
Teaplot v0.1: A browser-based 3D engine for
animating TEACUP experiment data

Isaac True∗, Grenville Armitage, Philip Branch
Centre for Advanced Internet Architectures, Technical Report 150828A

Swinburne University of Technology
Melbourne, Australia

itrue@swin.edu.au, garmitage@swin.edu.au, pbranch@swin.edu.au

Abstract—TEACUP is a software tool developed at
CAIA for running automated TCP experiments, which can
generate static PDF graphs of experiment results using R.
Teaplot v0.1 is an extension to this tool which allows the
user to interactively visualise and animate these results in
a web browser in both 2-and 3D.

This report contains information pertaining to the
architecture and technical requirements of the extension,
along with the installation procedure and a user interface
guide for the web client component.

Ideas for potential further work on Teaplot were identi-
fied during development, including bug fixes and solutions
for performance and visual issues, and have been included
within this report.

I. INTRODUCTION

TEACUP [1] is a software tool developed at CAIA
for running automated TCP experiments and modelling
complex network characteristics and performance in a
testbed. Teaplot v0.1 is an extension to this tool.

Traditionally, TEACUP experiment data is analysed
and plotted using scripts written in R [2], which gen-
erate static graphs as PDFs. Changing how the data is
displayed means modifying command line arguments
and regenerating these graphs, repeatedly – a time-
consuming and repetitive job. Teaplot reinvents this pro-
cess by providing the user with a graphical interface in
their browser which can be used to plot experiment data
dynamically, allowing the user to pick and choose results
from various experiments, combine multiple measured
and calculated metrics, and animate the data as it changes
over time across multiple graphs, in both 2- and 3D.

The current TEACUP version as of the time of writing
is v1.0. Further information relating to TEACUP, its
operation, and example scenarios for testbeds can be
found in the TEACUP technical reports [3] [4] [5] [6].

*The work described in this report was done during the author’s
winter internship at CAIA in 2015

This report is intended to give the reader a technical
overview of the functions, requirements, and usage of
Teaplot. Section II details how the system is structured,
while Section III details the technical requirements and
software dependencies. Section IV describes how to
install Teaplot using TEACUP v1.0 as a base. Section
V guides the potential user in the use of the client
web interface component of Teaplot, and Section VI
gives examples for potential further work that have been
identified as useful or beneficial to the performance of
the program.

II. ARCHITECTURE

A. System Design

The Teaplot system is separated into two components:
the client, and the server. The client component is
an HTML5-compliant WebGL-based web page which
is used as the user interface for Teaplot, while the
server component, written in Python, is responsible for
the mathematical and data processing tasks required
in creating the data for the animations. All intensive
mathematical calculations are performed by the server,
where the operations can be accelerated through the use
of mathematical libraries such as SciPy and NumPy,
which provide Python wrappers around native libraries.
The server is also responsible for communicating with
TEACUP, in order to extract and utilise the data it makes
available. This architecture can be seen in Figure 1.

The server makes available to the client an API,
through which the client can request a list of exper-
iments, metrics, and flows, and also request a set of
data to be generated for a particular experiment, metric,
and flow combination in order to plot and animate it
on screen. This design ensures separation of the client
and server logic, and facilitates the use of the server-side
mathematical libraries as described above.

CAIA Technical Report 150828A August 2015 page 1 of 8

mailto:itrue@swin.edu.au
mailto:garmitage@swin.edu.au
mailto:pbranch@swin.edu.au

Server

Python

Client

HTML5

TEACUP

Python

Fig. 1. System Architecture Diagram

The server also provides the HTTP server for the
static web pages comprising the client; to use Teaplot, a
user simply navigates to the URL of the server using a
compatible web browser.

The Teaplot server is implemented as a Fabric [7] task
called animate, and so easily integrates into existing
TEACUP installations. The animate task is easily ex-
ecuted as an argument to the fab task. Details regarding
this usage can be found in Section V.

B. API

The Teaplot server API utilises JSON (JavaScript
Object Notation) [8] formatted documents for commu-
nicating data.

Table I shows a list of endpoints present in the API,
which the client application can make use of, and can
be used for debugging, if need be.

As the server program is assumed to be short-lived
and in a controlled environment, no authentication takes
place on the API.

C. Server

The server component is built using Django [9], a
Python-based framework for building websites. It was
chosen due to its reliability, asynchronous nature, and
wide selection of website utility functions, which facili-
tated the construction of the API.

The data processing functions make heavy use of the
NumPy [10] and SciPy [11] libraries, which are Python
wrappers for manipulation of matrices and arrays in
native high-performance linear algebra libraries written
in C and Fortran.

To facilitate ease of integration into the Fabric frame-
work used by TEACUP, the server is run using uWSGI
[12], which creates and manages the server using
Django’s WSGI interface.

D. Client

The client is built using a combination of HTML5 and
JavaScript, along with a number of JavaScript libraries.
The base UI framework used is Bootstrap 3 [13], supple-
mented by jQuery UI [14]. The application also makes

TABLE I
API ENDPOINTS

Endpoint Type Description
/api/default GET Default parameters for

the client (exp_id, metric,
etc.)

/api/metrics GET Lists the available met-
rics, including SIFTR and
Web10G metrics if en-
abled

/api/metrics/get POST Starts the extraction pro-
cess for the experiment
and metric combination
sent as POST data and
returns the available data

/api/experiments GET Lists the available exper-
iments

/api/graph POST Generates plottable data
points for the experiment,
metric, and flow com-
bination sent as POST
data, and returns them as
(x,y,z) coordinates

/api/paths GET Returns a list of the direc-
tories in use by Teaplot
for debugging purposes
n.b. not JSON format-
ted

use of the templating engine pure.js in order to greatly
simplify construction of tables and lists in HTML.

jQuery [15] is used for a multitude of tasks, but is
primarily used for simplification of communicating with
the server API using its JSON functions.

III. TECHNICAL REQUIREMENTS

A. Server

As the server performs the bulk of the calculations,
a computer with a powerful CPU and enough RAM to
comfortably perform the required data manipulation is
recommended, especially if the server host is a virtual
machine. The exact performance requirements will be
heavily dependent on the size of the data sets and
experiments being used.

The Teaplot server component requires Python 2.7 and
the following Python libraries to be installed:

CAIA Technical Report 150828A August 2015 page 2 of 8

Web UI Server TEACUP

/default

/metrics

/experiments

read_experiment_ids()

/metrics/get

get_extract_function()

extract_function()

/graph

Fig. 2. Teaplot API Request Sequence Diagram

• Django v1.8.0
• NumPy v1.11.4
• SciPy v1.11.4

It also requires the following additional software and
appropriate dependencies to be installed:

• uWSGI v2.0.11
• SPP v0.3.6 [16]
• TEACUP v1.0

The following JavaScript libraries are required for the
client UI, and are included in a minified form in the
installation package:

• bootstrap.js v3.3.5
• jquery.js v2.1.4
• jquery-ui.js v1.11.4
• beebole-pure.js v2.83 [17]
• stats.js d869e3f61c [18]
• require.js v2.1.19 [19]
• three.js r71 [20]

Note: Software package version listed above are the
versions that were used during the initial development of
the platform. Future and previous versions of packages

may or may not work with Teaplot, and could create
issues or require code modification.

B. Client

No accompanying software is required to be installed
on the client’s device; the Teaplot client component
takes place entirely within the browser. It requires a
modern WebGL compatible version of Google Chrome,
Chromium, or Firefox. Microsoft Edge and Internet
Explorer have not been tested, but recent versions may
be compatible.

As the data is loaded in memory for plotting, large
data sets may require a large amount of RAM (i.e.
more than 1GB) to be available on the client’s de-
vice. Furthermore, the graphics card, WebGL implemen-
tation, and graphics drivers on the client’s computer
must support shaders. All modern Intel, Nvidia, and
AMD graphics cards support WebGL shaders, along with
their Windows-based driver counterparts. However, if
the browser is running on a Linux-/Unix-based system,
driver-side support may be problematic, especially when
using open-source implementations of the drivers. Prob-
lems could also arise if the web browser is being run
inside a virtual machine host.

Due to the large RAM requirements of the client
application, the user may quickly reach the hard 4GB
memory address space limit if they are using a 32-bit
web browser. As such, it is recommended to use a 64-
bit version of the operating system, along with a 64-bit
web browser binary. Windows users are recommended
to use the 64-bit version of Firefox Nightly [21].

It is recommended that for best compatibility and
performance, the web browser is run on a non-virtualised
host running a 64-bit version of Linux, Windows, or
FreeBSD, along with a 64-bit web browser, using the
manufacturer-supplied proprietary/non-free drivers.

IV. INSTALLATION PROCEDURE

The following installation procedure outlines the ac-
tions needed to install Teaplot on a FreeBSD-based
system. Commands prefixed with # denote that the
execution should take place inside a shell with root
privileges, while $ denotes user-level privileges.

See Appendix A for information regarding installation
on FreeBSD 9.x.

1) If TEACUP v1.0 is not already installed, re-
trieve it from http://downloads.sourceforge.net/
project/teacup/teacup-1.0.tar.gz. Additional infor-
mation can be obtained from the CAIA technical
reports [3] [6].

CAIA Technical Report 150828A August 2015 page 3 of 8

http://downloads.sourceforge.net/project/teacup/teacup-1.0.tar.gz
http://downloads.sourceforge.net/project/teacup/teacup-1.0.tar.gz

2) Extract Teaplot installation archive into the
TEACUP directory($TEACUP_DIR)1 :
$ cd $TEACUP_DIR

$ tar xvf teaplot-0.1.txz

3) Apply the Teaplot patch for fabfile.py inside the
same directory:
$ patch -p1 < teaplot.patch

4) Install system dependencies. For example, on
FreeBSD2:
pkg install py27-django py27-scipy

py27-numpy uwsgi spp

5) Installation is now complete. Teaplot can now be
run from the fabfile directory ($FABFILE_DIR) 3 as
a Fabric task called “animate”:
$ cd $FABFILE_DIR

$ fab animate

V. USAGE

A. General

The following assumptions are made when running a
TEACUP Fabric task, and thus Teaplot:

• fab is being executed in a directory containing a a
link to or copy of TEACUP’s fabfile.py, and a
relevant and properly configured config.py

• The file config.py defines TPCONF_script_path,
which points to the extracted TEACUP source tree
($TEACUP_DIR)

• The Fabfile directory ($FABFILE_DIR) is home to
one or more experiment directories that contain
actual raw experiment results files.

B. Task Arguments

Table II shows the arguments that can be added to the
Fabric task to customise the functionality of Teaplot. All
arguments are optional, and are supplied to the Fabric
task like so:

$ fab animate:arg1="value1",arg2="value3",. . .

Values should be enclosed by quote marks (i.e.
". . . ") or apostrophes (i.e. ’. . . ’). A value of

1TEACUP directory refers to the directory in which the TEACUP
installation archive was extracted. In the TEACUP config.py this is
referred to as TPCONF_script_path.

2A minimum of spp-0.3.6 is required. At the time of writing, the
latest version available in the FreeBSD package repositories is 0.3.5.
Thus, manual installation from source could be required. Refer to the
SPP website for installation instructions [16].

3Fabfile directory refers to a directory separate to TEACUP, which
contains a copy of config.py and a copy of or link to TEACUP’s
fabfile.py, in which the fab command is executed in order to
generate experiment data. This directory contains one or more “exper-
iment directories”, which contain the experimental results generated
by TEACUP.

TABLE II
FABRIC TASK ARGUMENTS FOR TEAPLOT

Argument Description

address
IP address for the server.
Default: ’127.0.0.1’

port
Port number for the server.
Default: ’8000’

animate_dir
Teaplot directory containing the
Django WSGI application.
Default: animate

out_dir
Directory in which to generate
TEACUP intermediate files.
Default: ’’

processes
Number of uWSGI processes to use.
Default: 1

threads
Number of uWSGI threads for each
process.
Default: 1

exp_list

Location of the experi-
ments_completed.txt file generated by
TEACUP.
Default:
’experiments_completed.txt’

’’ generally denotes a null, or blank, value. For the
arguments out_dir and exp_dir, a value of ’’ indicates
that Teaplot should use the current working directory as
that directory.

exp_list and exp_list are interpreted as relative to
the current working directory (the directory in which
the Fabric task is executed). out_dir is relative to
the experiment directories, as each one is processed
by TEACUP. animate_dir is relative to the directory
defined by TPCONF_script_path.

Table III shows the additional arguments for the Fabric
task that relate to the defaults to use for the web client.

For example, if the user wishes to have the server
listen on IP address 0.0.0.0 (all available interfaces)
and display three graphs by default, the fabric task would
be as follows:

$ fab animate:address="0.0.0.0",graph_count="3"

C. Launching the Client

In order to visualise TEACUP experiment data, the
following steps should be carried out:

1) Start the web server component using the method
outlined in the previous section (ensuring that the
IP address and port chosen are reachable by the
client)

2) Open the web browser on the client computer, and
navigate to the IP address and port pair used by

CAIA Technical Report 150828A August 2015 page 4 of 8

TABLE III
FABRIC TASK ARGUMENTS FOR DEFAULT CLIENT SETTINGS

Argument Description

source_filter

TEACUP source filters (semicolon-
separated) to use as default in the web
client.
Default: ’’

test_id

TEACUP test IDs (semicolon-
separated) to use as default in the web
client.
Default: ’’

metric
Default TEACUP metrics (semicolon-
separated).
Default: ’’

graph_count
Default number of graphs to display.
Default: ’1’

graph_names
Names of the graphs displayed
(semicolon-separated) by default.
Default: ’’

lnames
Legend/Flow names to show on the
graphs (semicolon-separated).
Default: ’’

siftr
Enable (’1’) or disable (’0’) SIFTR.
Default: ’0’

web10g
Enable (’1’) or disable (’0’) web10g.
Default: ’0’

etime
Default end time in seconds for a new
graph. ’0’ infers no default end time.
Default: ’0’

stime
Default start time in seconds.
Default: ’0’

the server
e.g. http://127.0.0.1:8000

3) If desired, increase the number of graphs to be
shown on-screen by clicking the “Graph” button
in the top navigation bar, and then modifying the
“Number of graphs” control as desired. Alterna-
tively, restart the server with the desired number
as the value for the argument graph_count. The
name of each graph can also be optionally set here,
or using the argument graph_names.

D. Selecting Tests and Flows

1) The Teaplot client web UI should now be vis-
ible on-screen. Now, open the metric selection
dialogue by clicking “Metrics” in the navigation
bar, and select one or more test ID’s (which
the Teaplot server reports it has found in the
experiments_completed.txt file identified by
exp_list), and optionally provide source filters

in the appropriate text box. For information on the
source filter syntax, refer to the TEACUP technical
report [4].

2) Select the “Metrics” tab, and select one or more
metrics for extraction and processing. If SIFTR or
Web10G metrics are required, the server should be
restarted with the additional argument siftr=’1’
or web10g=’1’.

3) Click the “Update Flows” button to send the re-
quested parameters to the server. The server will
then extract the metric data from the selected
experiments, and apply the source filter(s) to the
data. The metrics dialogue will close once this
operation has successfully completed. If an error
has occurred, refer to the file teaplot.log inside
$FABFILE_DIR for more information. This process
may take tens of seconds, especially if a specific
metric and test ID combination has not previously
been extracted.

4) Open the “Flow” dialogue by clicking the “Flow”
button in the navigation bar. The metrics and
accompanying flows 1 available for display will be
displayed here. The flows are grouped by metric,
and then alphabetically sorted. The flow start times
displayed are calculated relative to the earliest flow
start time in each group. 2

5) Select a number of flows to show on the graph
using the check boxes. Once a flow is selected,
it will be added to the “Y Axis Flow Mapping”
table. From here, the graph on which to display
the data can be selected. Furthermore, alternative
axis configurations can be selected. However, as of
version 0.1, selecting anything other than “Time”
for the X Axis and “Nothing” for the Z Axis is
considered experimental; different flow and metric
configurations may not work or be compatible.

6) Once the desired flows have been selected, click
the “Update View” button to send the request. As
may take several seconds, as the server must pro-
cess the data, normalise time stamps, and transfer
the data for the client, where it is then plotted on
the appropriate graph. The number of flows and
total number of data points will heavily influence
how long this process will take. 3

CAIA Technical Report 150828A August 2015 page 5 of 8

E. Interactivity

Once the “Update View” process is complete, the
dialogue will close and the data will appear on the
appropriate graphs. The X (time) axis limits will au-
tomatically adjust to include the entire data set; the X
axis of each graph is identically scaled, with the same
start and end times. The Y and Z (if selected) axes will
automatically scale to include the highest value on each
graph; these axis are not linked (i.e. each graph has its
own independent scale). If stime or etime arguments
were specified with the Fabric task, the graphs will
automatically adjust the X axis to the designated values.
If desired, the minimum and maximum values of each
axis can be adjusted using the sliders in the “Control”
panel. These values are represented as percentages of the
maximum value on each axis. All graphs are linked and
controlled by the same sliders. If no name is currently
set for a graph, it will be updated with the metric it is
currently displaying.

Individual flows are represented by a single colour,
irrespective of metric, in order to ease visual compar-
isons of the same flow on multiple graphs. If desired,
names can be assigned to individual flows by clicking
the flow name in the “Legend” panel, or by providing
a semicolon-separated list of names via the lnames
argument when starting Teaplot.

The graph view is controlled using the mouse. In 2D
view (the default), panning can be achieved by clicking
and holding the right mouse button, while zooming is
achieved using the scroll wheel.

F. Button Functions

3D view can be toggled (for experimental 3D plots)
using the “Toggle 3D View” button found in the top
navigation bar. Clicking the “Reset View” will reset the
position of the graph view to the default.

Clicking “Toggle Grid” will show or hide the grey
dividing lines shown on the graphs.

1A “flow” refers to a one-way data stream between an IP ad-
dress and port pair, shown in the format <source IP>_<source
port>_<destination IP>_<destination port>.
e.g.: 172.16.10.3_28176_172.16.11.3_8000

2A “group” refers to an experiment/test grouping as calculated by
TEACUP; a single group contains a single test run.

3The amount of data transferred between the client and server dur-
ing this process is approximately 1MB per 100,000 data points. This
could be greatly reduced (if required) through the use of transparent
HTTP compression such as gzip, which could be introduced through
the use of a reverse-proxy web-server application on the server host,
such as nginx [22].

The “Animate” button begins the graph animation, the
duration of which can be controlled using the “Animation
Time” slider found in the “Controls” box. This animation
produces a bar which moves left-to-right across all
graphs simultaneously, “uncovering” data points as it
moves. This can be used to visualise the interaction be-
tween metrics over time. Clicking the “Animate” button
while the animation is running will pause and resume
the animation.

The “Export Command” button displays a dialogue
containing a list of arguments which can be passed to
the Fabric task the next time the server task is executed.
These arguments represent the current state of the web
client interface and current selections made by the user,
so that the user can record these arguments and restart
the server in more-or-less the same state, with the same
metrics, for example, at a later time.

VI. POTENTIAL FURTHER WORK

A. Finalisation of 3D Graphing Functions

As previously outlined, the 3D graph functions
of Teaplot are currently considered experimental,
as not all combinations of metrics are able to be
successfully plotted. The current implementation
on the server makes use of the SciPy class
interpolate.InterpolatedUnivariateSpline to
generate an interpolation function using the experimental
data, in order to create a 3D mapping against a second
data series and time.

Further work in this area could involve identify-
ing combinations of metrics which break the inter-
polation system, and solving the issues relating to
that. Furthermore, the system could be extended to
produce 3D scatter plots using three distinct met-
rics using a bivariate interpolation class, such as
interpolate.BivariateSpline.

The file relating to the server-side processing of the
data is animate/api/teaplot.py.

B. User Interface

Many refinements of the user interface can be made.
Perhaps chief among the potential refinements is the
grouping of table rows in the “Metrics” and “Flows”
dialogues into collapsible experiment/test/run groups, in
order to tidy up the interface and simplify the selection
process when working with large sets of experiments.

A further refinement is the separation and/or grouping
of SIFTR [23] and Web10G [24] metrics in the metric
selection dialogue. Currently, the list is very cluttered

CAIA Technical Report 150828A August 2015 page 6 of 8

when both web10g and siftr flags are enabled; group-
ing the metrics into collapsible standard/Web10G/SIFTR
tables could go a long way to tidying up that interface
and making it easier for the user.

Such changes should be made to the
css/teaplot.css, js/teaplot.js, and index.html
files inside the animate/static/ directory.

Additional changes can be made to the Bootstrap CSS
settings in order to further reduce visual clutter and
size of lists. Changes should be made on the Bootstrap
customisation page at http://getbootstrap.com/customize/
using the /animate/static/config.json file included
with Teaplot as the base. The resulting Bootstrap files
can safely overwrite the existing files in Teaplot.

C. Grid Rendering

Currently, the grids are not being calculated cor-
rectly, and only appear in the proper dimensions
using the current statically set dimensions of the
graph. The grid rendering code should be replaced (in
animate/static/js/graph.js), in order to allow for
dynamically resizeable graphs and grid spacing.

D. Memory Usage

Substantial reduction in memory usage is possible if
the three.js Geometry objects are changed to Buffer-
Geometry objects, which will move a large chunk of
the used browser memory into buffers on the GPU.
However, this may take some effort and knowledge, as
implementing shaders with BufferGeometry objects is
not as simple as with normal Geometry.

Further reductions are possible using point thinning
server-side, in order to reduce the amount of data points
being rendered simultaneously by the client. However,
a considerable bonus is had by rendering all of the
available points, as the user is currently able to zoom
in to see the high resolution of the points. A potential
work-around is to have a “streaming” interface between
the client and server, where the client requests the data
at a resolution/point thinning factor relative to the zoom
level in real-time.

Changes to the 3D rendering in the Teaplot client
should be made in the animate/static/js/graph.js
file.

E. Text

The axis labels rendered on the graphs seem to be
affected by some size limit – long labels are cut off.
The cause of this is unknown, however text rendering in
three.js/WebGL is known to be problematic. Potential

solutions are to move text rendering out of the WebGL
canvas, instead creating HTML text labels that float in
the correct positions on the graph.

As this is related to 3D rendering in the
Teaplot client, changes should be made in the
animate/static/js/graph.js file.

Long test IDs currently break some sections of the UI,
namely the “Y Axis Flow Mapping” table and the “Leg-
end” panel. The CSS relating to these UI components
should be modified to be fixed-width, and to use proper
text wrapping.

These modifications can be made inside
animate/static/css/teaplot.css.

VII. CONCLUSION

This report has described the architecture, functions,
dependencies, and technical details pertaining to Teaplot
v0.1, the browser-based 3D visualisation extension for
TEACUP v1.0, along with ideas for potential bug fixes
and improvements which were identified during devel-
opment.

ACKNOWLEDGEMENTS

We would like to thank Jonathan Kua and Rasool Al-
Saadi for their invaluable help with testing Teaplot and
providing sample data, and Djuro Mirkovic for providing
the original foundation for the 3D graphing engine.

APPENDIX

FREEBSD 9.X INSTALLATION

The easiest method for installing the required pack-
ages on FreeBSD is to use the pkgng framework, rather
than the standard ports tree. Firstly, pkgng must be
configured. This can be done by executing the following
commmands:
portsnap fetch extract
echo "WITH_PKGNG=yes" >> /etc/make.conf
make -C /usr/ports/ports -mgmt/pkg install clean
pkg2ng

Following this, the package repository needs to be ini-
tialised:
mkdir /etc/pkg

Edit the contents of /etc/pkg/FreeBSD.conf to be the
following:
FreeBSD: {
url: "pkg+http ://pkg.FreeBSD.org/${ABI}/ latest",
mirror_type: "srv",
enabed: "yes"
}

Lastly, execute:

CAIA Technical Report 150828A August 2015 page 7 of 8

http://getbootstrap.com/customize/

pkg update

Following the successful execution of these commands,
the pkgng framework can be used to install packages.

REFERENCES

[1] TCP Experiment Automation Controlled Using Python
(TEACUP). [Online]. Available: http://caia.swin.edu.au/tools/
teacup/

[2] The R Project for Statistical Computing. The R Foundation.
[Online]. Available: https://www.r-project.org/

[3] S. Zander and G. Armitage, “TEACUP v1.0 - A Sys-
tem for Automated TCP Testbed Experiments,” Centre for
Advanced Internet Architectures, Swinburne University of
Technology, Melbourne, Australia, Tech. Rep. 150529A, 29
May 2015. [Online]. Available: http://caia.swin.edu.au/reports/
150529A/CAIA-TR-150529A.pdf

[4] S. Zander and G. Armitage, “TEACUP v1.0 - Data Anal-
ysis Functions,” Centre for Advanced Internet Architectures,
Swinburne University of Technology, Melbourne, Australia,
Tech. Rep. 150529B, 29 May 2015. [Online]. Available: http:
//caia.swin.edu.au/reports/150529B/CAIA-TR-150529B.pdf

[5] S. Zander, “TEACUP v1.0 - Command Reference,” Centre
for Advanced Internet Architectures, Swinburne University of
Technology, Melbourne, Australia, Tech. Rep. 150529C, 29
May 2015. [Online]. Available: http://caia.swin.edu.au/reports/
150529C/CAIA-TR-150529C.pdf

[6] S. Zander and G. Armitage, “CAIA Testbed for TEACUP
Experiments Version 2,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Mel-
bourne, Australia, Tech. Rep. 150210C, 10 February 2015.
[Online]. Available: http://caia.swin.edu.au/reports/150210C/
CAIA-TR-150210C.pdf

[7] Fabric. [Online]. Available: http://www.fabfile.org/
[8] ECMA-404 The JSON Data Interchange Standard. ECMA

International. [Online]. Available: http://json.org/
[9] Django Project. Django Software Foundation. [Online]. Avail-

able: https://www.djangoproject.com/
[10] NumPy. [Online]. Available: http://www.numpy.org/
[11] SciPy. [Online]. Available: https://www.scipy.org/
[12] uWSGI. [Online]. Available: https://github.com/unbit/uwsgi
[13] Bootstrap. Twitter, Inc. [Online]. Available: http://getbootstrap.

com/
[14] jQuery UI. The jQuery Foundation. [Online]. Available: https:

//jqueryui.com/
[15] jQuery. The jQuery Foundation. [Online]. Available: https:

//jquery.com/
[16] Synthetic Packet Pairs (SPP) – Tool for passive round trip time

measurement. [Online]. Available: http://caia.swin.edu.au/tools/
spp/

[17] pure.js. BeeBole. [Online]. Available: http://beebole.com/pure/
[18] stats.js. [Online]. Available: https://github.com/mrdoob/stats.js/
[19] RequireJS. [Online]. Available: http://requirejs.org/
[20] three.js. [Online]. Available: http://threejs.org/
[21] Firefox Nightly. Mozilla Foundation. [Online]. Available: https:

//nightly.mozilla.org/
[22] nginx. Nginx, Inc. [Online]. Available: http://nginx.org/
[23] siftr. The FreeBSD Project. [Online]. Available: https://www.

freebsd.org/cgi/man.cgi?query=siftr
[24] Web10G. The Web10G Project. [Online]. Available: https://

www.web10g.org/

CAIA Technical Report 150828A August 2015 page 8 of 8

http://caia.swin.edu.au/tools/teacup/
http://caia.swin.edu.au/tools/teacup/
https://www.r-project.org/
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/reports/150529B/CAIA-TR-150529B.pdf
http://caia.swin.edu.au/reports/150529B/CAIA-TR-150529B.pdf
http://caia.swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf
http://caia.swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf
http://www.fabfile.org/
http://json.org/
https://www.djangoproject.com/
http://www.numpy.org/
https://www.scipy.org/
https://github.com/unbit/uwsgi
http://getbootstrap.com/
http://getbootstrap.com/
https://jqueryui.com/
https://jqueryui.com/
https://jquery.com/
https://jquery.com/
http://caia.swin.edu.au/tools/spp/
http://caia.swin.edu.au/tools/spp/
http://beebole.com/pure/
https://github.com/mrdoob/stats.js/
http://requirejs.org/
http://threejs.org/
https://nightly.mozilla.org/
https://nightly.mozilla.org/
http://nginx.org/
https://www.freebsd.org/cgi/man.cgi?query=siftr
https://www.freebsd.org/cgi/man.cgi?query=siftr
https://www.web10g.org/
https://www.web10g.org/

	Introduction
	Architecture
	System Design
	API
	Server
	Client

	Technical Requirements
	Server
	Client

	Installation Procedure
	Usage
	General
	Task Arguments
	Launching the Client
	Selecting Tests and Flows
	Interactivity
	Button Functions

	Potential Further Work
	Finalisation of 3D Graphing Functions
	User Interface
	Grid Rendering
	Memory Usage
	Text

	Conclusion
	Appendix: FreeBSD 9.x Installation
	References

