
ttprobe v0.1: Packet-Driven TCP Stack Statistics
Gathering for TEACUP
Rasool Al-Saadi, Grenville Armitage, Jason But

Centre for Advanced Internet Architectures, Technical Report 150911A
Swinburne University of Technology

Melbourne, Australia
ralsaadi@swin.edu.au, garmitage@swin.edu.au, jbut@swin.edu.au

Abstract—TEACUP is an automated software tool that
is used to run TCP/UDP experiments in a testbed with
different operating systems including FreeBSD, Linux and
Microsoft Windows. Internally, TEACUP uses many tools
to emulate different networks conditions, generate network
traffics, log different system and traffic statistics, analyse
data, plot graphs and many other functions. To collect
internal TCP information such Congestion Window Size
(CWND) and smoothed TCP Round Trip Time (RTT),
TEACUP uses operating system specific tools such as
SIFTR in FreeBSD and Web10g in Linux. We developed
ttprobe (TEACUP TCP probe), an alternative packet-
driven TCP state logger for TEACUP experiments under
Linux. At high packet rates ttprobe provides significantly
more samples than web10g, with lower CPU overhead in
many scenarios. ttprobe code is based on a loadable kernel
module called TCP Probe.

Index Terms—TCP Instrumentation, ttprobe, TCP
probe, Web10g, TEACUP

I. INTRODUCTION

Analysis and understanding network protocols are
very important to improve network performance. Re-
searchers are looking forward for tools that simplify
these processes and to get more accurate and realistic
statistics. TEACUP is one of these tools that makes
studying and enhancing network protocols easier and
required less time than before [1]. TEACUP provides a
controlled environment for doing TCP experiments on a
testbed. Providing testbed with a controlled environment
is very important for doing TCP experiments, such as
analysis congestion control algorithms, to get accurate
and comparable results. TEACUP uses TCP loggers to
capture internal TCP statistics and information from
inside TCP/IP stack such as congestion window size
(CWND) and smoothed TCP Round Trip Time (RTT).
In FreeBSD, TEACUP uses SIFTR logger which can
collect per packet statistics and it has been included in
FreeBSD kernel since version 8.2-RELEASE [2]. On

the other hand, in Linux environment, TEACUP uses
Web10g [3] which is a kernel patch and user space
tools that allows users to capture TCP statistics per time
interval of 1 millisecond or more.

As an improvement to TEACUP and Linux TCP log-
ger, we developed ttprobe logger (TEACUP TCP probe)
which is a per-packet TCP statistics logger that can
capture detailed and accurate TCP statistics. Moreover,
we adapted TEACUP code to be compatible with our
logger. ttprobe brings many benefits to TEACUP when
it is used with Linux hosts including detailed statistics
capturing and reasonable CPU overhead. ttprobe code is
based on a loadable kernel module called TCP Probe [4].

II. TCP PROBE

TCP probe is a Linux loadable kernel module that
able to capture different information of TCP con-
nections on each incoming packet. TCP probe hooks
tcp_rcv_established kernel function by using
kprobes framework [5], so the internal TCP/IP stack
structures that contain TCP/IP variables, such as conges-
tion window, slow start threshold (ssthresh) and acknowl-
edge number (ACK), can be accessed and captured [6].
TCP probe also provides a basic filter that can be set up
to capture only data of a specific TCP port number and/or
when CWND is changed. When the module is loaded,
it creates a virtual file, named tcpprobe, in /proc/net
directory which is used to transfer TCP probe output to
user space processes. Basically, TCP probe can be started
using the following shell commands:

> modprobe tcp_probe port=0 full=1
> cat /proc/net/tcpprobe >/tmp/out.log

These commands will log TCP statistics for all TCP
flows on each TCP packet arrive.

An indication of the data format as output by TCP
probe can be seen in Table I. Figure 1 is a sample of the

CAIA Technical Report 150911A September 2015 page 1 of 8

mailto:ralsaadi@swin.edu.au
mailto:garmitage@swin.edu.au
mailto:jbut@swin.edu.au

TCP probe output for a small subset of data from a real
experiment.

Table I
TCP PROBE OUTPUT HEADINGS

Column Contents
1 Kernel Timestamp
2 Source_IP:port
3 Destination_IP:port
4 Packet Length
5 Send Next
6 Send Unacknowledged
7 Send window
8 Receive window
9 Congestion windows

10 ssthresh
11 Smoothed RTT

III. OVERVIEW OF TTPROBE V0.1

ttprobe (TEACUP TCP Probe) is a packet-driven
Linux TCP instrumentation that can collect per-packet
TCP statistics on each incoming and/or outgoing packet.
ttprobe code is based on TCP probe source-code with
many improvements to meet TEACUP requirements.

Getting accurate and detailed statistics are very impor-
tant for protocols analysis. As TEACUP uses Web10g
framework which is a time interval based method of a
minimum of 1 millisecond, this causes TEACUP to miss
many useful samples especially when link speed is high.

Another issue with Web10g is that it requires a
patched kernel to be functional, and patching a kernel
is highly depending on its version. The latest (at the
report writing time) stable Web10g kernel patch is for
Linux kernel 3.17. This means, currently1, there is no
applicable Web10g kernel patch for newer stable Linux
kernels versions such as 4.0.9 and 4.1.3. Moreover,
Web10g puts a high impact on CPU usage due to the
time interval even when there is a very low traffic flow
in the network.

On the other hand, ttprobe’s per-packet data collection
ensures virtually2 no TCP state changes are missed.
Furthermore, ttprobe consumes lower processing power
than Web10g and it does not require patching the core
kernel to work. However, some parts of ttprobe source
code should be modified if there are substantial changes

1This report was written on 2nd of September 2015
2When ttprobe’s buffer size is too small and there is a very high

traffic, ttprobe silently drops some samples.

in the kernel socket structure and the hooked functions
prototypes.

As ttprobe v0.1 is built on top of kprobes framework,
ttprobe requires Linux kernel compiled with kprobes
support to be functional. New versions of many Linux
distributions, such as Ubuntu, Debian, CentOS and open-
SUSE come with kprobes enabled kernels.

IV. TTPROBE DEVELOPMENT

The main features that exist in ttprobe but not in TCP
probe are:

1) The output timestamps are date/time timestamps
(timeval) while in TCP probe are relative kernel
timestamps (k_time). This change is very impor-
tant to make TEACUP works properly with the
output.

2) Hooking tcp_v4_do_rcv and
tcp_v6_do_rcv (for incoming packets) and
tcp_transmit_skb (for outgoing packets)
instead of just tcp_rcv_established (for
incoming packets). This change makes ttprobe
able to log TCP information in all TCP connection
states and on every incoming and/or outgoing
packet.

3) Collecting additional TCP states such as maximum
segment size (MSS) and TCP connection state.

4) Providing three output formats which are ttprobe,
binary and web10g format.

5) Changing the module name and virtual file name to
make ttprobe works without any interference with
the original TCP probe module.

6) Implementing a buffer flushing function to flush
TCP probe kernel buffer to user space buffer. This
is very important to make sure that all the data
inside ttprobe buffer is logged to user space buffer
at the end of the experiment without any lost.

ttprobe provides many parameters that can be set up
before starting the logger. A list of available ttprobe
parameters is shown in Table II. The parameters have
a format of parameter=value and must be written in the
same command that is used to load the module as follow:

> modprobe ttprobe parameter1=value1
parameter2=value2

Table III shows columns descriptions of ttprobe output
format. Binary format can be used to reduce log file size
and CPU load. Our TEACUP patch all TEACUP to read
binary format and ttprobe format natively. Moreover, we
developed a small tool, called ttpb2ascii, that can

CAIA Technical Report 150911A September 2015 page 2 of 8

1.622631348 192.168.1.101:22 192.168.1.100:52680 84 0x3e4fafe 0x3e4fafe 42 2147483647 65024 25300 34688
1.822848521 192.168.1.101:22 192.168.1.100:52680 20 0x3e4fb3e 0x3e4fafe 10 2147483647 65024 25300 34688
1.950667701 192.168.1.101:22 192.168.1.100:52680 84 0x3e4fb3e 0x3e4fb3e 10 2147483647 65024 47144 34688
1.957206390 192.168.1.101:22 192.168.1.100:52680 20 0x3e52d1a 0x3e4fb3e 10 2147483647 65024 47144 34688

Figure 1. A sample of TCP Probe output

Table II
TTPROBE PARAMETERS

Option Description
omode Output mode

‘0’ for ttprobe format (default).
‘1’ for binary output.
‘2’ for web10g format.

direction Capturing direction
‘0’ on every outgoing packet.
‘1’ on every incoming packet (default).
‘2’ on every incoming and outgoing packet

port Source or destination port number to match
default: ‘0’ (capture all port)

bufsize ttprobe buffer size in packet
default: 8192

full Full log or just when CWND changed
‘0’ ttprobe will capture samples just when
CWND value is changed.
‘1’ ttprobe will log on every packet
(default).

decode binary format log file and produce ttprobe ASCII
format. The disadvantage of using binary mode is it
increases the execution time of data analysis functions.

After loading ttprobe module, it will create a virtual
file with path-name /proc/net/ttprobe. This file
is used to read the log data from the kernel to a user
space process, and to send commands to ttprobe module.
ttprobe commands can be sent to the module from a shell
using echo command.

> echo "command" > /proc/net/ttprobe

Currently, there are two commands that can be used
with ttprobe which are flush command that used to
flush ttprobe kernel buffer, and finish command that
is used to send end of file signal to the reader process.

ttprobe was tested on Linux kernel 3.18 and 4.1, but it
should work fine on any kernel version higher than 3.0.

Example of using ttprobe from Linux shell:

Table III
TTPROBE OUTPUT HEADINGS

Column Contents
1 Direction (i or o)
2 Timestamp
3 Source IP addr.
4 Source port no.
5 Destination IP addr.
6 Destination port no.
7 Packet counter
8 MSS
9 Smoothed RTT
10 Congestion windows
11 ssthresh
12 Send window
13 Receive window
14 Socket state
15 Send unacknowledged
16 Send next
17 Packet size

> modprobe ttprobe direction=2 omode=0
port=5000 bufsize=16384 full=1

> cat /proc/net/ttprobe > /tmp/ttprobe.
log&

> # waiting for an experiment to complete
> echo "flush" > /proc/net/ttprobe
> sleep 0.5
> echo "finish" > /proc/net/ttprobe
> rmmod ttprobe

V. EXPERIMENTAL COMPARISONS OF WEB10G AND

TTPROBE V0.1

We did practical experiments to compare the details of
captured data and the CPU load when Web10g or ttprobe
is used. TEACUP tool was used in all our experiments.

The testbed that we used in the experiments includes
three hosts, one bottleneck and a control host. The hosts
and the bottleneck are normal PCs with Intel Core 2
Due @ 3GHz processes, 4GiB RAM and Gigabit and
Fast Ethernet cards, and the control host is a Virtualbox
virtual machine. Host 1 is connected directly to the

CAIA Technical Report 150911A September 2015 page 3 of 8

bottleneck while host 2 and host 3 are connected through
a Gigabit Ethernet switch, and the switch is connected to
the bottleneck. All machines having additional Ethernet
cards to be connected to the control network. The host
machines and bottleneck run Linux 3.17.4 while the
control host runs FreeBSD 10.1. Figure 2 shows the
network topology of the testbed that was used in our
experiments.

A. Comparing the Details of the Captured TCP Data
Samples

Firstly, we did two identical experiments (two indi-
vidual runs) except that one has 1 ms Web10g poll
interval and the other has 10 ms Web10g poll interval.
In these experiments, the bottleneck shapes the traffic to
100 Mbps and emulates 6 ms RTT. Both Web10g and
ttprobe ran together, iperf was used as a traffic generator
and the congestion control algorithm is TCP CUBIC.

Tacking CWND values as a sample, we notice that
web10g misses many samples in TCP rapid actions
such as slow start stage and TCP congestion back-off
event. These samples losses happen because TCP stack
changes CWND size many times in one web10g poll
time interval. As Web10g poll time interval is set to a
high value, Web10g samples losses will become even
bigger.

Figure 3 and Figure 4 show the first 1.4 second of
CWND graphs for the first experiment (1 ms Web10g
poll interval) and second experiment (1 ms Web10g
poll interval) respectively. These figures illustrate that
web10g missed many CWND values during the exper-
iment even when the time interval was very short as
opposite as ttprobe which captured all CWND samples.
As a note, Web10g data points are plotted on top of
ttprobe data points in all the graphs in this report.

Figure 5 and Figure 6 show zoomed in CWND plot of
the first 30 ms of these experiments. These figures show
more clearly the details of ttprobe CWND plot and how
Web10g missed many data points especially during the
slow start stage.

B. Comparing CPU Overhead of Web10g and ttprobe

In this section, our goal is to compare CPU overhead
of Web10g and ttprobe. We utilised TEACUP tool with
additional function that logs CPU utilization to get CPU
usage in different scenarios. Additionally, tcpdump was
disabled in TEACUP during the experiment to get CPU
utilisation that related to the loggers as much as possible.

For both loggers, there is no way to get CPU overhead
specifically for the logger. This because a big part of

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

50

100

150

200

0−1.4s−Both_exp_20150731−134638_run_0_comparison

Time (s)

C
W

N
D

 (
k)

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●●●●●
●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

● ●ttprobe Web10g

Figure 3. A CWND plot for a TCP flow captured using ttprobe and
Web10g loggers at the same time (Web10g poll interval is 1 ms)

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

50

100

150

200

0−1.4s−Both_exp_20150803−135821_run_0_comparison

Time (s)

C
W

N
D

 (
k)

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●●●
●●●●

●●●
●●●●●●

●●●
●●●

●●●
●●●●●●●

●●●
●●●●●●

●●●
●●●

●●●●●●●
●●●

●●●●●●
●●●

●●●●●●●
●●●

●●●●●●
●●●

●●●●●●●
●●●

●●●●●●
●●●

●●●●●●
●●

●

●
●●●●●●

●●●●●●●
●●●

●●●
●●●

●●●
●●●●●●

●●●●
●●●

●●●
●●●●●●

●●●
●●

● ●ttprobe Web10g

Figure 4. A CWND plot for a TCP flow captured using ttprobe and
Web10g loggers at the same time (Web10g poll interval is 10 ms)

Web10g code is injected inside TCP/IP stack which is
run as a part of the kernel, and the largest part of ttprobe
is a kernel module that creates hooks to kernel functions
(similar to a callback).

Obtaining comparative CPU usage from specific sec-
tions within the kernel is more than we require to do
a simple comparison of how the choice of Web10g or
ttprobe impacts on aggregate end-system load during
TEACUP experiments.

Using averaged CPU load every one second is suffi-
cient for comparison purpose as there are no big changes
in the CPU load during the actual experiment load.
System Activity Reporter utility (sar) , which it is part

CAIA Technical Report 150911A September 2015 page 4 of 8

192.168.1.0

172.16.10.0 172.16.11.0

 Netem/tc (Linux)

Host 1 Host 2

Control Network

Experiment

Network

192.168.1.101 192.168.1.102

172.16.10.2 172.16.11.2

Control Host
192.168.1.254

Host 3
192.168.1.103

172.16.11.3

192.168.1.200

Figure 2. TEACUP Testbed topology

●
●

●
●
●
●
●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●
●
●
●
●
●

●
●
●●●●●●●● ●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0

20

40

60

80

100

120

0−0.03s−Both_exp_20150731−134638_run_0_comparison

Time (s)

C
W

N
D

 (
k)

●
●

●
●
●
●
●
●
●

●
●

●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●
●
●
●
●
●

●
●
●●●●●●●● ●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●
●

●
● ●ttprobe Web10g

Figure 5. A zoomed in CWND plot for a TCP flow captured using
ttprobe and Web10g loggers (Web10g poll interval is 1 ms)

of Sysstat Utilities [7], was used to log CPU usage during
the experiments.

First, we did a TEACUP experiment to understand
CPU load behavior during TEACUP experiment. This
experiment ran for 60 second and it included one TCP
flow transmitted between two computer (host 2 and host
3) connected through 1Gbps link.

Figure 7 shows the percentage of CPU usage relative
to maximum CPU capacity of the sender machine when
Web10g logger is used. CPU usage is including traffic
generator and other default system processes. In this
figure, we can see that there are three regions, TEACUP

●
●
●
●
●

●
●

●
●
●
●

●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●●●●●●●●●● ●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0

20

40

60

80

100

120

0−0.03s−Both_exp_20150803−135821_run_0_comparison

Time (s)

C
W

N
D

 (
k)

●
●
●
●
●

●
●

●
●
●
●

●
●
●
●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●●●●●●●●●● ●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●

●

●

●

●
● ●ttprobe Web10g

Figure 6. A zoomed in CWND plot for a TCP flow captured using
ttprobe and Web10g loggers (Web10g poll interval is 10 ms)

initialisation, experiment load and TEACUP finalisation
regions.

During the initialisation stage, TEACUP configures
the host, collects different information about the host,
starts loggers and then starts traffic generators. During
the finalisation stage, TEACUP stops traffic generators,
stops loggers and collect log files. The important stage
for comparing TCP loggers is the experiment load stage.

To compare CPU overhead of using Web10g and
ttprobe, we did five TEACUP experiments of 60 seconds
duration and 10 runs each. The first experiment was
run without TCP logger, the second one with ttprobe
logs just on receiving packets, the third one with ttprobe

CAIA Technical Report 150911A September 2015 page 5 of 8

0 10 20 30 40 50 60 70

0

10

20

30

40

50

Time (s)

C
P

U
 U

til
is

at
io

n
%

CPU load when Web10g is used

Experiment loadTEACUP initialisation TEACUP finalisation

Figure 7. CPU usage % relative to maximum CPU capacity of the
sender machine including traffic generator and other default system
processes CPU utilisation when Web10g is used

logs on sending/receiving packets, the fourth one with
Web10g logger and 1 ms poll interval and the last one
with Web10g logger and 10 ms poll interval.

In these experiments, there were two PCs (host 2
and host 3) which having 1Gbps Ethernet cards and
connected through 1Gbps network switch. This is con-
sidered the maximum throughput that can be achieved
in our testbed. For each experiment, we extracted CPU
utilisation for the experiment load period (t=15 s to t=65
s) of each run.

We then calculated cumulative distribution function
(CDF) for each experiment using the extracted CPU
utilisation data of the ten runs.

Figure 8 shows CDF of CPU utilisation for the four
experiments. This figure illustrates that ttprobe (logging
on sending/receiving packets) consumes less processing
power than Web10g when Web10g poll interval is 1
ms, and slightly more than Web10g when Web10g poll
interval is 10 ms at the same testbed condition. The
figure also shows that ttprobe (logging on receiving
packets) consumes less processing power than Web10g
in all cases.

To understand how link speed affects CPU overhead,
we replicated the five experiments but with traffic shap-
ing of 100 Mbps and emulated base RTT of 6 ms. Figure
9 shows CDF of the five experiments with different
loggers when the link speed is 100 Mbps. This figure
illustrates that in this scenario, ttprobe overhead is highly
depends on traffic speed.

VI. INSTALLATION PROCEDURES

To make TEACUP working properly with ttprobe
logger, ttprobe module should be install in all TEACUP

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

CPU Utilisation (%)

C
D

F

Without TCP logger
With ttprobe − receive
With ttprobe − send/receive
With Web10g − 1ms interval
With Web10g − 10ms interval

CDF of CPU utilisation of sender machine
 *Including traffic generator and other default system processes

Figure 8. CDF plot of CPU utilisation for five experiments with
different TCP logger in each experiment (link speed is 1Gbps)

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

CPU Utilisation (%)

C
D

F

Without TCP logger
With ttprobe − receive
With ttprobe − send/receive
With Web10g − 1ms interval
With Web10g − 10ms interval

CDF of CPU utilisation of sender machine
 *Including traffic generator and other default system processes

Figure 9. CDF plot of CPU utilisation for five experiments with
different TCP logger in each experiment (link speed is 100 Mbps)

hosts and ttprobe TEACUP patch must be applied to
TEACUP code in the control host.

A. ttprobe Installation Procedure

Before starting the compilation and installation pro-
cess, the system must be updated and all software
dependencies must be installed. The required packages
to be installed are:

1) make
2) gcc
3) kernel-devel and/or linux-headers

The procedure of updating the system and installing the
dependencies are depending on Linux distribution. Table
IV shows dependencies installation commands for some
Linux distributions. All commands must be executed by
super user (root) account.

ttprobe module can be installed by using the following
procedure:

CAIA Technical Report 150911A September 2015 page 6 of 8

Table IV
TTPROBE LINUX DEPENDENCIES INSTALLATION COMMANDS

Linux Distribution Tested on Commands

Ubuntu 14.04.2-desktop-amd64a
>apt-get update
>apt-get install make gcc linux-

headers-$(uname -r)

Debian 8.2.0-amd64
>apt-get update
>apt-get make gcc install linux-

headers-$(uname -r)

CentOS 7-x86_64
>yum update
>yum install make gcc kernel-

devel kernel-headers

openSUSE 13.2-x86_64
>zypper update
>zypper install make gcc kernel-

devel

aThis version comes with all required dependencies installed by default.

1) Extract ttprobe-0.1.tar.gz archive file.

> tar xzvf ttprobe-0.1.tar.gz

2) Compile the module.

> cd ttprobe-0.1
> make

3) If all the dependencies are installed correctly,
ttprobe.ko file should be created in the current
directory.

> ls ttprobe.ko

4) Copy ttprobe kernel module to Linux kernel mod-
ules directory.

> mkdir -p /lib/modules/$(uname -r)/
extra

> cp -r ttprobe.ko /lib/modules/$(
uname -r)/extra/

5) Update modules dependency descriptions.

> depmod $(uname -r)

If all TEACUP hosts have same Linux kernel version,
it is easier to compile ttprobe kernel module on one
machine and copy it to all hosts machines (use steps
4 and 5 of ttprobe installation procedure).

B. Applying ttprobe’s TEACUP patch

We created a patch for TEACUP v1.0 to
support ttprobe logger natively. This patch allows
TEACUP to start/stop ttprobe logger, and makes
analys_*/extract_* functions working properly
with ttprobe output file (file name ends with
_ttprobe.log.gz). The procedure of applying
the patch to TEACUP code is as follow:

1) Install TEACUP v1.0, if it is not already installed,
by following the instructions in CAIA technical
reports [1] [8].

2) Extract ttprobe-0.1.tar.gz archive inside
the TEACUP directory <teacup_directory>3 using
the following commands:

3<teacup_directory> is the full path to your TEACUP installation.

CAIA Technical Report 150911A September 2015 page 7 of 8

Table V
TEACUP TPCONF VARIABLES FOR TTPROBE LOGGER

Option Description
TPCONF_linux_tcp_logger TCP logger to be used in Linux hosts

‘web10g’ web10g only (default).
‘ttprobe’ ttprobe only.
‘both’ to use ttprobe and web10g together.

TPCONF_ttprobe_direction Capturing direction
‘o’ on every outgoing packet.
‘i’ on every incoming packet.
‘io’ on every incoming and outgoing packet
(default).

TPCONF_ttprobe_output_mode ttprobe output mode
‘0’ for ttprobe format (default).
‘1’ for binary output.

> cd <teacup_directory>
> tar xzvf ttprobe-0.1.tar.gz

3) Apply the patch to TEACUP.

> patch -p1 < ttprobe-0.1/teacup-
ttprobe-0.1.patch

VII. TEACUP CONFIGURATION

TEACUP configuration file (config.py) should
include some additional TPCONF variables to setup
ttprobe options. Table V lists TEACUP TPCONF vari-
ables that are used with our TEACUP patch.

If both loggers are chosen to be used in an experiment,
LINUX_TCP_LOGGER environment variable must be
set to either ‘ttprobe’ or ‘web10g’ in order to
select which logger output will be used in TEACUP
analyse_*/extract_* functions.

VIII. CONCLUSIONS AND FUTURE WORK

ttprobe module has many benefits over Web10g with
respect to the details of the captured information, kernel
patching and CPU overhead load. Moreover, the instal-
lation process of ttprobe is much easier than Web10g.
ttprobe can easily integrate with virtually any Linux
kernel with version higher than 3.0 compiled with kprobe
support. However, Web10g collects more TCP statistics
than ttprobe. For this reason, our update to TEACUP
gives the choice to the users to select the desired TCP
logger depending on their needs, as well as the option

to use Web10g and ttprobe together. As a future work,
ttprobe requires more development to add more TCP
statistics to its output and improve its filters.

IX. ACKNOWLEDGEMENTS

We would like to thank Jonathan Kua for his help with
testing ttprobe logger and providing valuable comments.

REFERENCES

[1] S. Zander and G. Armitage, “TEACUP v1.0 - A System for Auto-
mated TCP Testbed Experiments,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 150529A, 2015. [Online]. Available:
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf

[2] L. Stewart, “SIFTR - Statistical Information For TCP Research.”
[Online]. Available: http://caia.swin.edu.au/urp/newtcp/tools.
html

[3] “The Web10G Project.” [Online]. Available: http://web10g.org/
[4] “TCP Probe Kernel Module.” [Online].

Available: https://git.kernel.org/cgit/linux/kernel/git/stable/
linux-stable.git/tree/net/ipv4/tcp_probe.c?id=refs/tags/v4.1.6

[5] “KProbes.” [Online]. Available: https://www.kernel.org/doc/
Documentation/kprobes.txt

[6] Linux Foundation, “tcpprobe,” 2009. [Online]. Avail-
able: http://www.linuxfoundation.org/collaborate/workgroups/
networking/tcpprobe

[7] “Sysstat Utilities.” [Online]. Available: http://sebastien.godard.
pagesperso-orange.fr/

[8] S. Zander and G. Armitage, “CAIA Testbed for TEACUP
Experiments Version 2,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 150210C, May 2015. [Online]. Available:
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf

CAIA Technical Report 150911A September 2015 page 8 of 8

http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html
http://web10g.org/
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/net/ipv4/tcp_probe.c?id=refs/tags/v4.1.6
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/net/ipv4/tcp_probe.c?id=refs/tags/v4.1.6
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf

	Introduction
	TCP Probe
	Overview of ttprobe v0.1
	ttprobe Development
	Experimental comparisons of Web10g and ttprobe v0.1
	Comparing the Details of the Captured TCP Data Samples
	Comparing CPU Overhead of Web10g and ttprobe

	Installation Procedures
	ttprobe Installation Procedure
	Applying ttprobe's TEACUP patch

	TEACUP Configuration
	Conclusions and Future Work
	Acknowledgements
	References
	References

