput, CWND
and smoothed TCP RTT versus time for both FreeBSD
and Linux implementations of PIE. Allowing for the
previously noted increase in burst tolerance, both im-
plementations produce broadly similar results.

page 10 of 18

« FreeBSD-Codel - Linux—-Codel

10000 - \

8000 —
6000 o |

4000 | |

Throughput (kbps)

2000 —

I I I I I I I
0 10 20 30 40 50 60

Time (s)

(a) Throughput vs. Time

* FreeBSD-Codel

f*/\ MMMMAMAAAY

Linux—Codel

40

30

10

Smoothed TCP RTT (ms)

Time (s)
(c) smoothed TCP RTT vs. Time for first 10 seconds

* FreeBSD-Codel Linux-Codel
50
40 o -'_- o -'-. R ."'-3 B ."'-E 2]
) R e IR TR
a) I .= o i = 2 - .z
S 30 Lo : s : :
; s
O 20 H
10 H
0 —
I I I I I I
0 1 2 3 4 5
Time (s)
(b) CWND vs. Time from t=0 to t=5
40 1. FreeBSD-Codel Linux-Codel
m
S 50 ﬁ“ lfr' A / A \
[§ ‘ fr
|_
[a g
% 20
|_
o
4]
e
S 10
e
(99}
O —
I I I I I
1 2 3 4 5
Time (s)

(d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 4: One Linux CUBIC flow, 20ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer. Linux
and FreeBSD CoDel configured for target 10ms, interval 100ms, ECN enabled (Scenario 3)

Scenario 7: NewReno over PIE @ 40ms RTT

Scenario 7 is the same as scenario 6 except that the
emulated path RTT is 40 ms. Figure 8 shows throughput,
CWND and smoothed TCP RTT versus time, and again
the behaviour of our implementation is broadly similar
to PIE under Linux (aside from the increased burst
tolerance).

Scenario 8: CUBIC over PIE @ 20ms RTT

In scenario 8 the end hosts booted into Linux and ran
TCP CUBIC over a 20ms RTT path. PIE was configured
with target 20ms, tupdate 30ms, max_burst 100ms and
ECN enabled. We checked number of dropped packet
and confirmed that ECN is functional with nothing

CAIA Technical Report 160418A

April 2016

dropped during the experiment. Figure 9 shows through-
put, CWND, smoothed TCP RTT versus time, and again
the behaviour of our implementation is broadly similar
to PIE under Linux (aside from the increased burst
tolerance).

IX. FREEBSD FQ-PIE

There is no official Linux FQ-PIE implementation
to compare with, so here we illustrate that our def-
inition FQ-PIE exhibits plausibly expected and useful
behaviour. We used multiple instances of iperf under
Linux to generate four TCP CUBIC flows with staggered
start and end times (starting at t=0, 10, 20, 30 seconds
and each flow lasting for 60 seconds). Each instance of

page 11 of 18

FQ-PIE was configured for target 15ms, tupdate 15ms,
max_burst 100ms, no ECN, quantum 1514 bytes and
with 10240 packets of bottleneck buffering shared by
1024 fq_pie sub-queues.

Scenario 9: 10Mbit/sec bottleneck

In scenario 9 the bottleneck was configured for
10Mbit/sec. Figure 10 shows throughput'*, CWND and
smoothed TCP RTT versus time for the experiment. In
this scenario FreeBSD FQ-PIE achieves good through-
put, capacity sharing and reasonable queueing delay.

Scenario 10: IMbit/sec bottleneck

Scenario 10 repeats scenario 9 but with a 1Mbit/sec
bottleneck. Figure 11 shows throughput, CWND and
smoothed TCP RTT versus time for the experiment.
Even though the RTT spikes are higher than Scenario 9
(due to the lower 1Mbit/sec bottleneck speed), FreeBSD
FQ-PIE achieves good throughput, capacity sharing and
reasonable queueing delay.

X. CONCLUSIONS AND FUTURE WORK

This report focuses on Dummynet AQM v(0.2 — our
FreeBSD implementation of CoDel,FQ-CoDel, PIE and
FQ-PIE in ipfw/dummynet framework. We summarise
the AQM and Dummynet context, provide instructions
for applying the patch, and present preliminary ex-
perimental results. Our independent implementations
of [3], [5] and [4] behave similar to equivalent Linux
kernel 4.1 implementations. In addition, we demonstrate
that our definition and implementation of FQ-PIE seems
to have potential as a PIE-based alternative to FQ-CoDel.

Our experimental testing has been limited, aiming
primarily to confirm plausible similarity in behaviours
and (indirectly) confirm the clarity of the current Internet
Drafts. The unexpectedly good capacity sharing exhib-
ited by our FreeBSD implementation (relative to Linux
FQ-CoDel) when faced with low (1Mbps) bottleneck
rates is a topic for future investigation.

XI. ACKNOWLEDGEMENTS

This project has been made possible in part by a gift
from the Comcast Innovation Fund.

14 All FQ-PIE experiments throughputs were calculated using a 1.5
sec window moving forward in steps of 0.3 sec

CAIA Technical Report 160418A

(1]

(2]

(3]

(4]

(3]

(6]
(7]

(8]

(91

(10]

(1]

(12]

(13]

April 2016

REFERENCES

S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” Networking, IEEE/ACM Transac-
tions on, vol. 1, no. 4, pp. 397-413, Aug 1993.

K. Nichols and V. Jacobson, “A modern agqm is just
one piece of the solution to bufferbloat,” ACM Queue
Networks, vol. 10, no. 5, 2012. [Online]. Available: http:
//queue.acm.org/detail.cfm?id=2209336

K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar,
“Controlled Delay Active Queue Management,” IETF Draft,
March 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-agm-codel-03

R. Pan, P. Natarajan, F. Baker, G. White, B. VerSteeg,
M. Prabhu, C. Piglione, and V. Subramanian, “PIE: A
Lightweight Control Scheme To Address the Bufferbloat
Problem,” April 2016. [Online]. Available: https://tools.ietf.org/
html/draft-ietf-agm-pie-06

T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys,
and E. Dumazet, “FlowQueue-Codel,” IETF Draft,
March 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-aqm-fq-codel-06

Bufferbloat Wiki. [Online]. Available: http://www.bufferbloat.
net/projects/codel/wiki

V. Subramanian, "PIE AOM scheme", Ker-
nel commit log, Jan 2014. [Online]. Avail-
able: http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/
commit/?id=d4b36210c2ebecefOce52fb6c18c51144f5¢2d88

R. Al-Saadi and G. Armitage, “Implementing AQM in
FreeBSD.” [Online]. Available: http://caia.swin.edu.au/freebsd/
aqm

R. Al-Saadi and G. Armitage, “Dummynet AQM v0.1 - CoDel
and FQ-CoDel for FreeBSD’s ipfw/dummynet framework,”
Centre for Advanced Internet Architectures, Swinburne
University of Technology, Melbourne, Australia, Tech. Rep.
160226A, 26 February 2016. [Online]. Available: http:
/[caia.swin.edu.au/reports/160226 A/CAIA-TR-160226A.pdf
IPFW - FreeBSD Handbook. The FreeBSD Documentation
Project, 2015. [Online]. Available: https://www.freebsd.org/
doc/handbook/firewalls-ipfw.html

M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM
Comput. Commun. Rev., vol. 40, no. 2, pp. 12-20, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1764873.
1764876

IPFW(8), FreeBSD System Manager’s Manual. [Online].
Available: https://www.freebsd.org/cgi/man.cgi?ipfw(8)

S. Zander and G. Armitage, “TEACUP v1.0 - A System
for Automated TCP Testbed Experiments,” Centre for
Advanced Internet Architectures, Swinburne University of
Technology, Melbourne, Australia, Tech. Rep. 150529A, 2015.
[Online]. Available: http://caia.swin.edu.au/reports/150529A/
CAIA-TR-150529A.pdf

page 12 of 18

http://queue.acm.org/detail.cfm?id=2209336
http://queue.acm.org/detail.cfm?id=2209336
https://tools.ietf.org/html/draft-ietf-aqm-codel-03
https://tools.ietf.org/html/draft-ietf-aqm-codel-03
https://tools.ietf.org/html/draft-ietf-aqm-pie-06
https://tools.ietf.org/html/draft-ietf-aqm-pie-06
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06
http://www.bufferbloat.net/projects/codel/wiki
http://www.bufferbloat.net/projects/codel/wiki
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=d4b36210c2e6ecef0ce52fb6c18c51144f5c2d88
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=d4b36210c2e6ecef0ce52fb6c18c51144f5c2d88
http://caia.swin.edu.au/freebsd/aqm
http://caia.swin.edu.au/freebsd/aqm
http://caia.swin.edu.au/reports/160226A/CAIA-TR-160226A.pdf
http://caia.swin.edu.au/reports/160226A/CAIA-TR-160226A.pdf
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
http://doi.acm.org/10.1145/1764873.1764876
http://doi.acm.org/10.1145/1764873.1764876
https://www.freebsd.org/cgi/man.cgi?ipfw(8)
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf

12000

e flowl « flow3
flow2 - flow4

10000 —

Throughput (kbps)
S [e2} [0}
o o o
o o o
o o o
|

2000 —

0 20 40 60 80

Time (s)

(a) Throughput vs. Time

100 | fiowz - fiows
80 —
<
a 60
P4
5 40 - I
20 —
O —
I I I I I
0 20 40 60 80
Time (s)
(b) CWND vs. Time
e flowl « flow3
flow2 flow4
m
£ 150
|_
|_
ad
o —
o 100
|_
o
5 50 ” i! P ;f t
g W l l i st ‘.,&
(99}
O —
I I I I I
0 20 40 60 80
Time (s)

(c) smoothed TCP RTT vs. Time

Figure 10: Four Linux CUBIC flows, 20ms RTT path,
10Mbps limit. FreeBSD FQ-PIE configured for target
15ms, tupdate 15ms max_burst 150ms, 1024 queues,
quantum 1514 bytes, 10240-packet buftering, ECN dis-
abled (Scenario 9)

CAIA Technical Report 160418A

April 2016

1200 . fons -+ flows
flow2 flows
1000 —
m
§ 800
2 600
< N -
= ==]
S 400]
= - e,
= f |
200 — \
O —
I I I I I
0 20 40 60 80
Time (s)
(a) Throughput vs. Time
50 | " fonz - flona
R
o 307% ¥
Z ;
5 2043
1043 . =
o e =
I I I I I
0 20 40 60 80

Time (s)
(b) CWND vs. Time

1000 —{ ° flowl < flow3
flow2 flow4
B
— 800 — §
- H
= H
o :
o 600 — ;_
O
=
T 400 i
<
] i
g 200 — : .‘
@ \ . a-. R - L
0 -
I I I I
0 20 40 60 80

Time (s)
(c) smoothed TCP RTT vs. Time

Figure 11: Four Linux CUBIC flows, 20ms RTT path,
1Mbps limit. FreeBSD FQ-PIE configured for target
15ms, tupdate 15ms max_burst 150ms, 1024 queues,
quantum 1514 bytes, 10240-packet buffering, ECN dis-
abled (Scenario 10)

page 13 of 18

12000 12000

o flowl « flow3 + flowl « flow3
flow2 « flowd flow2 - flows
10000 — 10000 —
2 2
g 8000 — g 8000 —
36000 2 6000 -
< _ _ <
D i = (@]
3 4000 — 3 4000 —
ey e /
[. [f
2000 — \ 2000 — \
0 0
I I I I I I I I I I
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(a) FreeBSD fq_codel Throughput vs. Time (b) Linux fq_codel Throughput vs. Time
e flowl « flow3 o flowl « flow3
80 — flow2 - flowa 80 — flow2 « flowa
. 60 60+
S 53
= ; 2
40 7 i 40 —
= = =
O = o
20 - 20 i
0 0
I I I I I I I I I I
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(c) FreeBSD fq_codel CWND vs. Time (d) Linux fq_codel CWND vs. Time
150 " o - o 150 - o - o
m m
E E
E E
or 100 — o 100 —
o o
[®) l O
[[
ie] e}
2 50 |] £ 50 |
o | ARIETRIRTETRTES RTRNE AN o ! [: _
o LI Y : - T Al o | B e
E h‘ - SdidaibIibdadd Ll My o E h =
n (7}
0 0
I I I I I I I I I I
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(e) FreeBSD fq_codel smoothed TCP RTT vs. Time (f) Linux fq_codel smoothed TCP RTT vs. Time

Figure 5: Four Linux CUBIC flows, 20ms RTT path, 10Mbps limit. Both FQ-CoDels configured for target Sms,
interval 100ms, 1024 queues, quantum 1514 bytes, 10240-packet buffering, ECN disabled (Scenario 4)

CAIA Technical Report 160418A April 2016 page 14 of 18

1200 —

1000

800

600

400

Throughput (kbps)

200

35
30
25
20
15
10

CWND (k)

300

250

200

150

100

50

Smoothed TCP RTT (ms)

(e) FreeBSD fq_codel smoothed TCP RTT vs. Time

Figure 6: Four Linux CUBIC flows, 20ms RTT path, 1Mbps limit. Both FQ-CoDels configured for target Sms,

o flowl « flow3 1200
flow2 « flowd
1000
m
§ 800
§_ 600
- <
S S
3 400
— =
PR AR) _v._‘-...‘ '_
\ 200
0
I I I I I
0 20 40 60 80
Time (s)
(a) FreeBSD fq_codel Throughput vs. Time
e flowl « flow3
flow2 « flowd
30
: : <
: : o 20
: : <
: 5 =
: . O
—_— - 10
0
I I I I I
0 20 40 60 80
Time (s)
(c) FreeBSD fq_codel CWND vs. Time
o flowl « flow3 300
flow2 flow4 —
g 250
: -
l : E 200
i S 150
'_
e}
2 100
°
: I}
: £ 50
i 0
0

Time (s)

+ flowl « flow3
flow2 - flow4

&Al?.:‘nl?';t‘ o i L] 14')“:3
.,*W‘ﬁ-‘imt ﬁ'»\

I I I I I
0 20 40 60 80

Time (s)

(b) Linux fq_codel Throughput vs. Time

+ flowl « flow3
flow2 - flow4

Time (s)
(d) Linux fq_codel CWND vs. Time

o flowl flow3
flow2 - flow4

[.ﬂdmw-m«
¥
-

LG
e
i -
T
i g

3
oy o
-
3

Time (s)

(f) Linux fq_codel smoothed TCP RTT vs. Time

interval 100ms, 1024 queues, quantum 1514 bytes, 10240-packet buffering, ECN disabled (Scenario 5)

CAIA Technical Report 160418A

April 2016

page 15 of 18

10000

8000

6000

4000

Throughput (kbps)

2000

200

150

100

Smoothed TCP RTT (ms)
a1
o

« FreeBSD-PIE

Linux-PIE

0 10 20 30 40 50 60

Time (s)

(a) Throughput vs. Time

* FreeBSD-PIE

Linux-PIE

emmnevan o

l’\/l(A / Vp‘i/u‘

Time (s)

(c) smoothed TCP RTT vs. Time for first 10 seconds

Figure 7: One FreeBSD NewReno flow, 20ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer.
Linux and FreeBSD PIE configured for target 20ms, tupdate 30ms, max_burst 100ms, ECN disabled (Scenario 6)

CAIA Technical Report 160418A

CWND (K)

Smoothed TCP RTT (ms)

400

300

200

100

200

150

100

50

April 2016

« FreeBSD-PIE

Linux-PIE

i1
| -

/ ; .F/' T

0 1 2 3 4 5

Time (s)

(b) CWND vs. Time from t=0 to t=5

* FreeBSD-PIE Linux-PIE
3
L’-. ; > -~
I I I I I
1 2 3 4 5

Time (s)

(d) smoothed TCP RTT vs. Time from t=1 to t=5

page 16 of 18

« FreeBSD-PIE - Linux-PIE 600 — « FreeBSD-PIE - Linux-PIE
10000] /"""""'~——""'--—J"'"--—-*\--J‘J.;J'--—f».-J""‘--—-"'—""‘-,W
R 500 —
8 8000
'\—% < 400 —
5 6000 —
2 S 300
=) = -
c |
= 2000 - | \ 100 [—
1 1 L
0] 0 — ”'J I
I I I I I I I I I I I I I
0 10 20 30 40 50 60 0 1 2 3 4 5
Time (s) Time (s)
(a) Throughput vs. Time (b) CWND vs. Time from t=0 to t=5
250 - FreeBSD-PIE Linux-PIE 250 —] * FreeBSD-PIE Linux-PIE
2 S 2
: 200 B : 200 — -
= . = N
o ¥ [u
o 150 ¢ o 150 .
O O .
l_ ‘1 l_ -. - l.
E 100 - | I' L'/ E 100 , :
..6 “‘ ..6 = L'_'_'_ﬂ-'-'-‘
g 50 - / /F/ L g 50 "_I’
0 (99}
0 0
I I I I I I I I I I I
0 2 4 6 8 10 1 2 3 4 5
Time (s) Time (s)
(c) smoothed TCP RTT vs. Time for first 10 seconds (d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 8: One FreeBSD NewReno flow, 40ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer.
Linux and FreeBSD PIE configured for target 20ms, tupdate 30ms, max_burst 100ms, ECN disabled (Scenario 7)

CAIA Technical Report 160418A April 2016 page 17 of 18

10000

8000

6000

4000

Throughput (kbps)

2000

80

60

40

20

Smoothed TCP RTT (ms)

(c) smoothed TCP RTT vs. Time for first 10 seconds

« FreeBSD-PIE

Linux-PIE

0 10 20 30 40 50

Time (s)

(a) Throughput vs. Time

60

* FreeBSD-PIE

Linux-PIE

e~

Time (s)

10

CWND (K)

Smoothed TCP RTT (ms)

100

80

60

40

20

80

60

40

20

—| ¢ FreeBSD-PIE - Linux-PIE

Time (s)
(b) CWND vs. Time from t=0 to t=5

* FreeBSD-PIE Linux-PIE

T T T T T
1 2 3 4 5

Time (s)
(d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 9: One Linux CUBIC flow, 20ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer. Linux
and FreeBSD PIE configured for target 10ms, tupdate 30ms, interval 20ms, ECN enabled (Scenario 8)

CAIA Technical Report 160418A

April 2016

page 18 of 18

	Introduction
	ipfw/Dummynet
	CoDel
	CoDel Parameters
	CoDel Synopsis
	Examples of using CoDel

	FQ-CoDel
	FQ-CoDel Parameters
	FQ-CoDel synopsis
	Examples of using FQ-CoDel

	PIE
	PIE Parameters
	PIE Synopsis
	Examples of using PIE

	FQ-PIE
	FQ-PIE Parameters
	FQ-PIE Synopsis
	Examples of using FQ-PIE

	APPLYING THE PATCH/TESTING/INSTALLATION
	Applying the patch
	Testing the patched ipfw/dummynet
	Installing the patched ipfw and dummynet.ko

	Experimental comparisons of CoDel, FQ-Codel and PIE in Linux and FreeBSD
	Linux CoDel vs FreeBSD CoDel
	Linux FQ-CoDel vs FreeBSD FQ-CoDel
	Linux PIE vs FreeBSD PIE

	FreeBSD FQ-PIE
	Conclusions and Future Work
	Acknowledgements
	References

