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Abstract—For some devices and services, a consistently
reliable connection to the internet is crucial; a failure to
report to an internet service could result in significant
financial or property damage or loss of life. In this
document we propose a solution through the development
and testing of a “High-availability Internet Gateway De-
vice” (HalG) which can be installed into a network and
utilise multiple redundant internet connections in order to
guarantee uptime for a secure tunnel for medical devices.
Three potential solutions are identified and prototyped:
Multipath TCP (MPTCP), Layer 2 Bonding (L2B), and
SCTP. MPTCP and L2B were found to be less suitable than
SCTP at providing a reliable, high-availability fail-over
solution. We were able to successfully integrate the SCTP
method with a consumer networking device to provide a
service which can be used in remote cardiac monitoring
to provide reliability and performance guarantees using
redundant internet connections. The effectiveness of this
method was proven using network analysis tools and a
controlled testbed.

I. INTRODUCTION

HE aim of this project was to research possible soft-

ware and protocol solutions for an in-home High-
availability Internet Gateway (HalG) device based on
existing consumer hardware. The purpose of this gateway
was to provide networked clients with an always-on,
highly reliable connection to the internet using several
redundant internet uplinks.

Typically, home gateways will only provide an internet
connection via one uplink, for example an ADSL2+
modem, with a minority of devices providing a fall-
back to 3G when the main connection fails. For these
devices, it can typically take up to several minutes for
it to determine that its main connection has completely
failed and that it should switch over to its fall-back.

“This work was originally developed as part of the author’s BEng
Final Year Research Project, 2015
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The goal of this research report was to ascertain
the best method of redundancy fail-over using existing
technologies that best fit the criteria laid down by the use
case. Specifically, we focused on the testing and imple-
mentation of the protocol in a medical telemetry setting,
where high response times are an absolute requirement.
Emergency alarms generated by medical devices require
immediate attention and response, and the failure of the
internet connection through which these devices report
their situation could result in catastrophic damage or loss
of life.

II. LITERATURE REVIEW

We factored down the research aims for this project
into three key questions:

1) What are the network requirements of a real-time
remote cardiac monitoring device?

2) What existing technologies, protocols, and re-
search are available, which are free to use and free
of charge, that can provide or help to implement
the desired service and can be integrated into a
single functional unit?

3) What performance metrics can be used to accu-
rately determine the reliability, performance, and
failure response time of such a gateway in different
testing scenarios?

Question 3 was critical to the development and final
analysis of the device, as it must be determined whether
this internet gateway device can actually be beneficial
and improve reliability, and whether it is worth the cost
and performance overhead of maintaining and polling
the state and quality of multiple internet connections.

A. Medical Telemetry

Reliability is key for networked medical devices:
“Packet losses during the transmission of medical in-
formation may have disastrous impacts on a patient’s
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diagnosis”. [1] It was therefore vital that ensuring the
reliability of the platform and service, especially when
faced with a packet loss scenario, was a paramount focus
of this project.

The bandwidth required for transmitting medical
telemetry over an internet connection needed to be taken
into account, especially when operating over potentially
costly mobile internet connections. Table I shows the
approximate bandwidth requirements for various types
of raw medical telemetry data for a patient in bits per
second.

Table I: Bandwidth requirements for monitoring services

(2]

Biomedical Measurement Rate (bps)
ECG 15000
Heart sound 120000
Heart rate 600
EEG 4200
EMG 600000
Respiratory Rate 800
Temperature of body 80

B. Network Redundancy

1) Link Aggregation: This is the process of linking
physical network interfaces together at the software level,
also called teaming. There are many different approaches
to this, mostly proprietary and manufacturer-dependant,
however most focus around splitting network traffic at
Layer 2 of the OSI Model across the multiple interfaces
in order to utilise the aggregate bandwidth of all the
links.

Some implementations of link aggregation, such as
the Bonding driver in the Linux kernel, offer high con-
figurability and flexibility, and offer multiple functional
modes depending on the requirements. In the case of
the Bonding driver, it offers active and passive forms of
load balancing across the interfaces, mirroring of data,
backup links, and 802.3ad compatibility modes. [3]

2) MPTCP: Multipath TCP (MPTCP) is a new exper-
imental standard ratified by the IETF in 2013, providing
a higher level implementation of network redundancy, in
that is based around OSI Layer 4 network communica-
tion. “MPTCP operates at the transport layer and aims
to be transparent to both higher and lower layers. It is
a set of additional features on top of standard TCP ...
MPTCP is designed to be usable by legacy applications
with no change” [4] Additionally, there is a project aimed
at bringing MPTCP support to Linux-based systems
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through a patch-set for the Linux kernel and user-space
tools, which will greatly aid in development of the
internet gateway device. [5]

3) SCTP: The Stream Control Transmission Protocol
(SCTP) is a session-oriented alternative transport pro-
tocol, operating at the same level as TCP and UDP. It
was created with the intent of adding new capabilities
to IP-based transport protocols, such as multi-homing
(utilising multiple end-points) and multi-streaming (par-
titioning data into multiple independent streams in order
to increase fault tolerance). The multi-homing capabili-
ties are of particular interest to the project. This protocol
is included in the Linux kernel. [7]

C. Network Performance Metrics

There are many network analysis tools designed for
various scenarios and testing criteria. TCP Experiment
Automation Controlled Using Python (TEACUP) is a set
of software for the management of a suite of such tools
for use in automated testbeds. “Based on a configuration
file TEACUP can perform a series of experiments with
different traffic mixes, different bottleneck configurations
(such as bandwidths, queue mechanisms), different emu-
lated network delays and/or loss rates, and different host
settings (e.g. used TCP congestion control algorithm).
For each experiment TEACUP automatically collects rel-
evant information that allows analysing TCP behaviour,
such as tcpdump files and TCP stack information.” [8]

III. METHODOLOGY

The focus of the evaluation of the redundancy solu-
tions was testing their ability to maintain an OpenVPN
connection between the gateway device (simulating the
user’s ‘home router’) and an endpoint (simulating the
‘hospital’) using OpenVPN v2.3.8. The OpenVPN con-
nection maintained a layer 3 routed IP network between
the end-point and router, through which the traffic gener-
ated by iperf under TEACUP v1.0 was routed. This in-
volved setting static routes on the gateway and endpoint
for routing the traffic, as well as configuring OpenVPN
for bidirectional external routing. For L2B and SCTP-
based setups, UDP was used for the OpenVPN transport
layer, while TCP (in order to facilitate the automatic use
of MPTCP) was used for the MPTCP setup.

Traffic was generated on a ‘client device’ (hostname:
testhost1), sitting on the home user network, and sent
to the ‘server’ (testhost?2), sitting on the ‘hospital’ net-
work behind the hospital endpoint (endpoint-router),
via the OpenWRT device (openwrt). Traffic from
testhost1 was routed to openwrt via a third host,
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Figure 1: Test-bed network layout [6]

teacup-router. ctlhost was used as the TEACUP
‘control host’, which orchestrates the TEACUP tests over
the management network 192.168.200.0/24.

TEACUP provided a solid platform and testing tem-
plate for use with the evaluation of the link redundancy
solutions. The focal testing tool used by TEACUP during
testing was iperf.

TEACUP is however (at the time of writing) incom-
patible with the busybox utilities used by OpenWRT
in place of the standard GNU coreutils found on a
typical Linux distribution. Due to this, the OpenWRT-
powered router was not managed by TEACUP; in-
stead, teacup-router was used as a ‘shim’ router
between testhostl and the OpenWRT device. This
simply routed traffic between the testhostl network
and a dedicated interstitial network between it and the
OpenWRT device.

A diagram showing the network layout and each
host’s assigned IP addresses is shown in Figure
1. The 192.168.202.0/24 network emulated the
‘main’ (ADSL, Cable, etc.) internet connection be-
tween openwrt and endpoint-router, while the
192.168.203.0/24 network emulated a ‘fall-back’ 3G
connection. In order to emulate the 3G connection, the tc
tool was used to introduce a 200ms delay and 3.5Mbps
bandwidth limit to the fall-back network on openwrt.
This also served the purpose of identifying when traffic
was being routed through the fall-back network instead
of the main when analysing the results, as traffic flowing
through the fall-back was at a much lower through-
put and higher latency. As identified in the literature
review, 1000kbps is enough bandwidth to support any
combination of the likely biomedical measurement data,
including OpenVPN and other overheads. [9]

The two hosts and routers, testhost1, testhost2,
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endpoint-router, and teacup-router, along with
ctlhost, were all virtual machines running on a desktop
computer, virtualised using QEMU v2.4.1. The host
operating system on the desktop computer was an up-
to-date at time of writing Arch Linux installation. The
desktop was physically connected to the openwrt host
device using a single Ethernet cable. The six separate
network segments were simulated using VLAN tagging
— all traffic was trunked over the single connection. The
VM hosts were connected to their respective networks
using the bridging functionality of QEMU.

All five virtual machines were running Debian 8.2.0
and were configured to use the virtio-net drivers for
network interfaces for maximal performance. The Open-
WRT device firmware was built using code checked out
from the official OpenWRT git repository, at commit
1f66£11. [10]

As TEACUP uses the Web10g Linux kernel extensions
for probing the network stack and gathering statistics
when running under Linux, and as Debian does not
include these extensions by default, a custom kernel was
required for these virtual machines. This was achieved
by cloning the Web10g fork of the Linux kernel, and
compiling it with the standard kernel configuration from
Debian 8.2.0 with Web10g additionally enabled. This
kernel was then used together with the “Direct kernel
boot” feature of QEMU, booting the VM with the kernel
directly, bypassing the OS bootloader. This simplified
the setup by allowing a single customised kernel image
file for all VM’s to be saved on the host machine and
loaded from there. The source code for the Web10g was
downloaded from the project’s GitHub page, at commit
444b451, corresponding to Linux 3.18.0. [11] [12]
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A. L2B

The design of the L2B approach was to create a layer
2 tunnel interface using OpenVPN on each end of each
internet connection, and to bond them together using the
Linux bonding driver. A standard OpenVPN tunnel was
to then be created using this new bonded interface, and
traffic routed through that. Figure 2 shows the testbed
setup.

During preliminary testing of the L2B method, the
setup was found to be unstable and prone to failures.
Functionally, it worked and was able to facilitate the
transmission of data from testhostl to testhost2,
and provided fail-over when the main connection went
down. However, various components would sporadically
fail, halting the flow of data across the connection and
requiring the entire stack to be restarted. The exact
cause of this is unknown; the Linux bonding driver was
constructed with physical link interfaces in mind, not
virtual interfaces such as these layer 2 tunnels, and as
such, could have been put into an invalid or undefined
state due to some lacking characteristic or functionality
of these tunnel interfaces.

As a result of this instability and in the interest of
time, the L2B approach was deemed unsatisfactory, and
no further testing was carried out.
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Figure 2: L2B testbed setup
B. MPTCP

As MPTCP is a transparent replacement for TCP, to be
used it needed to be enabled in the kernel configuration,
and OpenVPN configured to use TCP as its transport
layer protocol, in order to function. The testbed setup
that we proposed for MPTCP is shown in Figure 3.

However, as MPTCP is not currently in the mainline
Linux kernel, a fork including the necessary changes
needed to be used. An already established MPTCP-
enabled fork of OpenWRT exists, which was intended
to be used to carry out the testing. However, due to
the MPTCP fork lagging behind the mainline Open-
WRT distribution version, several incompatibilities with
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required software versions were discovered. This in-
troduced errors in the OpenWRT compilation process,
which proved to be too pervasive and difficult to fix in
the time available.

Furthermore, subsequent analysis of the protocol
found that MPTCP implementations are likely to split
traffic across all paths to maximise throughput, which
does not coincide with the goal of the project. This could
add considerable expense for the user, as traffic could be
constantly sent using the more costly 3G path.

Thus, in light of the aforementioned observations, the
decision was made to abort the MPTCP testing and focus
on other methods.
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Figure 3: MPTCP testbed setup

C. SCTP

As OpenVPN does not natively support using SCTP
as its transport-layer protocol, OpenVPN UDP traffic
needed to be tunnelled using a socket relay application
— socat. One instance of socat was configured to
listen for UDP connections from the OpenVPN client
on openwrt and forward them to another instance of
socat on endpoint-router. This second instance was
configured to listen for SCTP connections and forward
the tunnelled UDP packets to the OpenWRT server
on the same device. SCTP automatically makes use of
alternative available paths. Figure 4 shows the testbed
setup used in the experiment. Listings 1 and 2 show the
commands used to initialise both socat instances.

The Linux SCTP implementation makes several tun-
able parameters available to the user, and can be modified
using operations on the files under the /proc/sys/net/
sctp directory. Of particular interest to the project were
the rto_initial, rto_min, and rto_max parameters,
which govern the initial, minimum, and maximum re-
ceive time-outs (RTO). Of these, rto_min had the most
dramatic effect on the performance of the fail-over dur-
ing preliminary testing. Thus, in order to further explore
the efficacy of SCTP as a redundancy solution, further
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tests were carried out observing the effects of setting
the rto_min parameter. The values used (representing
milliseconds) were: 50, 100, 1000 (default), and 3000.
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Figure 4: SCTP testbed setup using socat
Listing 1: openwrt socat initialisation
socat 'UDP-LISTEN:1194,fork’ \
"SCTP:192.168.202.15:8888"
Listing 2: endpoint-router socat initialisation
socat ’SCTP-LISTEN:8888, fork’ \
"UDP:localhost:1194’
D. Testing

TEACUP was used to carry out 30 second long ex-
periments using iperf. This generated TCP traffic from
testhost1 to testhost2 for the duration of the tests.
At approximately 10 seconds into the experiment, an
artificial traffic loss rate was added to the ‘main’ internet
connection of openwrt using tc. After 5 seconds, this
was set back to the default of 0% traffic loss, simulating
an internet connection failure. Four traffic loss rates
were used to demonstrate the showcase the redundancy
method’s behaviour during different degrees of connec-
tion failure: 0% (no failure), 10% (small failure), 50%
(large failure), and 100% (total failure). The 0% loss
rate was used as a zero-point reading for comparing the
results of the higher loss rate scenarios against normal
traffic flow.

IV. RESULTS

A baseline test of the traffic over the main internet
connection was carried out in order to observe the
normal behaviour of the test-bed without any redundancy
methods. The results for this experiment can be seen in
Figure 5. These figures show the TCP performance using
the ACK sequence and associated throughput.

Figure 6 shows the TCP performance of the SCTP
fail-over redundancy method. Figure 7 shows the ACK
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Figure 5: Baseline results over OpenVPN connection

sequences during failure comparing the effects of the
rto_min parameters at 50% and 100% loss rates.

All result plots were generated using TEACUP’s built-
in R-based plotting functions.

V. DISCUSSION

The ACK sequence graphs are the most important to
consider when analysing data derived from this experi-
ment and considering the speed of fail-over and degree of
reliability. They show the amount of bytes acknowledged
as received by the hosts. This is a cumulative value,
which shows the sum total for the test. As the two
internet connections have very different bandwidth capa-
bilities, it is easy to see when the device is transmitting
over each; the rate of increase in the ACK sequence is
far lower for the fall-back internet connection than that
of the main.

The throughput graphs shown represent the data rate
at which packets are received by testhost2 over time.
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Figure 6: SCTP results over OpenVPN connection

Higher values represent the traffic being routed through
the main internet connection, while zero values represent
an interruption in traffic flow, or total loss in packets,
and a lower value of approximately 3.5Mbps represents
traffic being routed over the fall-back internet connection
due to the bandwidth rate limit.

The baseline results are shown in Figure 5, with the
TCP ACK sequence numbers, TCP RTT, and iperf
throughput over time with a range of loss rates as the
artificial link failure. As can be seen from the results,
the introduction of the link failures just prior to the 10
second mark causes various degrees of response in the
transmission continuity — no or limited traffic is received
and/or acknowledged by testhost2.

As can be seen in the SCTP results presented in
Figure 6, the overall bandwidth of the system was lower
than that of the baseline system with VPN. This was
due to the overhead involved with encapsulating the
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Figure 7: TCP ACK sequence at start of failure with
SCTP

OpenVPN packets over the SCTP connection. However,
the throughput was still high enough to satisfy the re-
quirement of 18kbps for cardiac monitoring devices. This
means that assuming the connection is able to provide
the reliability guarantees, this is a viable solution.

Analysis of the results for SCTP proved that it is
indeed able to function as a fail-over solution, providing
a sustained connection over the duration of a failure. This
is evident in the ACK sequence graph, where a mostly
continuous increase in the ACK sequence numbers was
apparent at all packet loss rates. This was corroborated
with by the corresponding throughput graph, where data
was visibly being sent and received.

From the results shown in Figure 7, it can be seen that
setting the rto_min parameter to a lower value allowed
a quicker fail-over to be achieved, while a higher value
limited the response time. This had a direct impact on the
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degree of reliability of the solution. The default rto_min
value of 1000ms was effective when faced with a total
connection failure (100% packet loss), however it was
unreliable at lower loss rates due to flip-flopping between
the main and fall-back connections. 100ms was most
effective at both low and total packet loss rates, where it
quickly failed-over to the fall-back connection and back
again to the main when the failure period was over. 5S0ms
was most effective at medium packet losses, as it had a
very short fail-over time, and did not flip-flop like 100
and 1000ms. It was, however, ineffective at high failure
rates, do to its apparent tendency to latch on to the fall-
back path. Finally, 3000ms was not overly effective at
any rate of packet loss — it switched between the main
and fall-back paths correctly, although it was very slow
to do so.

VI. CONCLUSION

Three solutions were identified which could poten-
tially satisfy the demanding requirements needed by
a remote health monitoring serivce: Multipath TCP
(MPTCP), Layer 2 Bonding (L2B), and SCTP. Due
to time constraints and development issues, both the
MPTCP and L2B approaches were discontinued and
testing only carried out on the SCTP method.

Through multiple tests performed on real-world con-
sumer hardware using TEACUP and analysis of the
resulting TCP performance metrics, SCTP proved to be
an effective method of introducing connection fail-over
to an OpenVPN connection. It successfully detected link
failures, and re-routed traffic to the fall-back emulated
3G connection.

We have concluded that encapsulating traffic over an
SCTP connection provides an effective, reliable, and
sufficiently high data-rate solution for the demanding
requirements of at-home medical devices which need to
communicate over the internet to a remote server.
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