Dummynet AQM v0.1 — CoDel and FQ-CoDel for
FreeBSD’s ipfw/dummynet framework

Rasool Al-Saadi, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 160226A
Swinburne University of Technology
Melbourne, Australia
ralsaadi@swin.edu.au, garmitage @swin.edu.au

Abstract—Controlled delay (CoDel) is an active queue
management (AQM) scheme designed to control bottleneck
queueing delay. FlowQueue-CoDel (FQ-CoDel) is hybrid
scheme that hashes flows into one of N queues, applies
CoDel AQM on a per-queue basis and utilises modified
Deficit Round Robin (DRR) scheduling to share link capac-
ity between queues. Although implementations of CoDel
and FQ-CoDel have existed in the Linux kernel since ver-
sion 3.5, no well-documented implementation has existed
for FreeBSD to date. Here we document an independent
implementation of CoDel and FQ-CoDel in FreeBSD’s
ipfw/dummynet framework — adding useful functionality
to FreeBSD and supporting the IETF’s AQM working
group by confirming the current CoDel and FQ-Codel
Internet Drafts. We confirm the functionality of our im-
plementation by comparing with Linux CoDel/FQ-CoDel.
Patches have been prepared for FreeBSD11-CURRENT-
r295345 and FreeBSD-10.x-RELEASE.

Index Terms—AQM, Scheduler, CoDel,
FreeBSD, Dummynet, IPFW

FQ-CoDel,

I. INTRODUCTION

Network routers use buffers to enhance routing per-
formance and increase overall throughput by absorbing
packet bursts and reducing packets drop. In recent years,
routers have used oversized buffer due to low memory
prices and this causes high latency in congested bottle-
necks if traditional tail drop is used. Researchers have
been attracted to find solutions to this problem by using
active queue management (AQM) to manage bottlenecks
buffers. AQM controls queue length by dropping/mark-
ing packets from bottleneck buffer when it becomes full
or queue delay becomes over a threshold value. Some
AQMs, such as RED (Random Early Detection) [1] and
its variations, use queue occupancy as an indicator of
how much a queue is congested. However, these types
of AQMs are hard to configure and perform badly in
certain scenarios [2].

CAIA Technical Report 160226A

February 2016

CoDel (Controlled delay) [3] is an example of a mod-
ern AQM designed to remedy these limitations by using
queue delay, instead of queue length, to indicate standing
queues. FQ-CoDel [4] is a hybrid scheme — flows are
assigned to one of a pool of internal queues, each active
queue runs an independent instance of CoDel, and a
modified Deficit Round Robin (DRR) scheduler shares
outbound link capacity between the active queues.

Implementations of CoDel and FQ-CoDel have ex-
isted in the Linux kernel since version 3.5 [5]. How-
ever, FreeBSD has only had an undocumented, Linux-
code based CoDel implementing in pf/ALTQ frame-
work. Using current IETF Internet Drafts [3], [4] we
have independently implemented CoDel and FQ-Codel
for FreeBSD’s ipfw/dummynet framework [6]. Our
work helps usefully enhance FreeBSD and demonstrate
that [3] and [4] are clear enough for implementation.

Our v0.1 patchset (CoDel and FQ-CoDel) can be ap-
plied to FreeBSD11-CURRENT 1295345 and FreeBSD-
10.{0,1,2}-RELEASE. We confirm the functionality of
our v0.1 implementation by comparing our results with
Linux CoDel and FQ-CoDel implementation.

The rest of this technical report is organised as follow:
Section II includes basic information about ipfw/dum-
mynet. Sections III and IV contain detailed information
about configuring CoDel and FQ-CoDel within ipfw.
Section V gives instructions of how to apply, test and
install our patch. Section VI compares experimentally
derived results from the FreeBSD and Linux CoDel and
FQ-CoDel implementations, and Section VII includes
our conclusion and future work.

II. IPFW/DUMMYNET

FreeBSD’s IPFW firewall supports both IPv4 and
IPv6, and allows filtering, redirecting, NAT, forwarding,
and other operations on IP packets passing through
network interfaces [7]. IPFW is tightly integrated with

page 1 of 10

mailto:ralsaadi@swin.edu.au
mailto:garmitage@swin.edu.au

dummynet, providing traffic shaping, delay emulation,
packet scheduling and queue management functionality.
Originally a tool to run experiments in an emulated
network environment, Dummynet has been improved
over time to support emulation of complex network
configurations [8]. The latest version of Dummynet im-
plements three queue management schemes (Drop Tail,
RED and GRED) and supports dynamically loadable
packet schedulers with many schedulers implementation
including First In First Out (FIFO), Worst-case Weighted
Fair Queueing (WF2Q+), Quick Fair Queueing (QFQ),
and others.
Dummynet provides users with three objects:
1) Pipe: represents a link that supports traffic shaping
and delay emulation.
2) Queue: represents a queue of packets managed by
a queuing management scheme and connected to
a packet scheduler.
3) Scheduler: represents a packet scheduler con-
nected to a link and has one or more queues.

The user-space ipfw command is used to create, delete,
configure and show these objects. For simplicity and
compatibility reasons, dummynet creates additional ob-
jects when a certain objects is created. For example,
when new pipe is created, queue and scheduler objects
are created as well. For more details see the ipfw(8)
FreeBSD Man Pages [9].

We implemented CoDel and FQ-CoDel in Dummynet
due to its popularity and flexibility. To make the process
of implementing new AQMs for Dummynet easier, we
also added support for dynamically loadable AQM kernel
module similar Dummynet schedulers.

An AQM module must define two mandatory func-
tions (dequeue and enqueue) and could have a structure
for state variables (for each queue) to store AQM internal
variables and another for configuration parameters (for
flowset) to store AQM configurations. In our implemen-
tation, CoDel is implemented as an AQM module to
be configured for queues (or for implicit queues created
when pipes are created) while FQ-CoDel is implemented
as scheduler module that includes both FQ scheduler
code and CoDel AQM code.

ITI. CoDEL

CoDel drops or marks packets depending on packet
sojourn time in the queue, and aims to achieve high
throughput while controlling queue delay and to be
nearly insensitive to flow RTT. It was designed to be
parameterless and work properly on the Internet with-
out changing its default configurations. However, the

CAIA Technical Report 160226A

February 2016

defaults in [3] are not always suitable (for example, when
path RTT is high) and can degrade TCP throughput.
Thus, our implementation provides options to change
CoDel parameters for each pipe/queue individually as
well as changing the defaults.

A. CoDel Parameters

CoDel has two primary parameters (target and
interval) and one option (to enable Explicit Conges-
tion Notification, ECN). target is the minimum accept-
able persistent queue delay that CoDel allows. CoDel
does not drop packets directly after packets sojourn time
becomes higher than target but waits for interval
before dropping. interval should be set to maximum
RTT for all expected connection. ecn controls whether,
for ECN-enabled TCP flows, CoDel marks or drops
packets when queue delay become high.

Table 1 shows our CoDel configuration parameters,
default values and sysctl control variables to change
the default value.

Table I: CoDel configuration parameters

Parameter | Default | sysctl variable

target 5 ms net.inet.ip.dummynet.
codel.target

interval | 100 ms net.inet.ip.dummynet.
codel.interval

ecn no ECN | -

B. CoDel Synopsis

CoDel is used with dummynet ‘pipe’ or ‘queue’
and can be configured through ipfw [9] interface.
CoDel has the following synopsis:

ipfw pipe/queue x config [...] codel [

target t] [interval t] [ecn]
where
t is time in millisecond.
Note: any token after ‘codel’ is considered a CoDel

parameter, so ensure all pipe/queue configuration options
are written before ‘codel’.

C. Examples of using CoDel

This subsection includes some examples of using
CoDel with ipfw/dummynet. It should be noted that
ipfw passes packets that match a classification rule of
dummynet pipe/queue to next rule by default. Thus, a
rule with ‘allow’ action should be added in some point
after pipe/queue rule.

1) One pipe controlled by CoDel AQM (default con-

figuration) and rate limit to 1 Mbits/s.

page 2 of 10

ipfw pipe 1 config bw lmbits/s codel
ipfw add 100 pipe 1 form any to any

2) Two queues controlled by CoDel AQM using dif-
ferent CoDel configurations parameters. The pipe
that queue 1 and 2 use has rate limit to 10 Mbits/s
and 20ms emulated delay. In more details, queue 1
and 2 connected to an implicit WF2Q+ scheduler
that use pipe 1 for traffic shaping and adding
emulated delay.

ipfw pipe 1 config bw 10mbits/s delay
20ms

ipfw queue 1 config pipe 1 codel
target 7 ecn

ipfw queue 2 config pipe 1 codel
target 8 interval 160 ecn

ipfw add 100 queue 1 form
192.168.0.0/16 to 192.168.0.0/16

ipfw add 200 queue 2 from
172.16.0.0/16 to 172.16.0.0/16

3) Two queues - queue 1 controlled by CoDel AQM
and queue 2 uses droptail. Both queues are con-
nected to QFQ scheduler that uses pipe 1 for rate
limit to 5 Mbits/s.
ipfw
ipfw
ipfw
ipfw

pipe 1 config bw 5mbits/s

sched 1 config pipe 1 type qgfg

queue 1 config sched 1 codel

queue 2 config sched 1

ipfw add 100 queue 1 form
192.168.0.0/16 to 192.168.0.0/16

ipfw add 200 queue 2 from
172.16.0.0/16 to 172.16.0.0/16

IV. FQ-COoDEL

As noted earlier, FQ-CoDel aims to control queu-
ing delays while sharing bottleneck capacity relatively
evenly among competing flows. FQ-CoDel’s modified
DRR (Deficit Round Robin) scheduler manages two lists
of queues — old queues and new queues — to provide
brief periods of priority to lightweight or short burst
flows. FQ-CoDel’s internal, dynamically created queues
are controlled by separate instances of CoDel AQM
(including separate state variables per queue).

The default parameters for FQ-CoDel in [4] are chosen
to be generally useful. However, they are not always suit-
able so our implementation provides options to change
FQ-CoDel parameters for each scheduler individually as
well as changing the defaults.

CAIA Technical Report 160226A

February 2016

A. FQ-CoDel Parameters

FQ-CoDel has five primary parameters (target,
interval, quantum, limit and flows) and one op-
tion (to enable Explicit Congestion Notification, ECN).
target, interval and ecn are CoDel parameters de-
scribed in section III-A. quantum is number of bytes
a queue can be served before being moved to the tail
of old queues list. 1imit is the hard size limit of
all queues managed by an instance of the fq_codel
scheduler. £1ows is number of flow queues that fq_codel
creates and manages.

Table II shows our FQ-CoDel configuration param-
eters, default values and sysctl control variables to
change the default value.

Table II: FQ-CoDel configuration parameters

Parameter | Default | sysctl variable

target 5 ms net.inet.ip.dummynet.
fgcodel.target

interval | 100 ms net.inet.ip.dummynet.
fgcodel.interval

ecn no ECN | -

quantum 1514 net.inet.ip.dummynet.
fgcodel.quantum

limit 10240 net.inet.ip.dummynet.
fgcodel.limit

flows 1024 net.inet.ip.dummynet.
fgcodel.flows

B. FQ-CoDel synopsis

fq_codel is used with dummynet scheduler object
(’schd’) and can be configured through ipfw interface.
fq_codel has the following synopsis:

ipfw sched x config [...] type fg _codel

[target t] [interval t] [ecn] [
quantum n] [limit n] [flows n]
where
t is time in millisecond.
n is integer number

Note: any token after ‘fq_codel’ is considered an FQ-
CoDel parameter, so ensure all other scheduler configu-
ration options come before ‘fq_codel’.

C. Examples of using FQ-CoDel

This subsection includes some examples of using
fq_codel with ipfw/dummynet. Note that ipfw passes
packets that match a classification rule of dummynet
pipe/queue to next rule by default. Thus, a rule with
‘allow’ action should be added in some point after
pipe/queue rule.

page 3 of 10

1) One scheduler with one queue, 2048 fq_codel sub-
queues, target 7ms and quantum 2000 bytes

ipfw pipe 1 config bw 10mbits/s

ipfw sched 1 config pipe 1 type
fg _codel target 7 quantum 2000
flows 2048

ipfw queue 1 config sched 1

ipfw add 100 queue 1 form
192.168.0.0/16 to 192.168.0.0/16

2) One scheduler with two queues (1024 fq_codel

sub-queues by default), interval 150ms, ECN en-
abled

ipfw pipe 1 config delay 10ms

ipfw sched 1 config pipe 1 type
fg codel interval 150 ecn

ipfw queue 1 config sched 1

ipfw queue 2 config sched 1

ipfw add 100 queue 1 form
192.168.0.0/16 to 192.168.0.0/16

ipfw add 200 queue 2 from
172.16.0.0/16 to 172.16.0.0/16

V. APPLYING THE
PATCH/TESTING/INSTALLATION

We have tested our FreeBSD11-based v0.1 patch [6]
against FreeBSD11-CURRENT 1295345, although it
may also work with earlier or later builds. To
build r295345 from source you’ll need to checkout
FreeBSD11-CURRENT 1295345 source tree using:

svn checkout —-r 295345 svn://svn.freebsd.
org/base/head/ /usr/src/

We also provide a version for FreeBSD 10.x-
RELEASE (10.0, 10.1, 10.2) as a separate patch file that
combines our CoDel/FQ-CoDel code with ECN marking
code backported from FreeBSD11-CURRENT r266941.

Once the patch is applied, you only need to (re)build
the dummynet.ko kernel module and ipfw userland
command (rather than rebuild a complete kernel and
world from source). As root user do the following steps:

A. Applying the patch

Apply the patch as follows:
1) Extract the patch file

tar —-xvf dummynet-agm-patch-0.1l.tgz -
C /usr/src/ cd /usr/src

2) Apply the patch
a) For FreeBSD11-CURRENT

CAIA Technical Report 160226A

February 2016

patch -pl < dummynet—-agm-patch
-0.1/freebsdl1-r295345.patch

b) For FreeBSD 10.x-RELEASE
patch -pl < dummynet-agm-patch
-0.1/freebsdl0.x.patch
3) Copy ip_dummynet .h to /usr/include/netinet.

cp /usr/src/sys/netinet/ip_dummynet.h
/usr/include/netinet/

4) Build ipfw userland.

cd /usr/src/sbin/ipfw
make

5) Build dummynet kernel module

cd /usr/src/sys/modules/dummynet /
make

B. Testing the patched ipfw/dummynet

Use the following steps to check whether the patch
applied cleanly and built both userland ipfw and dum-
mynet kernel module:

1) Check if old dummynet is already loaded

loaded kldstat | grep dummynet

2) If dummynet is already loaded, unload it.
kldunload dummynet

3) Load the patched dummynet.ko into FreeBSD ker-
nel

kldload /usr/src/sys/modules/dummynet
/dummynet . ko

4) Check debug messages using ‘dmesg’ command:

dmesg | grep CODEL

The Output should be something like:

load_dn_agm dn_agm CODEL loaded
load_dn_sched dn_sched FQ CODEL
loaded

5) Use the patched ipfw interface (specify a full
pathname when use ipfw):

/usr/src/sbin/ipfw/ipfw pipe 1 config
codel
/usr/src/sbin/ipfw/ipfw pipe 1 show

The Output should be something like:

00001: unlimited 0 ms burst O

gl31073 50 sl. 0 flows (1 buckets)
sched 65537 weight 0 lmax 0 pri O
AQM CoDel target 5 interval 100

sched 65537 type FIFO flags 0x0 O
buckets 0 active

page 4 of 10

C. Installing the patched ipfw and dummynet.ko

To use the patched ipfw/dummynet by default, install
them as follow:

1) Install ipfw interface, ignore any error if appears.

cd /usr/src/sbin/ipfw
make install

2) Install dummynet kernel module

cp /usr/src/sys/modules/dummynet /
dummynet .ko /boot/kernel/

3) (Optional) To avoid the warning “KLD ‘/boot/k-
ernel/dummynet.ko’ is newer than the linker.hints
file”, regenerate kernel loader hints with:

kldxref /boot/kernel

VI. EXPERIMENTAL COMPARISONS OF
CODEL/FQ-CODEL IN LINUX AND FREEBSD

We used a TEACUP-based [10] testbed! to com-
pare the behaviour of our implementation with a Linux
implementation. Figure 1 shows our testbed’s network
topology, with three hosts?, one bottleneck router® and a
control host. Experiment network links are 1Gbps Eth-
ernet, while the Control network used separate 100Mbps
Ethernet connections to each machine.

Each end host could be booted into FreeBSD10.1-
RELEASE or Linux 4.2 while the control host ran
FreeBSD 10.1. The bottleneck router could be booted
into FreeBSD10.1-RELEASE, FreeBSD11-CURRENT-
1295345 or Linux 3.17.4 as required. (Note that because
FreeBSD11-CURRENT is the development branch with
lots of debugging code enabled, the FreeBSD CoDel and
FQ-CoDel tests in this section were run using FreeBSD
10.1-RELEASE.) When running CoDel and FQ-CoDel
under Linux, TEACUP uses the netem and tc modules
to emulate our target RTT and bottleneck bandwidths.*

A. Linux CoDel vs FreeBSD CoDel

In all our CoDel comparison experiments we used
iperf under FreeBSD or Linux to generate one TCP
flow running for 60 seconds between Hosts 2 and 3
(Figure 1). The router applied independent instances of
CoDel to 10Mbit/sec bottlenecks in each direction, with
each CoDel buffer set to 1000 packets. The router also
emulated either 20ms or 40ms of underlying path RTT.

'TEACUP source is at https://sourceforge.net/projects/teacup/

*Intel Core 2 Duo @ 3GHz, 4GiB RAM, 1Gbps NICs

3Intel Core 2 Duo @ 2.33GHz, 1Gbps NICs

“See section IV-B of [10] for details on how TEACUP appropri-
ately configures netem and tc for this purpose.

CAIA Technical Report 160226A

February 2016

192.168.1.254
Control Host

-

((192.168.1 .D\\)

Control Network

—

192.168.1.103
Host 3
172.16.11.3

192.168.1.102
Host 2
172.16.11.2

192.168.1.101
Host 1
172.16.10.2

192.168.1.200

Experiment
Network

@ — L\ I
< 172.16.10.0)_@_g
] U
— < 4 _
Dummynet/ipfw (FreeBSD)
Netem/tc (Linux)

Figure 1: TEACUP Testbed topology

A —
17216110)
— o /}

-y

Scenario 1: NewReno over CoDel @ 20ms RTT

In scenario 1 the end hosts booted into FreeBSD and
ran TCP NewReno over a 20ms RTT path. CoDel was
configured with target 5 ms, interval 100 ms and no
ECN. Figure 2 shows throughput®, CWND and smoothed
TCP RTT versus time for both FreeBSD and Linux
implementations of CoDel. Our implementation behaves
very similarly to CoDel under Linux.

Scenario 2: NewReno over CoDel @ 40ms RTT

Scenario 2 is the same as scenario 1 except that the
emulated path RTT is 40 ms. Figure 3 shows throughput,
CWND and smoothed TCP RTT versus time, and again
the behaviour of our implementation is very similar to
CoDel under Linux.

Scenario 3: CUBIC over CoDel @ 20ms RTT

In scenario 3 the end hosts booted into Linux and ran
TCP CUBIC over a 20ms RTT path. CoDel was config-
ured with target 10ms, interval 100ms and ECN enabled.
We checked number of dropped packet and confirmed
that ECN is functional with nothing dropped during
the experiment. Figure 4 shows throughput, CWND,
smoothed TCP RTT versus time, and again the behaviour
of our implementation is very similar to CoDel under
Linux.

B. Linux FQ-CoDel vs FreeBSD FQ-CoDel

Similar to the CoDel experiments, we compared our
FQ-CoDel implementation results with Linux FQ-CoDel
to illustrate their similarities. In this case we used
multiple instances of iperf under Linux to generate
four TCP CUBIC flows with staggered start and end

SAll CoDel experiments throughputs were calculated using 3
seconds window moving forward in steps of 0.6 sec

page 5 of 10

https://sourceforge.net/projects/teacup/

10000

[e]
o
o
o

6000

4000

Throughput (kbps)

N
o
o
o

o

_| ¢ FreeBSD-Codel

Linux-Codel

0 10

I I
20 30

Time (s)

I
40

(a) Throughput vs. Time

I
50

* FreeBSD-Codel

Linux—Codel

200

150

100

CWND (K)

50

35
30
25

—| * FreeBSD-Codel
1

J

O adaat
iidddddddddddd

Linux—Codel

T T
0 1

T T T T
2 3 4 5

Time (s)

(b) CWND vs. Time from t=0 to t=5

~ + FreeBSD-Codel

Linux—Codel

- 80
\E/ &
E 60 I
(2 ¥
a i
2 40 &
% f g‘ﬂﬂﬂ:”h’h”ﬁd’.f’;fd’nMz.f&f%”lr‘lilih‘h’m;"ﬂﬂa?‘
g 204
(99}
0 I I I I I I
0 2 4 6 8 10

Time (s)
(c) smoothed TCP RTT vs. Time for first 10 seconds

20
15 —
10

Smoothed TCP RTT (ms)

Time (s)
(d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 2: One FreeBSD NewReno flow, 20ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer.
Linux and FreeBSD CoDel configured for target Sms, interval 100ms, ECN disabled (Scenario 1)

times (starting at t=0, 10, 20, 30 seconds and each
flow lasting for 60 seconds). Each instance of fq-codel
was configured for target Sms, interval 100ms, no ECN,
quantum 1514 bytes and with 10240 packets of bottle-
neck buffering shared by 1024 fq_codel sub-queues.

Scenario 4: 10Mbit/sec bottleneck

In scenario 4 the bottleneck was configured for
10Mbit/sec. Figure 5 shows throughput®, CWND and
smoothed TCP RTT versus time for the experiment.
As with CoDel, our FQ-CoDel implementation behaves
similarly to the Linux implementation.

All FQ-CoDel experiments throughputs were calculated using a
1.5 sec window moving forward in steps of 0.3 sec

CAIA Technical Report 160226A

February 2016

Scenario 5: IMbit/sec bottleneck

Scenario 5 repeats scenario 4 but with a 1Mbit/sec
bottleneck. Figure 6 shows throughput, CWND and
smoothed TCP RTT versus time for the experiment. For
reasons we have yet to determine, our FQ-CoDel im-
plementation seems to actually share the limited 1Mbps
among multiple flows more consistently than the Linux
implementation.’

VII. CONCLUSIONS AND FUTURE WORK

This report focuses on Dummynet AQM v0.1 — our
FreeBSD implementation of CoDel and FQ-CoDel in

"Whether our implementation’s behaviour is more correct is a
separate question

page 6 of 10

10000

« FreeBSD-Codel - Linux—-Codel

PR VA e A VA A A A A e A A A A A A
8000 — /
[%2] |
(o} |
< 1
<6000 4 | |
= | |
sy | R
S4000 / \
3 !
£ j \
= 2000 | ,

0

I I I I I I I
0 10 20 30 40 50 60

Time (s)

(a) Throughput vs. Time

* FreeBSD-Codel

100 — -

Linux—Codel

r
80 4 4
.i.

60 - i

w0 P SV, W T, PR N N, W Y, T

20

Smoothed TCP RTT (ms)

Time (s)
(c) smoothed TCP RTT vs. Time for first 10 seconds

« FreeBSD-Codel
.

Linux—Codel

250 —

200 —

150 —

CWND (K)

100 —

[$)
o
|

e

0 1 2 3 4 5

Time (s)
(b) CWND vs. Time from t=0 to t=5

* FreeBSD-Codel - Linux—Codel

40

30

10 —

Smoothed TCP RTT (ms)

Time (s)
(d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 3: One FreeBSD NewReno flow, 40ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer.
Linux and FreeBSD CoDel configured for target Sms, interval 100ms, ECN disabled (Scenario 2)

ipfw/dummynet framework. We summarise the AQM
and Dummynet context, provide instructions for applying
the patch, and present preliminary experimental results
suggesting that our independent implementation of [3]
and [4] behaves very similarly to the Linux kernel 3.17.4
implementations.

Our experimental testing has been limited, aiming
primarily to confirm plausible similarity in behaviours
and (indirectly) confirm the clarity of the current Internet
Drafts. Future work will include more detailed study
of the small (yet unexpected) divergence in behaviour
between Linux FQ-CoDel and our FreeBSD implemen-
tation when faced with low (1Mbps) bottleneck rates. In
the near future we also hope to release an independent

CAIA Technical Report 160226A

February 2016

implementation of PIE AQM (based on the available
Internet Draft [11]) and FQ-PIE (based on plausible
design choices).

VIII. ACKNOWLEDGEMENTS

This project has been made possible in part by a gift
from the Comcast Innovation Fund.

REFERENCES

[1] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” Networking, IEEE/ACM Transac-
tions on, vol. 1, no. 4, pp. 397-413, Aug 1993.

[2] K. Nichols and V. Jacobson, “A modern aqm is just
one piece of the solution to bufferbloat,” ACM Queue
Networks, vol. 10, no. 5, 2012. [Online]. Available: http:
//queue.acm.org/detail.cfm?id=2209336

page 7 of 10

http://queue.acm.org/detail.cfm?id=2209336
http://queue.acm.org/detail.cfm?id=2209336

10000 - \

Throughput (kbps)

Smoothed TCP RTT (ms)

« FreeBSD-Codel - Linux—Codel

8000 —
6000 —
4000 | |

2000 —

I I I I I I I
20 30 40 50 60

Time (s)

(a) Throughput vs. Time

40 —
o y\ MUY
20
10 —
0 T T T T |
0 2 4 6 8 10
Time (s)

(c) smoothed TCP RTT vs. Time for first 10 seconds

CWND (K)

Smoothed TCP RTT (ms)

* FreeBSD-Codel Linux-Codel
50
40 4 iz -'- o -'_. o ."'-3 =t ."'-’ 2
30_5::_.’ = ":_' S
20
10 H
0 —
I I I I I I
0 1 2 3 4 5
Time (s)
(b) CWND vs. Time from t=0 to t=5
40 1. FreeBSD-Codel Linux-Codel
A A A A A
30 /‘ Uflfr'_/fr'df'\,r
20
10
0 —
I I I I I
1 2 3 4 5
Time (s)

(d) smoothed TCP RTT vs. Time from t=1 to t=5

Figure 4: One Linux CUBIC flow, 20ms RTT path, 10Mbps rate limit and 1000-packet bottleneck buffer. Linux
and FreeBSD CoDel configured for target 10ms, interval 100ms, ECN enabled (Scenario 3)

(3]

(4]

(5]

(6]

(7]

(8]

CAIA Technical Report 160226A

K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar,
“Controlled Delay Active Queue Management,” IETF Draft,
December 2015. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-aqm-codel-02

T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys,
and E. Dumazet, “FlowQueue-Codel,” IETF Draft,
February 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-aqm-fq-codel-04

Bufferbloat Wiki. [Online].
projects/codel/wiki

R. Al-Saadi and G. Armitage, “Implementing AQM in
FreeBSD.” [Online]. Available: http://caia.swin.edu.au/freebsd/
aqm

IPFW - FreeBSD Handbook. The FreeBSD Documentation
Project, 2015. [Online]. Available: https://www.freebsd.org/
doc/handbook/firewalls-ipfw.html

M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM
Comput. Commun. Rev., vol. 40, no. 2, pp. 12-20, Apr.

Available: www.bufferbloat.net/

(9]

(10]

(1]

February 2016

2010. [Online]. Available: http://doi.acm.org/10.1145/1764873.
1764876

IPFW(8), FreeBSD System Manager’s Manual. [Online].
Available: https://www.freebsd.org/cgi/man.cgi?ipfw(8)

S. Zander and G. Armitage, “TEACUP v1.0 - A System
for Automated TCP Testbed Experiments,” Centre for
Advanced Internet Architectures, Swinburne University of
Technology, Melbourne, Australia, Tech. Rep. 150529A, 2015.
[Online]. Available: http://caia.swin.edu.au/reports/150529A/
CAIA-TR-150529A.pdf

R. Pan, P. Natarajan, F. Baker, G. White, B. VerSteeg,
M. Prabhu, C. Piglione, and V. Subramanian, “PIE:
A Lightweight Control Scheme To Address the
Bufferbloat Problem,” IETF Draft, https://tools.ietf.org/html/
draft-ietf-aqm-pie-03, November 2015. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-agm-pie-03

page 8 of 10

https://tools.ietf.org/html/draft-ietf-aqm-codel-02
https://tools.ietf.org/html/draft-ietf-aqm-codel-02
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-04
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-04
www.bufferbloat.net/projects/codel/wiki
www.bufferbloat.net/projects/codel/wiki
http://caia.swin.edu.au/freebsd/aqm
http://caia.swin.edu.au/freebsd/aqm
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
http://doi.acm.org/10.1145/1764873.1764876
http://doi.acm.org/10.1145/1764873.1764876
https://www.freebsd.org/cgi/man.cgi?ipfw(8)
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
https://tools.ietf.org/html/draft-ietf-aqm-pie-03
https://tools.ietf.org/html/draft-ietf-aqm-pie-03
https://tools.ietf.org/html/draft-ietf-aqm-pie-03

12000 12000

o flowl « flow3 + flowl « flow3
flow2 « flowd flow2 - flows
10000 — 10000 —
2 2
g 8000 — g 8000 —
36000 2 6000 -
< _ _ <
D i = (@]
3 4000 — 3 4000 —
ey e /
[. [f
2000 — \ 2000 — \
0 0
I I I I I I I I I I
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(a) FreeBSD fq_codel Throughput vs. Time (b) Linux fq_codel Throughput vs. Time
e flowl « flow3 o flowl « flow3
80 — flow2 - flowa 80 — flow2 « flowa
. 60 60+
S 53
= ; 2
40 7 i 40 —
= = =
O = o
20 - 20 i
0 0
I I I I I I I I I I
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(c) FreeBSD fq_codel CWND vs. Time (d) Linux fq_codel CWND vs. Time
150 " o - o 150 - o - o
m m
E E
E E
or 100 — o 100 —
o o
[®) l O
[[
ie] e}
2 50 |] £ 50 |
o | ARIETRIRTETRTES RTRNE AN o ! [: _
o LI Y : - T Al o | B e
E h‘ - SdidaibIibdadd Ll My o E h =
n (7}
0 0
I I I I I I I I I I
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(e) FreeBSD fq_codel smoothed TCP RTT vs. Time (f) Linux fq_codel smoothed TCP RTT vs. Time

Figure 5: Four Linux CUBIC flows, 20ms RTT path, 10Mbps limit. Both FQ-CoDels configured for target Sms,
interval 100ms, 1024 queues, quantum 1514 bytes, 10240-packet buffering, ECN disabled (Scenario 4)

CAIA Technical Report 160226A February 2016 page 9 of 10

1200 . jous -« fows 1200
flow2 « flowd
1000 1000
2 2
g 800 g 800
3 600 3 600
< _ S
g T g
o 400 o 400
= — =
[B R et [
200 \ 200
0 0
I I I I I
0 20 40 60 80
Time (s)
(a) FreeBSD fq_codel Throughput vs. Time
<
30 30
ron) 25 : —~
< : ; =
a 20 : : a 20
Z - : P
2 15 ° i s
O = . (@]
10 : - 10
5 - - f—
0 0
I I I I I
0 20 40 60 80
Time (s)
(c) FreeBSD fq_codel CWND vs. Time
300 o flowl « flow3 300
— flow2 flow4 —
é 250 : é 250
= : —
£ 200 : : E 200
5 150 | 3
2 150 O 150
ie] e}
2 100 2 100
° °
] : I}
e 50 : £ 50
n i (7}
0 0
I I I I I
0 20 40 60 80
Time (s)

(e) FreeBSD fq_codel smoothed TCP RTT vs. Time

+ flowl « flow3
flow2 - flow4

&Al?.:‘nl?';t‘ o i L] 14')“:3
.,*W‘ﬁ-‘imt ﬁ'»\

I I I I I
0 20 40 60 80

Time (s)

(b) Linux fq_codel Throughput vs. Time

+ flowl « flow3
flow2 - flow4

Time (s)
(d) Linux fq_codel CWND vs. Time

o flowl flow3
flow2 - flow4

[.ﬂdmw-m«
¥
-

LG
e
i -
T
i g

3
oy o
-
3

Time (s)

(f) Linux fq_codel smoothed TCP RTT vs. Time

Figure 6: Four Linux CUBIC flows, 20ms RTT path, 1Mbps limit. Both FQ-CoDels configured for target Sms,
interval 100ms, 1024 queues, quantum 1514 bytes, 10240-packet buffering, ECN disabled (Scenario 5)

CAIA Technical Report 160226A

February 2016

page 10 of 10

	Introduction
	ipfw/Dummynet
	CoDel
	CoDel Parameters
	CoDel Synopsis
	Examples of using CoDel

	FQ-CoDel
	FQ-CoDel Parameters
	FQ-CoDel synopsis
	Examples of using FQ-CoDel

	APPLYING THE PATCH/TESTING/INSTALLATION
	Applying the patch
	Testing the patched ipfw/dummynet
	Installing the patched ipfw and dummynet.ko

	Experimental comparisons of CoDel/FQ-Codel in Linux and FreeBSD
	Linux CoDel vs FreeBSD CoDel
	Linux FQ-CoDel vs FreeBSD FQ-CoDel

	Conclusions and Future Work
	Acknowledgements
	References
	References

