
Collaborative and Secure Estimation of IP Address
Space Utilisation – Extended Version

Sebastian Zander∗, Lachlan L. H. Andrew†, Grenville Armitage‡

s.zander@murdoch.edu.au, lachlan.andrew@monash.edu.au, garmitage@swin.edu.au

Centre for Advanced Internet Architectures Technical Report 150909A
Swinburne University of Technology

Melbourne, Australia

Abstract—An understanding of IPv4 address space ex-
haustion, and likely pressure for IPv6 adoption, requires
knowing how much of the allocated IPv4 space is actively
used. A complete view of the whole IP address space is chal-
lenging, due to privacy concerns and practical measurement
challenges. To address this gap we present a collaborative
and secure capture-recapture (CR) technique and tool for
estimating the IPv4 address space utilisation. Datasets of IP
addresses observed by multiple independent collaborators
can be combined for secure CR analysis, without any
individual collaborator’s observed addresses leaking to the
others. We show that CR estimation is much more accurate
than assuming all used addresses are observed, and that
our scheme scales well to datasets of 1+ billion addresses
across several collaborators. We estimate that 1.2 billion
IPv4 addresses and 6.5 million /24 subnets were actively
used at the end of 2014, and also analyse address usage
depending on RIR and country.

Index Terms—IP space size estimation, Secure set inter-
section cardinality, Capture-recapture

I. Introduction

S INCE mid 2015 all Regional Internet Registrars
(RIRs), except AfricNIC, have less than one /8 of

unallocated addresses remaining [1]. However, under-
standing the pressures for IPv6 adoption, and the scope
of possible IPv4 address markets, requires plausible es-
timates of actual IPv4 address use – particularly the
efficiency with which allocated prefixes are filled with
actively-used addresses. We present estimation techniques
that can track progressive exhaustion even once all IPv4
prefixes are allocated.

Early work [2]–[5] that studied, among other things,
IPv4 space growth focused on IP addresses observed

∗School of Engineering and IT, Murdoch University, Australia
†Faculty of IT, Monash University, Australia
‡Centre for Advanced Internet Architectures, Swinburne University

of Technology, Australia

mainly by “pinging”. As part of their work, Dainotti et
al. [6], [7] estimated the used IPv4 /24 subnets based on
IP addresses observed in several data sources. Apart from
a simple multiplier in [3], prior work did not attempt to
correct for under-sampling.

In [8], [9] we proposed estimating the population of
both observed and unobserved (yet still active) IPv4
addresses from multiple diverse data sources using a
statistical capture-recapture (CR) model. One challenge
of CR is heterogeneity (where the probability of ob-
serving an IP address depends on whether it is used
by, for example, a server or client), which we addressed
using log-linear models. Now we introduce another CR
technique that models heterogeneity more directly, and we
show that the estimates of both approaches are similar.

CR techniques estimate population sizes from the
number of IP addresses in each source and the sizes of
intersections between all combinations of sources. Many
sources of ‘used’ IP addresses exist, but most cannot
be shared for privacy reasons. A key challenge is to
efficiently combine data sources of multiple collaborators
in a secure manner without revealing the observed IP
addresses.

We developed an efficient and secure solution called
‘Secure Fast Set Intersection’ (SeFaSI), by applying
Private Set Intersection Cardinality (PSIC) techniques to
CR (with a call for collaborators in [10]). We compute
the cardinalities of the intersections between data sources
(for CR) while ensuring the anonymity of the IP addresses
observed.

SeFaSI uses computationally-secure commutative en-
cryption [11] (with hash-based sampling for scalability),
prevents probing attacks for IPv4 addresses, and works
for two or more semi-honest parties without the need for
a trusted third party. We demonstrate that our protocol
scales well with 5–10 collaborators and datasets of 1+

CAIA Technical Report 150909A September 2015 page 1 of 20

billion IPs. Evaluation on small networks for which
ground truth is known show that estimates from SeFaSI
have a much smaller error than the estimate from simply
aggregating all data sources.

Our new key contributions in this paper are:
1) A novel CR technique to estimate the used IP

addresses, which deals with heterogeneity of IP
addresses directly;

2) A secure protocol (SeFaSI) to feed our CR estim-
ation techniques while keeping the observed IPs
private;

3) A publicly available implementation of SeFaSI [12]
and our log-linear model CR technique [13],1 which
we use to validate our approach;

4) Results for the estimated number of actively used
IPv4 addresses and /24 subnets at the end of 2014.

Our secure CR approach is also beneficial for other
privacy-sensitive applications of CR. For example, it
could be used in epidemiology to estimate populations of
people with certain illnesses while ensuring the privacy
of personal data used for matching the data sources, such
as names or birth dates.

After a discussion of related work in Section II, Section
III explains the basics of CR, the input data needed
for CR, log-linear models used in [8], [9] and our new
CR model. Sections IV and V describe SeFaSI’s design
and implementation. Section VI presents our estimation
results, and we conclude in Section VII.

II. RelatedWork

Pryadkin et al. [2] probed the whole allocated Internet
with ICMP echo and TCP SYN probes. They discovered
62 million used IPv4 addresses in 2003–2004. They also
showed that only a small number of allocated prefixes
appeared to be heavily used, while a large part of the
IPv4 space appeared unused.

Heidemann et al. [3] infrequently probed all allocated
IPv4 addresses (census) and frequently probed address
samples (survey) with ICMP echo pinging to study
usage, availability and up-time of addresses. The last
census from [3] taken in 2007 accounted for 112 million
used addresses;results for later censuses are unpublished.
Heidemann et al. compared ICMP probing with TCP port
80 probing and passive measurements based on small
samples. They proposed a “correction factor” of 1.86, thus
estimating the total number of used IPv4 addresses in mid
2007 was 200–210 million.

1We also made IPv4 datasets not under NDA publicly available [13].

Cai et al. [4] used ping survey data to analyse typical
address block sizes and their characteristics. They did not
estimate the used IPv4 address space, but observed that
“most addresses in about one-fifth of /24 blocks are in use
less than 10% of the time”. In 2012, anonymous research-
ers hacked commodity routers to perform a port scan of
the IPv4 Internet [5]. They detected 420 million addresses
that responded to ICMP echo, which is consistent with
our ping censuses [9].

In 2013–2014 we proposed using CR to estimate the
population of used IPv4 addresses from multiple sources
of IPv4 addresses [8], [9]. We found that our CR es-
timate is significantly higher than the aggregate number
of observed IPv4 addresses from multiple measurement
sources (1.1–1.2 billion estimated used IPv4 addresses
vs. 750 million observed IPv4 addresses in mid 2014),
but for /24 subnets the difference is smaller (6.2 million
estimated used /24s vs. 5.9 million observed /24s in mid
2014). We also estimated the numbers of addresses and
/24 subnets still available.

Dainotti et al. [6] developed techniques to filter out
spoofed IPv4 addresses from darknet or NetFlow data
and showed that the filtered datasets can be used to
estimate Internet address space usage. With multiple
datasets combined, they observed 4.8 million used /24
subnets in September 2012. In extended work Dainotti
et al. [7] used further data sources, and analysed several
aspects of /24 subnet usage. They identified 5.3 million
used /24 subnets with data collected until October 2013.
This is broadly consistent with the 5.7 million /24 subnets
we observed in the year to September 2013 [9]. The
difference is likely due to the longer time windows we
use.

Our work enhances previous work in that (1) we
estimate the total number of observable addresses instead
of just reporting the observed addresses, and (2) our new
technique allows estimation of the used addresses from
anonymised datasets. The latter point is significant for
researchers wishing to access IP address data from the
wider networking community.

III. Capture-Recapture (CR)

We now define more specifically what we are estim-
ating, and describe the measurement setting. Then, we
discuss the basic assumptions for CR in our scenario
and how to extract the data required for CR. Next, we
illustrate CR by describing the simplest case: the two-
sample Lincoln-Petersen (L-P) estimator. This section
concludes with a description of the CR models that we
actually use.

CAIA Technical Report 150909A September 2015 page 2 of 20

A. Measurement Metric

Our goal is to estimate the number of IP addresses
that were actively used during a measurement period.
Since many IP addresses are (re)assigned dynamically
(for example, with DHCP) and hosts may move between
multiple static/dynamic addresses, the number of actively
used IP addresses is likely to be higher than the number of
simultaneously used addresses. For example, if dynamic
addresses are drawn uniformly from a pool, all pool
addresses could eventually be observed even if at most
one address is in use at a time.

We argue that any addresses that could be observed
during our measurement period were on “stand-by” and
de facto in use. For example, addresses assigned to
dynamic pools cannot be used elsewhere. In the future
freed addresses from under-utilised pools may be used
for other purposes, but we cannot measure such future
optimisations.

B. Approach

We assume several collaborators have data sources
of IP addresses known to be actively used during a
measurement period (such as from server logs, traffic
traces, or active probing). Each data source is a sample of
the whole used IP address space (the total population), but
may be biased, e.g., towards certain geographical areas or
certain types of hosts. We can group addresses into three
categories:
• Observable addresses that were sampled (type 1)
• Observable addresses that were not sampled (type 2)
• Unobservable addresses (type 3)

Type 3 addresses are those that cannot be observed for
“structural” reasons, such as being in space that is not
publicly routed, or being a device such as a firewalled
printer that neither initiates external traffic nor responds to
pings. In contrast, type 2 addresses are those that simply
happen not to appear in our data sources, but may appear
in other server logs, for example. Note that types 1 and
2 include firewalled hosts that initiate internet traffic.

Since sampling type 3 addresses is impossible, we
focus on estimating the observable portion of the IP space
(the typical approach with CR). Our goal is to estimate
type 2 addresses with CR and get an estimate of the
actively used addresses that is more accurate than merely
counting observed addresses.

C. Assumptions for Capture-Recapture

Basic forms of CR make the following assumptions:
1) Each individual has a unique and consistent identi-

fier across different data sources;

2) The potential population size is the same for each
data source (closed population);

3) All individuals have the same probability of being
observed (homogeneous population);

4) Appearance of an individual in one source does
not affect its inclusion in other sources (source
independence).

Assumption 1 clearly holds for IP addresses, as we only
care if an address was used and not who used it.

We assume assumption 2 holds, with all type 1 and type
2 addresses being potentially observable by each source.
While address usage may be intermittent [4], addresses
still remain in the population and can be observed. Like-
wise, previously unallocated addresses that become used
can be observed. Assumption 2 is usually stated in terms
of temporal variation, but that only applies when data
sources correspond to measurements at different times.
In our study, the data sources measure during concurrent
time periods and so temporal changes in the number of
addresses do not result in an “open” population.

Assumptions 3 is violated – the population of IP
addresses is heterogeneous. For example, servers are more
likely to respond to pinging, while client machines may
be more likely to appear in certain traffic logs.

For our data sources, there is no significant causal
relationship to introduce source dependence and so as-
sumption 4 is technically satisfied. While some samples
are dependent, i.e., IPs observed by our NetFlow source
and one of the log-file sources, their number is insig-
nificant (< 1% of the total). Nevertheless, heterogeneity
gives rise to what is called apparent source dependence.
For example, two sources that are biased towards client
machines will appear to be positively correlated given
another source that is less biased towards clients. Het-
erogeneity and source dependence are confounded and
cannot be clearly separated [14]. However, assumption 3
and 4 are usually violated in almost any real scenario. To
this end, a number of CR techniques have been developed
that can deal with heterogeneous populations and source
dependence.

Another implicit assumption is that a data source only
samples IP addresses that were actually used. Addresses
can be considered actively used when collected via active
probing or from server logs of TCP-based applications
(e.g., web server logs) for which a three-way handshake is
completed. In other cases (e.g., passively captured traffic
traces) it is necessary to filter out observed IP addresses
that were not actually used, such as spoofed IPs [6], [9].

Finally, CR assumes individuals have a non-zero (but
possibly very small) probability of appearing in any of

CAIA Technical Report 150909A September 2015 page 3 of 20

the data sources. Individuals with zero sample probability
(i.e., type 3 addresses) are not part of the CR estimate.
In [9] we argued that all of our datasets sampled IPs
used by routers, servers/proxies, clients, but miss IPs
used by specialised devices. Here, we make the further
observation that sample probabilities for client IPs are
non-zero even for “narrow” data sources, because we
measure over long time windows in which a single IP
address is likely used by multiple hosts due to dynamic
assignment, NAT, or administrative changes.

D. Capture Histories

In ecology CR data is collected by repeatedly sampling
populations. In other fields, such as epidemiology, CR
is used with lists of individuals (data sources) that often
were collected for purposes other than CR (like in the case
of IP addresses). Given the sizes of the data sources and
the sizes of all combinations of intersections of datasets
one can compute a table of “capture histories”.

Let N be the unknown number of distinct IP addresses.
Let t denote the number of data sources indexed by
1, 2, . . . , t. For each IP address, let s1 to st be defined
such that si = 1 if the address occurs in source i and
si = 0 otherwise. Then the string s1s2 . . . st is called the
“capture history” of an IP address. The observed outcome
of all measurements can then be represented by variables
of the form zs, which are the numbers of IPs with each
capture history s = s1s2 . . . st. These are assumed to be
instances of random variables Zs.

Note that IPs with the capture history 00 . . . 0 are
unobserved. Our goal is to use CR to estimate Z00...0.
If M =

∑
S \{00...0} Zs is the total number of observed IPs,

then the estimated population size is N̂P = M + Ẑ00...0. We
assume the number of IP addresses in a source Ni is often
not secret. Then our secure protocol described in Section
IV can be used to compute all Zs, except Z00...0, based on
the intersection cardinalities of combinations of sources
and the known Ni. (Section IV-G discusses approaches
when some Ni are secret.)

Table I shows the case of t = 3, in which there are seven
known capture counts Z001,Z010, . . . ,Z111. For example,
Z111 is the number of individuals captured by sources
1, 2 and 3, so Z111 is computed as the cardinality of
the intersection of sources 1, 2 and 3. To compute the
counts of individuals in only one source i we need Ni.
For example, Z001 is the number of individuals only in
source 3 and is computed as Z001 = N3−Z011−Z101−Z111.

Table I: Example three-source capture history table

Source 1 Source 2 Source 3 Count

0 0 0 Z000 =?

0 0 1 Z001

0 1 0 Z010

0 1 1 Z011

1 0 0 Z100

1 0 1 Z101

1 1 0 Z110

1 1 1 Z111

E. Lincoln-Petersen (L-P) Population Estimation

The L-P method works only with two sources and if
all four assumptions are true. Nevertheless, it provides a
useful introduction to CR due to its simplicity.

Given a first source with ZA sampled IPs, the size of
the population would be known if we knew what fraction
of the population had been sampled. To estimate this, L-P
uses a second source of ZB sampled IPs. Of these, Z11 IPs
occur in both samples, Z10 = ZA − Z11 occur only in the
first and Z01 = ZB − Z11 occur only in the second. If the
fraction of “recaptured” individuals in the second sample
equals the fraction of the total population captured in the
first sample, then the population N can be estimated by
[15], [16]:

Z11/ZB = ZA/N , N =
ZAZB
Z11

=
Z01Z10

Z11
+ Z01 + Z10 + Z11 .

F. Log-linear CR Models

Just as L-P uses a second sample to estimate the frac-
tion of the population of the first sample, a third sample
can be used to compensate the correlation between the
first two samples (and this approach can be generalised to
more than three samples). One way to use this additional
information is to fit log-linear models (LLMs)[17], [18],
which can model (apparent) source dependence among
arbitrarily many sources. For each history s, let h(s) be
the set of samples in which the individual occurs – for
example, h(101) = {1, 3}. Define the indicator function
1A = 1 if statement A is true and 0 otherwise. We can now
write the following system of equations in 2t variables
u, u1, u2, . . . , u12, . . . , u23, . . . up to u12...t:

log(E (Zs)) =
∑

h⊆h(s)
uh =

∑
h

uh1h⊆h(s) .

CAIA Technical Report 150909A September 2015 page 4 of 20

For example, for t = 3, the system is

log
(
E

(
Zi jk

))
=u + u11i=1 + u21 j=1 + u31k=1

+ u121i=1∧ j=1 + u131i=1∧k=1

+ u231 j=1∧k=1 + u1231i=1∧ j=1∧k=1 .

The estimate of Z00...0 is then Ẑ00...0 = exp(u). If we
take E[Zs] = zs then this system has 2t unknowns but
only 2t − 1 equations, as Z00...0 is unknown. Hence it is
customary to assume u12...t = 0 [17]. The uh model the
apparent dependencies between sources (also referred to
as model parameters that describe source “interactions”).
Using all uh usually results in over-fitting. Model se-
lection techniques are used to select the least complex
model with “adequate” fit (colloquially referred to as the
“best model”). During model selection some uh are forced
to 0, to reflect assumed independence between certain
combinations of sources [9].

G. Direct Models of Heterogeneity

Apparent source dependency is caused by the hetero-
geneity between different hosts. An alternative is to use a
latent class model (LCM), which assumes that there are
C classes of hosts, and hosts within each class c have
approximately equal probability θct of being captured in
each data source t. For a single class c, the probability of
observing a particular Zc = (Zc,00...0, . . . ,Zc,11...1) is

P(Zc; N, θ) =
Nc!

(Nc − Dc)!
∏

s∈P Zcs!

T∏
t=1

θ
xct
ct (1 − θct)Nc−xct

where xct is the total number of observations of class
c in source t, and Dc is the total number of distinct
observations in class c. However, the xct and Dc must also
be estimated, by nominally allocating each observation
to one of the classes. A locally maximum likelihood
estimate can be obtained by the EM algorithm [19]. With
the approximation log(N!/(N − D)!) ≈

∫ N
N−D log(y)dy, this

becomes

M-step

θct = xct/Nc

Nc = Dc/
(
1 −

∏T
t=1(1 − θct)

)
E-step Zcs = D.,s

Θcs∑
c′ Θc′s

where D.,s is the total number of IPs with observation
history s, and Θcs = Nc

∏T
t=1 θ

1(t∈s)
ct (1 − θct)1(t<s) is the

expected number of IPs of class c with observation
history s under the current model. The M step calculates
both θct and Nc given the partition of observations into

classes, say by repeated substitution, and the E step re-
partitions the observations by calculating Zcs, from which
xct =

∑
s:st=1 Zcs and Dc =

∑
s,00...0 Zcs.

There are many classes of Internet users, but two
problems arise when using large C. First, the error surface
becomes corrugated, and thousands of restarts of the
EM algorithm are required to find the true maximum
likelihood estimate. More subtly, a positive bias develops.
Specifically, Nc is badly over-estimated when any one of
the classes has too many observations that occur in only
a single data source, relative to the number that occur
in multiple sources. As the number of classes grows,
it is increasingly common for this to occur in at least
one of the classes, giving the bias. Chapman proposed an
unbiased estimator for the single class case [20], but there
appears to be no unbiased estimator for multiple classes.

IV. Secure Protocol

We now describe the goals and requirements for the
protocol and the assumed adversary model, followed
by an overview of the basic pairwise set intersection
cardinality (PSIC) protocol which we show not to be
scalable without sampling. Then, we introduce a more
scalable version based on sampling. Next, we discuss
the security and complexity of the protocol. Finally, we
describe two protocol extensions – one can be used to
defend against so-called probing attacks, and the other is
a partial solution to hide the sizes of datasets.

A. Goals and Requirements

The protocol must ensure that no IP addresses in
individual datasets are revealed to collaborators. However,
we assume that usually the sizes of datasets can be
revealed to collaborators (in Section IV-G we discuss
partial solutions to hide the size). It must be possible to
run the protocol repeatedly without reducing its security.
For example, we may want to run the protocol every
few weeks or months with the latest data to estimate the
population trend over time. While our main goal is to
get a total estimate of the used space, ideally we also
want to get estimates for different sub-populations, such
as different geographic regions.

Our protocol works with sub-populations, but in this
case some information leakage is inevitable. The data
sources can be stratified by all collaborators before ex-
ecuting the protocol and then population estimates can
be securely computed separately for each stratum. For
example, IP addresses can be grouped by their allocating
RIR to compute regional estimates. This stratification

CAIA Technical Report 150909A September 2015 page 5 of 20

leaks how many addresses were observed by a collab-
orator in each region. We think the leakage is tolerable if
the stratification is coarse, but it is up to the collaborators
to decide a priori on an acceptable level of stratification.

The protocol must not rely on trusted third parties, it
must work with two or more parties (but the maximum
number of parties would be relatively small, say 5–10
parties), and it must work with large datasets of 1+ billion
entries. The protocol must be computationally-secure and
either must be conceptually simple or a well proven
technique to allow for easy verification of its security.

B. Adversary Model

We assume that all collaborators participating in the
protocol are potential honest-but-curious adversaries; they
run the protocol correctly, but they try to learn as much
information as possible. We also assume that one or more
honest-but-curious adversaries may collude in order to
obtain more information. With a small number of col-
laborators, none of which are anonymous, security under
the honest-but-curious adversary model is sufficient. We
assume that man-in-the-middle attacks by third parties
are prevented by using secure communication, such as
Transport Layer Security (TLS) [21].

C. Basic Protocol

Our basic protocol is based on [11], [22]. First, we
introduce the concept of commutative encryption – the
basis of the protocol. Then, we describe the basic protocol
for two parties before extending it to multiple parties.

1) Commutative encryption: Let E be an encryption
function and Ki be the secret encryption key of party i.
Let EKi (m) denote the encrypted version of plaintext m

with key Ki. Then E is commutative if EKi

(
EK j (m)

)
=

EK j

(
EKi (m)

)
for all m, i and j. We say E is computa-

tionally secure if decryption requires the secret key, it is
resistant to plaintext attacks and it is collision-resistant.
Specifically:
• Given EKi (m) without Ki it is computationally in-

feasible to derive m (even if the set of possible m is
small).

• Given m and EKi (m) it is computationally infeasible
to derive Ki, for all m and Ki.

• Given two plaintexts m1 and m2 it is computationally
infeasible to find keys Ki and K j such that EKi

(
m1

)
=

EK j
(
m2

)
.

Two equivalent commutative encryption schemes are
Pohlig-Hellman (PH) [23] and commutative RSA (cRSA)

����������	�

���
�
��

�
�����

�
��

�
��

���
�
����

�
��

�
����

����
���

��������

������� �����	
���
	��

���
�
����

�
��

�
����

�����	
���
	��

������������������

����� �	�

Figure 1: Basic protocol for two parties. Here P and E
denote the permutation and encryption of the dataset D
created by (A)lice or (B)ob.

[24]. The encryption function is

EKi (m) = mKi (mod p) ,

where the modulus p is a large safe prime number2

shared by all parties and where gcd
(
Ki, p − 1

)
= 1. It is

easy to see that this function is commutative since

EKi

(
EK j (m)

)
= mKiK j (mod p)

= mK jKi (mod p) = EK j

(
EKi (m)

)
.

From [23], [24] we know that this function is
computationally-secure if the key and modulus are suf-
ficiently large. Currently, a key size of 224 bits and a
modulus size of 2048 bits is deemed to be secure [25].
Depending on the security level needed, smaller sizes may
be acceptable, for example a key size of 160 bits and a
modulus size of 1024 bits was seen as secure until 2010
[25].

2) Two-party protocol: Let the two parties be (A)lice
and (B)ob with datasets DA and DB. Both DA and DB
should be sets (not multisets), but our protocol also
enforces this. The algorithm has three main steps:

1) Configuration (agree on parameters)
2) Dataset encryption and permutation (main step)
3) Intersection cardinality computation

For each party i, let Ei be the encryption function, which
maps a sequence of values (IPs) to the sequence of
ciphertexts (encrypted IPs). Let P be a procedure that
maps a sequence of values to a permutation of that
sequence.3 Figure 1 shows an overview of the protocol.

In Step 1, A and B negotiate the configuration: the
key and modulus sizes, and the modulus value used for

2A safe prime is a prime of the form p = 2q + 1, where q is also a
prime.

3Note that P is not a mathematical “permutation function”, since the
permutation can depend on its argument, or even be non-deterministic.

CAIA Technical Report 150909A September 2015 page 6 of 20

1

2

3

Figure 2: Ring topology for three parties – encrypted and
permuted datasets are only passed in one direction

encryption. Then, A and B each generate their own secret
encryption key Ki independently.

In Step 2, A and B encrypt and permute their own
datasets, and then send the encrypted permuted sets
to each other. A sends P

(
EA

(
DA

))
to B, and B sends

P
(
EB

(
DB

))
to A. Then, A and B filter out any duplicate

ciphertexts in the received encrypted datasets. This step is
completed by the parties returning the double-encrypted
datasets to each other: A sends P

(
EA

(
P

(
EB

(
DB

))))
to B,

B sends P
(
EB

(
P

(
EA

(
DA

))))
to A.

In Step 3, A and B compute the intersection cardinality
by counting the number of equal ciphertexts in both
double-encrypted sets. Since the encryption is commut-
ative, any items that are in both sets will have the same
ciphertexts in both double-encrypted datasets. Then, A
and B know the sizes of the datasets and intersections,
and can compute the capture histories.

3) Multi-party protocol: The scheme works with more
than two parties as follows. Let k be the number of
parties. Each party i has one4 dataset Di with Ni =

∣∣∣Di
∣∣∣

IP addresses and a private encryption key Ki. Define a
“fully-encrypted” data set to be the result of all parties
successively applying their encryption to each of the IP
addresses in one party’s data set.

The parties form a unidirectional ring topology, as
shown in Figure 2 for three parties. To counter possible
collusion the ring topology could be generated randomly,
for example using a secure multi-party computation for
random ordering [26]. We assume that each party knows
the whole topology and therefore all other parties.

In Step 1, all parties agree on the parameters listed in
the two-party protocol description, and each party chooses
Ki.

In Step 2, each party encrypts the IPs of its own
dataset using Ki, randomly permutes the encrypted IPs,
and then passes the encrypted permuted dataset to the next
party. The next party encrypts and randomly permutes the
received dataset with its own Ki, passes it to the next party

4To simplify the description we assume one dataset per party, but
in practise each party can have multiple datasets.

that has not yet processed this dataset, and so on until all
datasets are fully-encrypted.

In Step 3, each party sends its fully-encrypted dataset
to all other parties (or a subset of parties interested in the
intersection). Then all interested parties can perform the
intersection cardinality computation. Since E is commut-
ative, for each combination of sources, the cardinality of
the intersection of the ciphertexts is identical to the car-
dinality of the intersection of the plaintexts. This allows
all interested parties to compute the capture histories.

4) Lack of Scalability: The basic protocol does not
scale to large datasets. Encrypting each IP separately
leads to significant space overhead. For example, as-
suming a modulus of 1024 bits, an encrypted list of 1
billion IPv4 addresses consumes 128 GB (storage and
network transfer). The computational overhead is also
high, since the exponentiation-based encryption function
(Section IV-C1) is much slower than commonly used
symmetric encryption techniques. Recall that the parti-
cipating parties are often companies who have datasets,
but limited incentive to collaborate. Minimising their
disincentive to collaborate is vital, and so reducing the
storage, network and computational costs is important.

D. Protocol with Sampling

To make the protocol scalable, we propose that initially
each party generates a sampled dataset of smaller size.
Simple random sampling cannot sample entries consist-
ently across the different datasets of all parties. We re-
solve this by using hash-based sampling. The cardinalities
of the intersections between the original datasets can be
estimated based on the intersection cardinalities of the
sampled datasets. We also discuss how to choose the
sample rate.

1) Hash-based sampling: The goal of our hash-based
sampling [27], [28] is to sample randomly from multiple
IP datasets so that if an IP address is selected, it is selected
from all datasets that contain that address.

Let H be a good integer-valued hash function – one
that generates different output even for very similar input
and maps the inputs as uniformly as possible over its
output range, which we denote [0,RM]. We do not require
cryptographic properties. Let the hash function be salted
[29] (to obtain different independent samples for the same
input) by appending a random “salt” s to the hash input m
before applying the hash function. Also, choose integers
0 < r ≤ R ≤ RM such that RM(mod R) � RM . We can
then sample the same elements from different lists at rate

CAIA Technical Report 150909A September 2015 page 7 of 20

approximately5 r/R by selecting only the elements with

H (m ⊕ s) (mod R) < r ,

where ⊕ denotes string concatenation.
2) Multi-party protocol with sampling: In Step 1, all

parties also need to agree on H, s, and the sample rate
pD = r/R. The salt s could be computed in a shared
fashion, e.g. each party contributes some bits, to prevent
one party from controlling which IPs are sampled.

In Step 2, each party hash-samples its own dataset
before executing Step 2 as described in Section IV-C.

In Step 3, A and B compute an estimate of the inter-
section cardinality. Let C =

∣∣∣D1 ∩ D2 ∩ . . . ∩ Dk
∣∣∣ denote the

cardinality of the intersection of the datasets, D̃i ⊆ Di the
sampled datasets, and Ĉ =

∣∣∣D̃1 ∩ D̃2 ∩ . . . ∩ D̃k
∣∣∣ /pD be an

estimator for C. Since the probability that an element of
the intersection is in the sample is pD, Ĉ is an unbiased
estimator for C.

A confidence interval can be constructed as follows.
The number of items X in a sampled set of size N
follows a Binomial distribution with a mean of n̄ = N p
and a variance σ2

n̄ = N p (1 − p). Assuming N is large,
we can approximate the Binomial distribution with a
Normal distribution and omit the continuity correction.
Let zα = Φ−1(1−α) where Φ is the cumulative distribution
of the standard Gaussian (with µ = 0 and σ = 1). Then

Pr (X ≥ n̄ − zασn̄) = 1 − α , (1)

which states that with a probability of 1 − α the size of
the sampled dataset is above n̄ − zασn̄, and

Pr
(
n̄ − zα/2σn̄ ≤ X ≤ n̄ + zα/2σn̄

)
= 1 − α , (2)

which states that with a probability of 1−α the size of
the sampled dataset is between n̄− zα/2σn̄ and n̄ + zα/2σn̄.

By (2) a two-sided confidence interval for C is6

Pr
(
Ĉ − zα/2σĈ/pD ≤ C ≤ Ĉ + zα/2σĈ/pD

)
= 1 − α . (3)

where σ2
Ĉ

= CpD
(
1 − pD

)
≈ ĈpD

(
1 − pD

)
.

3) Minimum sample rate: We can determine the min-
imum sample rate needed, so that the relative error of the
intersection cardinality estimate is not higher than a target
maximum relative error ∆εmax with a given confidence
level 1 − α, if we have a lower bound on the intersection

5The rate is exact if R is a factor of RM and the hash function maps
perfectly uniformly onto [0,RM].

6C is unknown; we use its estimate Ĉ to get an estimated standard
deviation.

cardinality. Let ∆εmax = |Ĉ−C|/C. By (3), with probability
1 − α we have

∆ε2
max ≤

(zα/2 · σ

CpD

)2
=

 zα/2 ·
√

CpD(1 − pD)

CpD

2

=

z2
α/2 · (1 − pD)

CpD
.

Solving for pD gives that the relative error will be less
than ∆εmax with probability 1 − α if

pD ≥
z2
α/2

∆ε2
maxC + z2

α/2

. (4)

In practice we do not know C, but it is sufficient to use
a lower bound in (4). If multiple different intersection
cardinalities should be computed from more than two
datasets, we need to use the minimum of all expected
intersection cardinalities to determine the sample rate.

If no lower bound on C is known then a pilot com-
putation with a low sampling rate can be used. From
this, a 1 − α/2 one-sided confidence interval for C can
be calculated. The lower bound of that interval can be
used in a variant of (4) with zα/2 replaced by zα/4. The
probability that the resulting sampling rate gives an error
at most ∆εmax is (1 − α/2)2 > 1 − α. This approach is still
more efficient than computing the intersection sizes(s)
without sampling, if the sum of pilot sample rate and
pD is significantly smaller than 1. However, the choice
of sampling rate for the pilot involves a risk tradeoff;
a rate too low could result in the confidence interval
containing C = 0, in which case (4) requires pD = 1 (i.e.,
no sampling) for the final calculation.

E. Security

The two-party protocol is computationally-secure in the
presence of semi-honest adversaries [30] and it is easy
to see that the security extends to the multi-party case.
The protocol is protected against third parties by using
properly configured encryption for all communication,
such as TLS [21].

There are no security issues in Step 1. In Step 2
all parties exchange the encrypted permuted IP datasets.
Since the encryption is secure, no party can decrypt
another party’s dataset without knowing the other party’s
encryption key. This includes finding the plaintexts for
other parties’ ciphertexts by brute-force (encrypting the
whole IP address space and finding matching cipher-
texts). The random permutations prevent any party from
knowing the mapping between its IPs and the final
ciphertexts, and thus prevents any party from detecting

CAIA Technical Report 150909A September 2015 page 8 of 20

the presence of its IPs in other parties’ datasets. In Step
3 the only information the parties can learn are the sizes
of intersections of different datasets and the sizes of the
datasets.

An attacker could construct a dataset where certain IPs
occur multiple times and the counts of these selected IPs
are unique numbers. For example, only one specific IP
occurs twice, while all other IPs are present once. Since
the counts are preserved in the fully-encrypted datasets,
this would create a side channel allowing the attacker to
probe the existence of certain IPs in other parties’ sets.
Our protocol prevents this attack by filtering out duplicate
ciphertexts in received datasets before performing any
other actions.

F. Complexity

Since every party needs to encrypt and permute the
datasets of all parties, the total computational complexity
of the scheme is O

(
k2N

)
, where k is the number of

parties and N is the average size of the datasets. However,
for a single party the complexity is linear O (kN). Since
every party has to forward every other party’s dataset,
the communication complexity is also O

(
k2N

)
overall and

O (kN) for each party.
The sampling of the data only requires one hash

computation, one modulo operation and one comparison
per IP (neglecting the concatenation with the salt).7 Fast
hash functions only require few integer multiplications
per data byte (plus some add, shift and logical operations).
For example, the Murmur hash function [31] performs
only 3 (b + 1) multiplications where b =

⌈
item size/4bytes

⌉
(a total of six multiplications per IPv4 addresses). The en-
cryption requires one modulo exponentiation per dataset
item. Raising a number to an exponent of K bits requires
between K and 2K multiplications where typically K is a
few hundred.8

G. Hiding dataset sizes

Previously we assumed that the sizes of the datasets
can be revealed, but there may be cases where the sizes
of some datasets should be kept secret. Vaidya and Clifton
[11] proposed to hide the size by padding a dataset with
random strings disjoint from the item space. However,
this does not work with CR where we need to know

7If we restrict R = 2e with e = [0, 1, . . . ,N] we could replace the
slower modulo operation with a much faster AND operation.

8Usually Montgomery multiplication [32] is used to implement
aK mod m, which requires between K and 2K Montgomery steps (plus
the two transformations to/from Montgomery space that are negligible
for large K).

the number of IP addresses observed only by a certain
source, which we can only compute if the dataset size
is known (see Section III-D). We now briefly describe
partial solutions if some parties want to hide their dataset
size.

1) Anonymise dataset ownership: This approach re-
quires more than two parties and its effectiveness in-
creases with an increasing number of parties. It is based
on layered encryption to anonymise the ownership of
datasets similar to onion routing [33]. Every party needs
a public/private key pair, where initially the public keys
are announced to all other parties. We also assume each
party has a unique ID, for example an IP address.

In Step 2, after the initial encryption of a dataset, each
party generates a random permutation of the set of k − 1
IDs of the other parties. This list of k− 1 IDs plus a final
special ID meaning “no forwarding” is the path. Each
party encrypts the path in a layered fashion in the reverse
order of IDs – from the last ID to the first ID. First, it
encrypts the last ID with the public key of the last hop.
Then, it encrypts the resulting ciphertext plus the second
last ID with the key of the second last hop and so on.
The encrypted path is attached to the dataset.

Then Step 2 is carried out. However, each dataset is not
forwarded in a circle as described in section IV-C3 but
according to the attached encrypted path. At each hop,
a party encrypts the dataset as decribed before and also
decrypts the outermost encryption layer of the remaining
path with its private key to obtain the ID of the next hop.
Then, it fowards the dataset together with the remaining
encrypted path to the next hop.

The onion routing makes it impossible to link a par-
ticular fully-encrypted dataset to a specific party with
negligible communication and processing cost. Dataset
sizes are not hidden but cannot be attributed to a specific
party. An issue arises if the owner of a dataset can be
guessed by others purely based on the dataset size. The
only solution is to downsample the original datasets of
all parties to similar sizes at the cost of some information
loss for CR.

2) Dataset merging: If one or more parties are willing
to divulge the sizes of their datasets (or even the contents)
to another party or parties, then merging multiple datasets
prior to running the secure protocol algorithm can hide
the dataset sizes from non-trusted parties while allowing
CR computations. Merging datasets also obfuscates trends
in the intersections of unmerged datasets. Let us consider
two cases.

In the first case, one of the parties, say A, is willing
to divulge its actual dataset to party B. Party B then

CAIA Technical Report 150909A September 2015 page 9 of 20

simply combines its own dataset(s) with A’s dataset, and
A does not take part in the protocol. Since the encryption
and permutation is irreversible and assuming the merged
datasets have roughly similar sizes (enforceable by dataset
subsampling) unknown to other parties, the original sizes
of the merged datasets cannot recovered.

In the second case, neither A nor B is willing to
divulge actual data, but both are willing to divulge the
sizes of their datasets to each other. In this case A and B
initially perform the two-party protocol with each other to
obtain double-encrypted versions of their datasets, which
they then combine. Then when running the protool with
other parties, A and B each send this double-encrypted
combined dataset as their own dataset in the first round
of Step 2. When party A receives the dataset initially sent
by party B, it does not re-encrypt it, but simply forwards
a permuted copy. Party B does the same when receiving
A’s dataset. At the end of the process, each dataset will
still have been encrypted exactly once by each party.

For CR, mergers should only occur between datasets
with similar expected biases, such as client IP addresses
collected by different web sites. Still, the merging may
result in some information loss for CR.

H. Probing attack detection

The above protocol cannot resist probing attacks, where
one party generates datasets with mostly invalid IPs to test
whether a few valid IPs are in another party’s dataset.
Since no party can decrypt the fully-encrypted datasets,
it is impossible to check whether the original data were
valid IPs. Reasons for mounting a probing attack are
to learn the number of active addresses and whether
some specific IP addresses are likely to be in another
party’s dataset. At worst, an attacker could discover the
precise address of active hosts and something about the
structure of an organisation’s network, thus breaching our
protocol’s security.

A technique to prevent probing attacks for k > 2 was
presented in [11]. However, this approach cannot distin-
guish between probing and legitimate datasets with small
overlap, and is unusable for CR where we have small
intersections. We propose a novel defence, which can
be applied to all situations where the set of permitted
(valid) items is known and is not prohibitively large. The
idea behind our scheme is that all parties must provide
a dataset of a minimum size and agree on a valid set
of IPv4 addresses allowing them to check that all fully
encrypted datasets consist mainly of valid IP addresses.

����������	�

���
�
����

�
������

�
����

�
���

���
�
����

�
����

�
�����

����
���

��������

�������

���
�
��

�
��������

�
��

�
�����

���
�
����

�
��

�
������� ���

�
����

�
��

�
�������

������
���

��������

�������

�����	
���
	��

���
�
����

�
����

�
�����

�����	
���
	��

������������������

����� �	�

Figure 3: Modified protocol with probing detection for
two parties. Here P, E, S and H denote the permutation,
encryption, sampling and hash-sampling of the valid set
V or the dataset D created by (A)lice or (B)ob. Alice
and Bob use private encryption functions and private
sampling functions for valid sets, and the same hash-
sampling function for datasets.

We introduce our probing detection method for the two-
party case here, but extending it to the multi-party case
is straight-forward.

1) Modified protocol overview: In Step 1, now all
parties also agree on the minimum dataset size Nmin and
a set of valid items V. In the context of IPv4 addresses
the valid set could be the set of routed IPv4 addresses
(from advertised routing data). The valid set may be
very large. We assume it is usually sampled down to a
manageable size with a sampling function S i, and in Step
1 all parties also agree on the sample rate for the valid
set pV (typically pV < pD). Figure 3 shows an overview
of the modified protocol with probe detection (except the
configuration).

A new step “Valid set encryption and permutation” is
introduced between Step 1 and Step 2. In this step each
party selects an independent and secret random sample of
the valid set. These samples can be taken using a good
random number generator seeded with secret seed values
randomly chosen by each party. The seed must be long
enough so that the chance of two parties choosing the
same value is negligible. Otherwise, an attacker has a
chance of guessing another party’s secret seed, which may
allow the attacker to perform an undetected probing attack
by crafting a probe dataset tailored to the sampled valid
set of another party.

CAIA Technical Report 150909A September 2015 page 10 of 20

The parties first perform the same computation as in
Step 2 (see Section IV-C2) but with the sampled valid
sets. First, all parties encrypt and permute their own valid
set. Then all parties encrypt and permute every other
party’s valid set, using the same Ki used later to encrypt
the data. In the end each party holds a valid set encrypted
by all parties.

Then, in a modified Step 2 a party infers a probing
attack if an incoming dataset is smaller than Nmin after
duplicate removal. Also, after a party has encrypted a
dataset for the final time, but before sending it to other
parties, the party compares the fully-encrypted dataset
against its fully-encrypted valid set. If the set intersection
cardinality of an encrypted dataset and an encrypted valid
set is below an expected threshold given pV , a probing
attack is inferred.9 The inferring party deletes the probe
dataset and informs all parties of the attack. This prevents
the attack, since the prober never get its fully-encrypted
dataset. Other parties can still compute the intersection
cardinalities.

Note that every time the protocol is used, each party
selects a new Ki as part of the configuration (see IV-C2).
No party can ever obtain two fully-encrypted datasets of
another party encrypted with the same keys. This prevents
differential probing attacks, i.e., attacks where a prober
participates in the protocol multiple times, once with a
valid dataset, the next time with the same dataset plus a
small number of IPs to be probed, and so on.

2) New valid set encryption and permutation step:
In this step A and B generate the sampled valid
set, encrypt and permute it, and send their encryp-
ted and permuted valid sets to each other. A sends
P

(
EA

(
S A (V)

))
to B, and B sends P

(
EB

(
S B (V)

))
to A.

A and B then encrypt and permute each other’s valid
set and return the double-encrypted valid sets to each
other. A sends P

(
EA

(
P

(
EB

(
S B (V)

))))
to B, and B sends

P
(
EB

(
P

(
EA

(
S A (V)

))))
to A.

A and B may compute the set intersection cardinality
of their valid sets to check if their valid sets are indeed
consistent. If the valid set is not sampled the overlap
should be 100%. If the valid set is sampled the overlap
should be close to 100p2

V% of the original valid set and
within the interval given by (2), assuming hashing is
independent because A and B selected different random
salts independently. If the valid set overlap is outside the

9Since the sampled valid sets are encrypted and permuted and the
chosen samples are secret, no party knows which items are in another
party’s valid set. Hence, an attacker cannot produce a probing dataset
that produces a set intersection cardinality over the threshold.

expected range due to a mistake, A and B need to abort
and renegotiate the valid set.

3) Modified dataset encryption and permutation step:
In the modified Step 2 A and B sample, encrypt and
permute their own datasets, then send the encrypted and
permuted sets to each other as before. Next, A and B
check if each other’s filtered dataset is at least of size
Nmin. Given Nmin and sampling rate pD, each party
i ∈ A, B checks if the sampled dataset size ni exceeds
the threshold n̄min − zασn̄min , which by (1) occurs with
probability ≥ 1 − α if Ni ≥ Nmin. If so, i encrypts and
permutes the received dataset. Otherwise, it aborts to
prevent a probing attack. However, if A and B agree that
a false positive has occurred, the process can be repeated,
after A and B have jointly chosen a different dataset
sampling salt. The choice of α balances the expected
number of times this process must be repeated against
the probability of failing to detect a probing attack.

Then each party i computes the set intersection car-
dinality ci between its double-encrypted valid set and
the other party’s double-encrypted dataset. Each dataset
item is present in the valid set with probability pV , the
sampling rate used for the valid set. Party i then checks
if ci is at least pV ni − zα

√
pV (1 − pV)ni given the other

party’s sampled dataset size ni. If the valid set was not
subsampled, pV = 1, this reduces to checking if ci = ni,
which is always true if the data items are all valid.
Otherwise, it is true for valid data with probability 1 − α
by (1).10

If a dataset is recognised as valid, party i will return
it to the other party. Otherwise A and B will abort the
protocol, and the probing party cannot learn anything. If
A and B suspect a false positive, then the process can
be repeated after A and B have chosen different private
valid set sampling salts. Again, α is chosen to balance
the expected number of times this will occur against the
probability of failing to detect a probing attack.

4) Probe attack detection errors: Probing attacks can
be misdetected in two ways. False negatives are probe
attacks that are not detected, whereas false positives are
legitimate datasets misclassified as probe attacks. Our
technique may make errors in three cases:

1) when checking the actual size of a dataset against
Nmin,

2) when checking the size of a sampled dataset against
Nmin, and

10A prober cannot enforce this with many invalid items, because
the actual overlap depends on the validating party’s private validation
salt.

CAIA Technical Report 150909A September 2015 page 11 of 20

3) when checking a dataset against a (sampled) valid
set.

Let Nprobe be the size limit for a practical probing dataset
(say no more than a few hundred IPs) and let nprobe be the
probing dataset sampled with rate pD. IP address datasets
Ni that are useful for CR are typically large (say at least
a few millions of addresses), so Nprobe � Ni for any
i. This makes it relatively easy to choose the algorithm
parameters such that false negatives and false positives
are very unlikely and no repeats are needed. We now
describe how to do this.

We assume the parties have agreed on a value for Nprobe
(Nprobe � Ni) and the sample rates pD and pV . Nmin is
selected so that Nprobe < Nmin ≤ Ni for any i, so false
negatives or false positives are not possible in case 1.

More specifically with pD < 1 all parties agree on an
Nmin where the upper threshold for a sampled probing
dataset n̄probe +zασn̄probe is smaller than the test threshold
n̄min − zασn̄min based on Nmin (see Section IV-H3) with
very high probability (say for α ≤ 10−4). This means false
negatives in case 2 are unlikely. Since each party’s dataset
must be of size Nmin or larger, false positives in case 2
are even more unlikely. For example, with Nprobe = 1000,
pD = 10−2 and α = 10−4 we only need Nmin = 5, 000
(in this case the upper threshold for the sampled probing
dataset is approaching 22 and the lower threshold for a
dataset of size Nmin is over 23).

In case 3 the upper threshold for the cardin-
ality of a sampled probing dataset is pV Nprobe +

zα
√

pV (1 − pV)Nprobe, since a prober can ensure that all
addresses that should be probed are in the sampled dataset
(other addresses in the dataset are invalid), but the prober
does not know which addresses are in a sampled valid set
of another party. The lower threshold for the cardinality of
legitimate datasets is pV ni−zα

√
pV (1 − pV)ni (see Section

IV-H3). Given Nprobe, pD and pV we can calculate the
upper threshold for a probing dataset with very high
probability (say for α ≤ 10−4). Then we can compute the
smallest Ni for which the lower threshold for a legitimate
dataset is over this limit with the same low α, so both false
negatives and false positives are unlikely. For example,
with Nprobe = 1000, pD = 10−2, pV = 10−3 and α = 10−4

the upper threshold for a probing dataset is 1 and we need
Ni ≥ 2 · 106 (lower threshold for legitimate data of 3). As
shown in Section VI, typical IP datasets are much larger
than two million entries.

False positives in cases 2 and 3 can be addressed by
repeating the process with different salts, and possibly a
higher sampling rate (see Section IV-H3). For the failure

probability to decay exponentially with the number of
repetitions, failures at successive attempts must be inde-
pendent. This will occur if H is a perfect (pseudo-)random
hash and the salts are chosen without replacement, since
the set of arguments to the hashes will then be disjoint
between repetitions.

V. Prototype Evaluation

Now we describe our prototype implementation, ana-
lyse the accuracy of CR, analyse the impact of dataset
sampling and the prototype’s performance.

A. Implementation

We implemented a prototype (SeFaSI) based on a mix
of tools written in Python and C [12]. The prototype
consists of separate tools implementing basic functions
(such as sampling, encryption, set intersection cardinality
computation) and a “main” tool that implements the
secure protocol using the basic tools. SeFaSI creates
the capture histories that are used as input by our CR
population estimation tools written in R and Matlab [13].

SeFaSI implements the whole protocol in Python, since
Python source code is small and readable, allowing all
parties to verify the security of the implementation.
We also implemented faster versions of the sampling,
encryption, and set intersection cardinality computation
tools in C as optional substitutes for the Python equi-
valents. Encryption is based on the PyCrypto library’s
RSA functions and libopenssl’s modular exponentiation
function. We use the Murmur hash function for sampling
as it is fast and has a good distribution that passes the
usual tests for hash functions [31].

The results in Section V-C show that SeFaSI’s per-
formance is sufficient for practical use. Future work will
include improvements, such as multi-threading support
for parallel sampling or encryption.

B. Validation against Ground Truth

As with any real-world CR application, it is not pos-
sible to validate the accuracy of our CR approach, since
we do not know the ground truth. However, we compared
our observed and estimated IP addresses with the ground
truth for several networks for which we know the ground
truth. (This is an updated version of the analysis in [9].)
In most cases11, the ground truth is an estimate of the
number of actively used IPv4 addresses at peak times
(high watermarks). We compare this against the observed

11For networks B and G we know the number of unique addresses
observed in our measurement time window.

CAIA Technical Report 150909A September 2015 page 12 of 20

A B C D E F G

Network

P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

A B C D E F G

Network

P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70
Ping Observed LLM

Figure 4: Comparison of LLM estimates, observed and
pingable addresses (vertical bars) against the number of
reported used IPv4 addresses (horizontal lines)

and estimated numbers of IPv4 addresses for a 12-
month time window, where the high watermarks occurred
between the middle and the end of the window (using
the data sources described in Section VI-A). For privacy
reasons we cannot reveal the identity of the networks.
The largest network is two /16 subnets and the smallest
network is roughly one /20 in multiple allocations.

For each network, Figure 4 shows the number of
addresses that responded to ICMP ping, the number of
addresses observed, the number of addresses estimated
with LLM using truncated Poisson and BIC [9] (vertical
bars), and the ground truth (horizontal lines), all as
percentages of the sizes of the networks. Note that for
network C we only have a range for the ground truth,
and network F blocked our pinger, so we do not have
ping data for network F.

The results show that the LLM estimates are close to
the ground truth – much closer (up to 10 times closer) than
the number of pingable or observed addresses. Notably
the difference is smallest in cases where the ground truth
corresponds closely to what we estimate (B, G). The
number of observed addresses is relatively close to the
ground truth for some networks (B, F), but far below the
ground truth for most networks. However, the number
of observed addresses is still a much better metric than
the number of pingable addresses, especially for heavily
firewalled networks (A, G) or networks that block pinging
(F). Note that for each network, at least 5 of our data
sources provide substantial numbers of addresses, which
allows CR to work.

C. Sampling Error

First we verify that the sampling error of our prototype
is consistent with (3). Then we analyse the impact of the
sampling on the CR population estimates.

1) Cardinality estimate sampling error: First we ana-
lyse the error caused by sampling and investigate whether
the empirical error is consistent with the confidence
interval from (3). We used artificially generated datasets
of random IPs. Each dataset had 250,000 IPs and we
varied the overlap between the datasets. We show the
results for two sources (results for three or more sources
are very similar).

Figure 5 shows the relative errors of the estimates de-
pending on different true cardinality and different sample
rates as boxplots for two sources (100 runs for each
setting). The relative error decreases with increasing
sample rate and increasing true cardinality. As indicated
in Section IV-D2, the error does not depend on the
number of sources.

We also analysed the percentage of experiments where
the true value lies within the 95% confidence interval
(CI) given by (3). If our derived CI is correct, then for
a large number of runs the measured percentages should
always approach 95%. For the settings in Figure 5 the
average fraction of estimates within the CI (plus or minus
one standard deviation) is 94.9 ± 1.8%. We conclude our
approximate CI is close to the true 95% CI.

2) CR estimate sampling errors: We repeatedly
sampled all data sources from [8], each time with a
different sample salt, and then computed the LLM CR
estimates from the sampled data sources. The estimated
range is determined based on the profile likelihood con-
fidence interval [34] with α = 10−7 to obtain wide CIs.
We investigated the two most commonly used information
criteria to select the best model: Akaike’s Information
Criterion (AIC) and the Bayesian Information Criterion
(BIC) [35].

We first investigate the case where the “best model” is
selected in each run from the sampled data. This results in
larger errors but reflects the realistic case where we never
have the unsampled data and hence do not know the best
model based on the unsampled data. For comparison we
also provide results for the case where the best model
was selected from the unsampled data and is then used
for all runs with sampled data.

a) LLMs with best model from samples: Figure 6
shows the relative errors for the LLM estimates of the
total number of addresses (lower and upper values of
LLM estimated ranges) for AIC and BIC model selec-
tion depending on different sample rates. We treat the

CAIA Technical Report 150909A September 2015 page 13 of 20

●

●
●

●

●

●

●●

●●

●

E
s
t.
 c

a
rd

in
a
lit

y
 r

e
la

ti
ve

 e
rr

o
r

[%
]

−60

−40

−20

0

20

40

60

1 5 10 50 1 5 10 50 1 5 10 50

Sample rate [%] and true cardinality

1000 5000 10000

●

●
●

●

●

●

●●

●●

●

E
s
t.
 c

a
rd

in
a
lit

y
 r

e
la

ti
ve

 e
rr

o
r

[%
]

●

●

●

●

●●

●
●

●

E
s
t.
 c

a
rd

in
a
lit

y
 r

e
la

ti
ve

 e
rr

o
r

[%
]

−10

−5

0

5

1 5 10 25 50 1 5 10 25 50

Sample rate [%] and true cardinality

50000 100000

●

●

●

●

●●

●
●

●

E
s
t.
 c

a
rd

in
a
lit

y
 r

e
la

ti
ve

 e
rr

o
r

[%
]

Figure 5: Relative error of cardinality estimates depending on true cardinality size and sample rate (two data sources)

estimates for the unsampled data sources as true values
and performed 100 runs with different sample salts per
sample rate. The relative errors for LLMs with AIC or
BIC are below 5%. Also, with sample rates of 1% or
higher the error is usually within 2%. With BIC the errors
are generally smaller, and even for a sample rate of 0.1%
the error is roughly within 2%. This demonstrates that
our sampling technique is very effective.

The larger errors for LLMs are mainly caused by model
inconsistencies, since the model was selected independ-
ently for each set of sampled datasets. For sample rates
of 5% and 10% the selected models are quite consistent.
For sample rates of 1% and lower, models for different
samples start to diverge.

Compared to the BIC, the AIC selects more paramet-
ers and also leads to higher variation in the parameter
selection. For example, with 1% sample rate the AIC
selected 60–67 parameters with 28 parameters occurring
in only some of the 100 models, while the BIC se-
lected 52–56 parameters with 11 parameters present in
only some of the 100 models. The AIC increases the
variance, since it selects more parameters that model
higher-level interactions between many sources, for which
the intersection cardinalities are smaller and the relative
sample error is larger. Also, for higher-level interaction
parameters there is a higher chance that sample errors
influence the parameter selection, since the inclusion of
these parameters changes the model score much less
than the inclusion of parameters representing interactions
between fewer sources.

We can see some bias in the LLM estimates. The bias is
very small for sample rates of 5% or higher, but increases
significantly with decreasing sample rate. The bias is
caused by the systematic inclusion or exclusion of some
parameters not used in the benchmark model (built from
the unsampled data). Since our data sources have mainly

(apparently) positively correlated data sources, increasing
(decreasing) the number of model parameters typically
results in higher (lower) population estimates.12 Again,
the effect is dominated by parameters that represent
interactions between fewer sources. Both AIC and BIC
tend to include several of these parameters and show a
positive bias.

b) LLMs with best model from unsampled data: To
demonstrate that the bias in the LLM estimates is caused
solely by the model selection process, we conducted
another experiment with the AIC where the model was
fixed – in each run the used model was the model selected
by AIC for the unsampled data. Figure 7 shows the
relative errors for the LLM estimates of the total number
of addresses (lower and upper values of LLM estimated
ranges) depending on different sample rates, treating the
estimates for the unsampled data sources as true values
(100 runs with different sample salts per sample rate).
It shows that with a fixed model the LLM estimate is
unbiased and has substantially smaller error.

D. Performance

We measured the performance of our prototype on a
PC with an Intel i7 2.8 GHz CPU, 24 GB RAM and a file
cache on a solid state disk (SSD) running FreeBSD 9.0
and Python 2.7.3. Note that in all performance measure-
ments we used a single CPU core only.

1) Sampling speed: Table II shows the number of IPv4
addresses processed per second when sampling depending
on the sample rate measured for the C implementation
(average of 10 runs). File-write overhead increases with
higher sample rates. Even with 50% sample rate our

12Positively correlated data sources lead to population underestim-
ates with L-P. LLMs correct for this with positive model parameters.
The more positive parameters are present in the selected best model,
the higher is the estimate.

CAIA Technical Report 150909A September 2015 page 14 of 20

●
●●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●
●

●●

●●●
●
●

●

●●●

●
●

●

E
s
t.
 r

e
la

ti
v
e
 e

rr
o
r

[%
]

−1

0

1

2

3

4

5

L U L U L U L U L U

Lower/Upper estimates and sample rate [%]

0.1 0.5 1 5 10

●
●●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●
●

●●

●●●
●
●

●

●●●

●
●

●

E
s
t.
 r

e
la

ti
v
e
 e

rr
o
r

[%
]

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

E
s
t.
 r

e
la

ti
v
e
 e

rr
o
r

[%
]

−2

−1

0

1

2

L U L U L U L U L U

Lower/Upper estimates and sample rate [%]

0.1 0.5 1 5 10

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

E
s
t.
 r

e
la

ti
v
e
 e

rr
o
r

[%
]

Figure 6: Relative error of (L)ower and (U)pper values of CR estimated ranges depending on the sample rate for
LLMs using the AIC (left) and BIC (right)

●

●

●●

●

●●

●

● ●

● ●

E
s
t.
 r

e
la

ti
v
e
 e

rr
o
r

[%
]

−2

−1

0

1

2

L U L U L U L U L U

Lower/Upper estimates and sample rate [%]

0.1 0.5 1 5 10

●

●

●●

●

●●

●

● ●

● ●

E
s
t.
 r

e
la

ti
v
e
 e

rr
o
r

[%
]

Figure 7: Relative error of (L)ower and (U)pper values
of CR estimated ranges depending on the sample rate for
LLMs with AIC, using the AIC model selected for the
unsampled data

Table II: Speed of sampling IPv4 addresses depending on
sample rate

Sample rate [%] IPv4s/second

1 5,450,000

5 5,300,000

10 5,200,000

50 4,350,000

prototype can sample about 4,35 million IPs per second,
so it would take only 4 minutes to sample a dataset with
1 billion IPv4 addresses.

2) Encryption and permutation speed: Table III shows
our C implementation’s encryption and permutation speed
versus key and modulus sizes for both IPv4 addresses
and already encrypted IPv4 addresses (average over 10
runs). As expected, the rate decreases with increasing
key and modulus sizes. While it takes longer to encrypt

Table III: Speed of encrypting and permutating both raw
IPv4 addresses (4 bytes) and encrypted IPv4 addresses
(size=modulus) depending on key and modulus sizes.

Key/Modulus size Raw IPv4s Encrypted IPv4s
[bits] [/second] [/second]

128/128 29,000 28,000

160/256 19,000 18,500

160/512 10,000 10,000

160/1024a 3,600 3,500

224/2048b 1,100 1,000

aNIST 2010 (Legacy) [25]
bNIST secure until 2030 [25]

already-encrypted IPs (long input data), the difference
is relatively small (which we attribute to libopenssl’s
modular exponentiation being the bottleneck13). Note that
the rates are dominated by the encryption, which takes
97–98% of the time. Only 2–3% of the time is used by
the permutation.

With an insecure 64 bit key and 64 bit modulus it would
take 9–10 hours to encrypt and permute 1 billion IPv4
addresses. With 160 bit key and 1024 bit modulus (NIST
2010 Legacy [25]) it would take a little over 3 days to
encrypt and permute 1 billion IPv4 addresses. However,
with a sample rate of 10% the time reduces to only 8
hours (including the sampling).

3) Set intersection cardinality speed: Table IV shows
the set intersection cardinality speed depending on the
number of encrypted IPv4 datasets and the overlap (aver-

13libopenssl implements modular exponentiation based on Mont-
gomery multiplication, where the original multipliers are transformed
into Montgomery space. Transformed multipliers are always of the
size of the modulus in bits.

CAIA Technical Report 150909A September 2015 page 15 of 20

Table IV: Speed of set intersection cardinality compu-
tation depending on key size and modulus size with
encrypted IPv4 addresses

Datasets Overlap [%] IPv4s/second

2 100 2,180,000

3 100 1,500,000

4 100 1,150,000

5 100 950,000

2 0 1,650,000

3 0 880,000

4 0 540,000

5 0 360,000

age of 10 runs). All datasets had the same size. An overlap
of 100% represents the best case (highest performance)
and an overlap of 0% represents the worst case (lowest
performance). Computing the set intersection cardinality
of five datasets with roughly 1 billion IPv4 addresses
each would take between 18 minutes and 50 minutes
depending on the overlap. However, with a sample rate
of 10% the time would reduce to 2–5 minutes.

VI. Estimated Used IPv4 Space

Now we present results for estimating the used IPv4
space.

A. Datasets

Table V summarises the datasets we collected from
multiple sources of unique IPv4 addresses between July
2013 and December 2014. We actively probed the whole
allocated IPv4 Internet using ICMP echo requests (IP-
ING) and TCP SYN packets to port 80 (TPING). Pass-
ively observed IPv4 data includes addresses from Wikipe-
dia’s page edit histories14 (WIKI), potential spam email
senders from [36] (SPAM), addresses of clients tested
by Measurement Lab [37] tools (MLAB), web clients
participating in our IPv6 readiness test [38] (WEB),
anonymised server logs of game clients connecting to
Valve’s Steam online gaming platform (GAME), and
NetFlow records from incoming traffic of Swinburne Uni-
versity of Technology’s access router (SWIN)15. These
datasets and the pre-processing are described in more
detail in [9]. We have now added a significant new dataset
based on obscured IP addresses of clients connected to
Netflix (NFLIX).

14Modification time and IPv4 address of edits by unregistered users.
15Excluding all traffic flows of our active prober.

WIKI

WEB

PING

TPING

MLAB

SPAM

GAME

SWIN

NFLIX

W
IK

I

W
E

B

P
IN

G

T
P

IN
G

M
L
A

B

S
P
A

M

G
A

M
E

S
W

IN

N
F

L
IX

NA

NA

NA

NA

NA

NA

NA

NA

NA

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Estimated correlations between data sources

The only dataset that can include spoofed IPs is SWIN,
and we used the heuristic from [9] to eliminate potential
spoofed addresses. We generate datasets of unique /24
subnets by processing the IPv4 datasets and setting the
last octet of each address to zero and then filtering out the
duplicates. Table V shows the sizes after pre-processing.
For GAME the number of IP addresses is confidential, but
it is a big dataset as the large number of /24 suggests.

B. Correlations Between Datasets

Figure 8 shows the estimated correlations between our
data sources. These are the Yule coefficients computed
based on 2x2 capture frequency tables for each source
combination with Z00 estimated by CR. Most of the cor-
relations are positive. TPING and IPING, which include
servers, are strongly correlated with each other, but less
correlated with the other sources. TPING is less correlated
with the client-centric passive sources than IPING is, as
TPING requires an active service running. Most client-
centric datasets (WIKI, WEB, MLAB, GAME) are highly
correlated. SPAM also shows a high correlation with the
client datasets (since most spam is sent by clients coerced
into botnets). NFLIX shows less correlation with the other
sources, possibly since it is more geographically limited.

C. Used IPv4 space

We now present our estimates for the IPv4 space.
Unless otherwise noted results are for LLMs. For LLMs
we are using the adaptive divisor approach and the BIC
for the model fitting [9]. For LCMs we use a model
with C = 7, chosen as a balance between unreliability
due to many local optima for large C, and negative bias
(indicated by leave-one-out cross validation) for small C.
We exclude NFLIX for AfriNIC and African countries
due to a lack of coverage.

CAIA Technical Report 150909A September 2015 page 16 of 20

Table V: Datasets, collection time window, and number of unique IPv4 addresses and /24 subnets

Dataset Description Time Window Unique IPv4 [M] Unique /24 [M]

WIKI Clients editing Wikipedia Jul 2013 - Dec 2014 8.8 2.5

SPAM Potential spam email senders Jul 2013 - Dec 2014 19.2 1.8

MLAB Clients tested [37] Jul 2013 - Dec 2014 27.0 3.0

SWIN Swinburne access router NetFlow Jul 2013 - Jul 2014 73.9 3.3

TPING TCP port 80 census of IPv4 Internet Jul 2013 - Dec 2014 124.2 4.2

WEB Web clients observed [38] Jul 2013 - Dec 2014 150.4 4.5

NFLIX Netflix clients Jul 2013 - March 2014 202.6 2.1

GAME Online game clients Jul 2013 - Dec 2014 conf 4.8

IPING ICMP ping census of IPv4 Internet Jul 2013 - Dec 2014 541.5 5.4

1) Totals: Table VI shows the total number of
pingable, observed and estimated IPv4 addresses and /24
subnets for both LLM and LCM, as well as the number
of publicly routed IPv4 addresses and /24 subnets for
comparison. We show the estimates without stratification
and when stratifying by RIR. The estimates for LLMs
and LCMs are broadly consistent (both within 6% of the
average of 1.2 billion addresses). With RIR stratification,
the IPv4 address estimates of both models are closer, but
the /24 subnet estimates are further apart; it is unclear
why.

A potential benefit of LCMs over LLMs is that mean-
ingful classes of users can sometimes be identified. One
class appears to correspond to servers, since it frequently
appears in TPING and seldom appears in client-based
sources such as NFLIX and GAME, but no other classes
stood out as clearly identifiable.

To get an idea of the error of the estimate, we computed
the population estimate n times, each time leaving out one
of the n sources and then computed the standard deviation
for the n population estimates.16 The standard deviation
is roughly 100 million addresses, but if we exclude the
case of leaving out IPING it reduces to only 50 million.
For /24 subnets the n estimates are very consistent, and
the standard deviation is only 65,000 subnets.

2) Usage by region: Figures 9 and 10 show the
absolute number and percentage of routed space of the
pingable, observed, estimated used IPv4 addresses and
/24 subnets for the five RIRs at the end of 2014. Note,
that the top of each bar segment indicates the number of
pingable, observed and estimated used IPv4 addresses or
/24 subnets (to reduce the number of bars). The results

16This is more realistic than using the standard confidence interval
methods for CR that likely underestimate the error due to our large
sample size.

U
s
e
d

 /
2
4

 s
u
b
n

e
ts

 [
M

]

Obs. ping Obs. all Est. used

U
s
e
d

 /
2
4

 s
u
b
n

e
ts

 [
M

]

0.0

0.5

1.0

1.5

2.0

U
s
e

d
 /

2
4

 s
u

b
n
e

ts
 [

%
]

LLM LCM LLM LCM LLM LCM LLM LCM LLM LCM

AFRINIC APNIC ARIN LACNIC RIPENCC

U
s
e

d
 /

2
4

 s
u

b
n
e

ts
 [

%
]

0

20

40

60

80

Figure 9: Pingable, observed and estimated /24 subnets
at the end of 2014 for the different RIRs

show that most /24 subnets are observed and CR estimates
that the fraction of used but unseen /24 subnets is small
(especially for LCMs). However, for IPv4 addresses the
fraction of unseen IP addresses estimated by both CR
methods is significant. For both IPv4 addresses and
/24 subnets, APNIC, ARIN and RIPE have the highest
numbers of used addresses/subnets, whereas LACNIC has
the highest utilization.

3) Usage by country: Figure 11 plots the estimated
used IPv4 addresses for each country against the number
of allocated IP addresses (as reference), the country’s
GDP, the country’s population size and the number of
days since the first address allocation on a log-log scale
for the different regions (RIRs). Results for /24 are
broadly similar. The correlation between the number of
estimated used addresses and GDP is clearly stronger
than the correlation between the estimated used addresses

CAIA Technical Report 150909A September 2015 page 17 of 20

Table VI: Observed and estimated used IPv4 addresses and /24 subnets at the end of December 2014

Ping [M] Observed [M] Stratified
Est. Used
LLM [M]

Est. Used
LCM [M]

Est. unseen
[M] Routed [M]

IP addresses 542 842
No 1167 1239 300–400 2753
RIR 1187 1219

/24 subnets 5.4 6.3
No 6.6 6.4 0.1–0.5 10.8
RIR 6.8 6.4

U
s
e

d
 I
P

v
4
 [

M
]

Obs. ping Obs. all Est. used

U
s
e

d
 I
P

v
4
 [

M
]

0

100

200

300

400

U
s
e
d
 I

P
v
4

 [
%

]

LLM LCM LLM LCM LLM LCM LLM LCM LLM LCM

AFRINIC APNIC ARIN LACNIC RIPENCC

U
s
e
d
 I

P
v
4

 [
%

]

0

10

20

30

40

50

60

Figure 10: Pingable, observed and estimated IPv4 ad-
dresses at the end of 2014 for the different RIRs

and population or days since online. Especially for the
African, Asian and South American regions we see coun-
tries with larger populations that only use a comparatively
small part of the IPv4 space. The result is consistent with
a strategy of allocating IPv4 addresses proportional to the
need for Internet access, which is correlated more with
GDP than with population.

4) Impact on IPv6 Deployment: Figure 12 plots the
fraction of allocated used IPv4 addresses for each country
against the percentage of hosts that are IPv6-capable or
prefer to use IPv6 according to July 2015 APNIC data
[39] (the x-axis is logarithmic). Results for /24 subnets
are similar. Surprisingly, there is no correlation between
the fraction of used IPv4 addresses (or /24 subnets) and
IPv6 readiness.

VII. Conclusions and FutureWork

A better understanding of IPv4 address space exhaus-
tion, and likely pressures for IPv6 adoption, requires
estimating how much allocated IPv4 space is actively
used. As no single online service has complete visibility
into IP address space utilisation, such estimates require

diverse parties to share private datasets of active IP
addresses. Sharing raw data can reveal a party’s business
scope and compromise a party’s user base.

We presented a new collaborative and secure capture-
recapture (CR) technique for estimating address space
utilisation from multiple sources of observed IP addresses
while guaranteeing the privacy of the addresses. Our
technique is much more accurate than assuming all used
addresses are observed and balances performance against
precision of the estimated population size. Using a pub-
licly available prototype we show our technique scales
well up to 5–10 collaborators and datasets of up to 1+

billion items while the impact on CR estimation accuracy
is small (with a sample rate of 1%, the relative error does
not exceed 2%). Our secure technique allowed Netflix
to contribute their IP addresses in a privacy-preserving
manner.

Another contribution of this paper is an additional CR
model, which we compare with the log-linear models we
used previously. We showed that the estimates of both
models are broadly consistent: approximately 1.2 billion
IPv4 addresses and 6.5 million /24 subnets were actively
used at the end of 2014. We also presented updated
estimates of the number of used IPv4 addresses and /24
subnets for the different regions. Finally, we showed that
on a per-country basis the number of used addresses is
highly correlated with GDP, but seemingly uncorrelated
with estimated IPv6 capability.

In the future we aim to further refine our CR model
and to add more privacy-sensitive collaborators.

Acknowledgements

This research was supported by Australian Research
Council grants LP110100240 (with APNIC Pty Ltd) and
FT0991594. We thank G. Huston, G. Michaelson, Valve
Corporation, A. Reynolds, Swinburne ITS, Caltech IMSS,
Netflix, D. Buttigieg, C. Tassios, R. Bevier, B. Mattern,
L. Stewart for providing data.

CAIA Technical Report 150909A September 2015 page 18 of 20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

Allocated IPs (M)

1e−02 1e+00 1e+02

1e−03

1e−01

1e+01

U
s
e

d
 I

P
v
4

 a
d
d

re
s
s
e

s
 (

M
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● RIPE APNIC AfriNIC ARIN LACNIC

(a) Allocated IPs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

GDP (billion $)

1 10 100 1000 10000

1e−03

1e−01

1e+01

U
s
e

d
 I

P
v
4

 a
d
d

re
s
s
e

s
 (

M
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

● RIPE APNIC AfriNIC ARIN LACNIC

(b) Country GDP

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

Population (M)

1e−01 1e+00 1e+01 1e+02 1e+03

1e−03

1e−01

1e+01

U
s
e
d

 I
P

v
4
 a

d
d
re

s
s
e
s
 (

M
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● RIPE APNIC AfriNIC ARIN LACNIC

(c) Country population size

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

Days since first allocation

2000 5000 10000

1e−03

1e−01

1e+01

U
s
e
d

 I
P

v
4
 a

d
d
re

s
s
e
s
 (

M
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● RIPE APNIC AfriNIC ARIN LACNIC

(d) Days since first allocation of country

Figure 11: Estimated used IPv4 addresses for each country vs. allocated /24 subnets, GDP, population and days since
first allocation

References

[1] G. Huston, “IPv4 Address Report.” http://www.potaroo.net/tools/
ipv4/index.html.

[2] Y. Pryadkin, R. Lindell, J. Bannister, R. Govindan, “An Em-
pirical Evaluation of IP Address Space Occupancy,” Technical
Report ISI-TR 598, USC/ISI, 2004.

[3] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G.
Bartlett, J. Bannister, “Census and Survey of the Visible In-
ternet,” in ACM Conference on Internet measurement (IMC),
pp. 169–182, 2008.

[4] X. Cai, J. Heidemann, “Understanding Block-level Address
Usage in the Visible Internet,” in ACM SIGCOMM Conference,
pp. 99–110, 2010.

[5] Anonymous, “Internet Census 2012 – Port scanning /0 using
insecure embedded devices.” http://internetcensus2012.bitbucket.
org/paper.html.

[6] A. Dainotti, K. Benson, A. King, kc claffy, M. Kallitsis, E. Glatz,
X. Dimitropoulos, “Estimating Internet Address Space Usage
Through Passive Measurements,” ACM Computer Communica-
tion Review (CCR), vol. 44, pp. 42–49, Jan. 2014.

[7] A. Dainotti, K. Benson, A. King, k. claffy, E. Glatz, X. Dimitro-
poulos, P. Richter, A. Finamore, and A. Snoeren, “Lost in Space:
Improving Inference of IPv4 Address Space Utilization,” tech.
rep., Center for Applied Internet Data Analysis (CAIDA), Oct
2014.

[8] S. Zander, L. L. H. Andrew, G. Armitage, G. Huston, “Estimating
IPv4 Address Space Usage with Capture-Recapture,” in 7th IEEE
Workshop on Network Measurements (WNM), October 2013.

[9] S. Zander, L. L. H. Andrew, G. Armitage, “Capturing Ghosts:
Predicting the Used IPv4 Space by Inferring Unobserved Ad-
dresses,” in Internet Measurement Conference (IMC), November
2014.

[10] S. Zander, L. L. H. Andrew, and G. Armitage, “Estimating
the used IPv4 address space with secure multi-party capture-
recapture,” in INFOCOM (poster), (Turin, Italy), 15-18 Apr
2013.

[11] J. Vaidya, C. Clifton, “Secure Set Intersection Cardinality with
Application to Association Rule Mining,” J. Comput. Secur.,
vol. 13, pp. 593–622, July 2005.

[12] S. Zander, “Secure Fast Set Intersection (SeFaSI) Implementa-
tion,” 2013. http://caia.swin.edu.au/mapping/sefasi.

[13] S. Zander, L. L. H. Andrew, G. Armitage, “MAPPING (Meas-
uring And Practically Predicting INternet Growth) Tools,” 2015.
http://caia.swin.edu.au/mapping/tools.html.

[14] A. Chao, P. K. Tsay, S. H. Lin, W. Y. Shau, D. Y. Chao, “The
Applications of Capture-Recapture Models to Epidemiological
Data,” Statistics in Medicine, vol. 20, pp. 3123–3157, October
2001.

[15] C. G. J. Petersen, “The Yearly Immigration of Young Plaice into
the Limfjord from the German Sea,” Rept. Danish Biol. Sta.,
vol. 6, pp. 1–77, 1895.

CAIA Technical Report 150909A September 2015 page 19 of 20

http://www.potaroo.net/tools/ipv4/index.html
http://www.potaroo.net/tools/ipv4/index.html
http://internetcensus2012.bitbucket.org/paper.html
http://internetcensus2012.bitbucket.org/paper.html
http://caia.swin.edu.au/mapping/sefasi
http://caia.swin.edu.au/mapping/tools.html

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0.01 0.05 0.50 5.00 50.00

0

20

40

60

80

100

IPv6 capable (%)

U
s
e
d

 I
P

v
4
 a

d
d
re

s
s
e
s
 (

%
)

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● RIPE APNIC AfriNIC ARIN LACNIC

(a) IPv6 capable

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0.01 0.05 0.50 5.00 50.00

0

20

40

60

80

100

IPv6 capable (%)

U
s
e
d

 I
P

v
4
 a

d
d
re

s
s
e
s
 (

%
)

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● RIPE APNIC AfriNIC ARIN LACNIC

(b) IPv6 preferred

Figure 12: Fraction of used IPv4 addresses relative to routed space vs. percentage of IPv6-capable and IPv6-preferred
hosts

[16] F. C. Lincoln, “Calculating Waterfowl Abundance on the Basis
of Banding Returns,” U.S. Dept . Agric. Circ., vol. 118, pp. 1–4,
1930.

[17] E. B. Hook, R. R. Regal, “Capture-Recapture Methods in Epi-
demiology: Methods and Limitations,” Epidemiol. Rev., vol. 17,
no. 2, pp. 243–264, 1995.

[18] A. Chao, “An Overview of Closed Capture-Recapture Models,”
J. Agric. Biol. Envir. S., vol. 6, no. 2, pp. 158–175, 2001.

[19] S. Pledger, “Unified maximum likelihood estimates for closed
capture-recapture models using mixtures,” Biometrics, vol. 56,
no. 2, pp. 434–442, 2000.

[20] A. Chao, P. K. Tsay, “A Sample Coverage Approach to Multiple-
System Estimation with Applications to Census Undercount,”
Journal of the American Statistical Association, vol. 93, pp. 282–
293, 1998.

[21] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2.” RFC 5246 (Proposed Standard), August
2008. http://www.ietf.org/rfc/rfc5246.txt.

[22] R. Agrawal, A. Evfimievski, R. Srikant, “Information Sharing
Across Private Databases,” in ACM SIGMOD International Con-
ference on Management of Data, pp. 86–97, 2003.

[23] S. Pohlig, M. Hellman, “An improved algorithm for computing
logarithms over and its cryptographic significance,” IEEE Trans-
actions on Information Theory, vol. 24, pp. 106–110, January
1978.

[24] A. Shamir, R. Rivest, L. Adleman, “Mental Poker.”
MIT/LCS/TM-125, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA,
1979.

[25] E. Barker, W. Barker, W. Burr, W. Polk, M. Smid, “Recommend-
ation for Key Management.” Special Publication 800-57 Part 1
Rev. 3, NIST, July 2012.

[26] L. Sweeney, M. Shamos, “A Multiparty Computation for Ran-
domly Ordering Players and Making Random Selections,” Tech.
Rep. CMU-ISRI-04-126, Carnegie Mellon University, July 2004.

[27] A. Z. Broder, “On the Resemblance and Containment of Doc-
uments,” in Compression and Complexity of Sequences 1997,
pp. 21–29, June 1997.

[28] N. G. Duffield, M. Grossglauser, “Trajectory sampling for direct
traffic observation,” IEEE/ACM Trans. Netw., vol. 9, pp. 280–
292, June 2001.

[29] R. Morris, K. Thompson, “Password Security: A Case History.”
Bell Laboratories, Murray Hill, NJ, USA, April 1978. http://cm.
bell-labs.com/cm/cs/who/dmr/passwd.ps.

[30] E. De Cristofaro, P. Gasti, G. Tsudik, “Fast and Private Com-
putation of Cardinality of Set Intersection and Union,” in 11th
International Conference on Cryptology and Network Security
(CANS), 2012.

[31] A. Appleby, “MurmurHash,” 2011. https://sites.google.com/site/

murmurhash/.
[32] P. Montgomery, “Modular Multiplication Without Trial Divi-

sion,” Math. Computation, vol. 44, pp. 519–521, 1985.
[33] G. D. M. Reed M. G., Sylverson P. F., “Anonymous connections

and onion routing,” IEEE Journal on Selected Areas in Commu-
nications, vol. 16, no. 4, pp. 482–494, 1998.

[34] S. Baillargeon, L.-P. Rivest, “Rcapture: Loglinear Models for
Capture-Recapture in R,” J. Statistical Software, vol. 19, pp. 1–
31, April 2007.

[35] E. Cooch, G. C. White, Program MARK: A Gentle Introduction.
Cornell University, 2009.

[36] DNS-based Blacklist of NiX Spam. http://www.dnsbl.manitu.
net/.

[37] Measurement Lab. http://www.measurementlab.net/.
[38] S. Zander, L. L. H. Andrew, G. Armitage, G. Huston, G.

Michaelson, “Mitigating Sampling Error when Measuring In-
ternet Client IPv6 Capabilities,” in ACM Internet Measurement
Conference (IMC), Nov. 2012.

[39] APNIC, “IPv6 Capable Rate by Country.” http://stats.labs.apnic.
net/ipv6.

CAIA Technical Report 150909A September 2015 page 20 of 20

http://www.ietf.org/rfc/rfc5246.txt
http://cm.bell-labs.com/cm/cs/who/dmr/passwd.ps
http://cm.bell-labs.com/cm/cs/who/dmr/passwd.ps
https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/
http://www.dnsbl.manitu.net/
http://www.dnsbl.manitu.net/
http://www.measurementlab.net/
http://stats.labs.apnic.net/ipv6
http://stats.labs.apnic.net/ipv6

	Introduction
	Related Work
	Capture-Recapture (CR)
	Measurement Metric
	Approach
	Assumptions for Capture-Recapture
	Capture Histories
	Lincoln-Petersen (L-P) Population Estimation
	Log-linear CR Models
	Direct Models of Heterogeneity

	Secure Protocol
	Goals and Requirements
	Adversary Model
	Basic Protocol
	Commutative encryption
	Two-party protocol
	Multi-party protocol
	Lack of Scalability

	Protocol with Sampling
	Hash-based sampling
	Multi-party protocol with sampling
	Minimum sample rate

	Security
	Complexity
	Hiding dataset sizes
	Anonymise dataset ownership
	Dataset merging

	Probing attack detection
	Modified protocol overview
	New valid set encryption and permutation step
	Modified dataset encryption and permutation step
	Probe attack detection errors

	Prototype Evaluation
	Implementation
	Validation against Ground Truth
	Sampling Error
	Cardinality estimate sampling error
	CR estimate sampling errors

	Performance
	Sampling speed
	Encryption and permutation speed
	Set intersection cardinality speed

	Estimated Used IPv4 Space
	Datasets
	Correlations Between Datasets
	Used IPv4 space
	Totals
	Usage by region
	Usage by country
	Impact on IPv6 Deployment

	Conclusions and Future Work
	References

