
Alternative Backoff: Achieving Low Latency and
High Throughput with ECN and AQM
Naeem Khademi∗, Michael Welzl∗, Grenville Armitage†, Chamil Kulatunga‡

naeemk@ifi.uio.no, michawe@ifi.uio.no, garmitage@swin.edu.au, chamil@erg.abdn.ac.uk
David Ros§, Gorry Fairhurst‡, Stein Gjessing∗, Sebastian Zander¶

dros@simula.no, gorry@erg.abdn.ac.uk, steing@ifi.uio.no, s.zander@murdoch.edu.au

Centre for Advanced Internet Architectures Technical Report 150710A
Swinburne University of Technology

Melbourne, Australia

Abstract—CoDel and PIE are recently proposed Active
Queue Management (AQM) mechanisms that minimize the
time packets spend enqueued at a bottleneck, instantiating
shallow, 5 ms to 20 ms buffers with short-term packet burst
tolerance. However, shallow buffering causes noticeable
TCP performance degradation when a path’s underlying
round trip time (RTT) heads above 60 ms to 80 ms (not
uncommon with cross-continental and inter-continental
traffic). Using less-aggressive multiplicative backoffs is
known to compensate for shallow bottleneck buffering.
We propose ABE: “Alternative Backoff with ECN”, which
consists of enabling Explicit Congestion Notification (ECN)
and letting individual TCP senders use a larger multiplica-
tive decrease factor in reaction to ECN-marks from AQM-
enabled bottlenecks. Using a mix of experiments, theory
and simulations with standard NewReno and CUBIC
flows, we show significant performance gains in lightly-
multiplexed scenarios, without losing the delay-reduction
benefits of deploying CoDel or PIE. ABE is a sender-
side-only modification that can be deployed incrementally
(requiring no flag-day) and offers a compelling reason to
deploy and enable ECN across the Internet.

I. INTRODUCTION

Recent years have seen increasing mainstream aware-
ness of how critical low latency (delay) is to today’s In-
ternet and end users’ quality of experience. Expectations
are being increasingly driven by interactive applications
such as Voice over IP (VoIP), online games, online

∗Department of Informatics, University of Oslo, Norway
†Centre for Advanced Internet Architectures, Swinburne Univer-

sity of Technology, Australia
‡School of Engineering, University of Aberdeen, United Kingdom
§Simula Research Laboratory, Norway
¶School of Engineering and Information Technology, Murdoch

University, Australia

trading [31] and even time-sensitive, transactional web-
based shopping [26].

The delay experienced by any given packet is heavily
influenced by routing choices (distance), link speeds (se-
rialisation) and queuing (buffering at bottlenecks during
periods of congestion). Increasing network speeds have
reduced the relative contribution of serialisation, and
therefore placed more focus on the size and management
of bottleneck buffers.

A key influence on end user experience is the way
bottleneck buffering interacts with capacity estimation
techniques of common transport layers. The Internet’s
reliance on statistical multiplexing requires buffering to
absorb transient periods of congestion. Loss-based TCP
algorithms will fill a bottleneck’s available buffer space
before backing-off after the inevitable packet loss (con-
gestion signal). When available buffering is significantly
in excess of requirements the resulting queuing delay can
far outweigh any delay contributed by distance [19].

Two complementary solutions have emerged—Active
Queue Management (AQM) [3] and Explicit Congestion
Notification (ECN) [41]. AQM schemes aim to provide
earlier feedback about the onset of congestion, and thus
reduce buffer filling during congestion. ECN delivers
congestion feedback by adding new information to pack-
ets in transit, avoiding the detrimental side-effects of
dropping packets to signal congestion [46].

The problem we face is that modern AQM schemes
can interact badly with the traditional TCP response
to congestion notification. A common rule-of-thumb
is to allocate buffering at least equivalent to a path’s
intrinsic ‘bandwidth delay product’ (BDP) enabling TCP
to achieve close to 100% path utilisation. Yet the de-
sign goal of AQM schemes, such as Controlled Delay

CAIA Technical Report 150710A July 2015 page 1 of 15

(CoDel) [34], [35] and Proportional-Integral controller
Enhanced (PIE) [37], [38], is to effectively instantiate
a shallow bottleneck buffer with burst tolerance. So
TCP performance suffers once a path’s BDP exceeds the
bottleneck AQM scheme’s effective buffer size, whether
congestion is signalled by packet loss or ECN.

A. ABE: “Alternative Backoff with ECN”

We propose a novel way of utilizing ECN that en-
ables ECN deployment with a range of ECN marking
behaviours and can be shown to continue to enable low
latency and high throughput even for a High BDP path.

Alternative Backoff with ECN (ABE) can be sum-
marised as follows:

• Upon packet loss, a TCP sender reduces its conges-
tion window (cwnd) as usual (e.g., NewReno would
reduce cwnd by 50%, CUBIC by 30%).

• Upon receipt of an ECN mark, a TCP sender
reduces cwnd by less than the usual response for
loss.

ABE is based on the intuition that meaningful ECN
marks are generated by AQM schemes whose congestion
indications are proactively aimed at keeping buffer occu-
pancy low. An ABE sender thus compensates by backing
off less, reducing the likelihood of the shallow bottleneck
buffer draining to empty. Smaller backoffs will continue
to occur as the AQM continues to react, ensuring the
traffic does not build a long standing queue.

The idea of backing off less in response to an ECN
mark is not new, as the authors of [29] proposed to
use a larger multiplicative decrease factor in conjunction
with a smaller additive increase factor for ECN in 2002.
However [29] assumes the AQM on the bottleneck to
be RED [17] (since this work was performed before
the introduction of CoDel [34], [35] and PIE [37], [38])
which may not necessarily be deployed to instantiate a
shallow buffer – e.g. not necessarily with low marking
thresholds. The ABE mechanism differs from the work in
[29] since it takes into consideration the default values of
the state-of-the-art AQM mechanisms (CoDel and PIE)
which aim to instantiate a shallow buffer and also solely
relies on updating the multiplicative decrease factor.

ABE is a straightforward sender-side modification
that may be deployed incrementally, and requires only
that ECN is enabled in both end systems and AQM-
managed bottlenecks along the path. An ABE sender’s
behaviour is simply regular TCP if either the destination
or path do not support ECN. Finally, if an ABE sender’s
flow traverses a bottleneck whose AQM instantiates a
relatively deep queue instead, then either packet losses

or successive ECN marks will still ensure the sender
continues to back off appropriately.

B. ECN past and future

RFC 3168 [41] defined ECN in 2001. It describes
a simple marking method, replacing AQM dropping
with ECN marking. Since then it has been widely
implemented in hosts, but is not widely used [44]. This
can partly be attributed to early experiences showing
incorrect behaviour by a subset of middleboxes resulted
in failure of ECN-enabled TCP connections to 8% of
web servers tested in 2000 [36]. This reduced to < 1%
of web servers tested in 2004 [32], yet in 2011 there
were still a non-trivial number of paths mangling the
ECN field in the IP header [9].

In 2014, extensive active measurements showed the
majority of the top million web servers provided server-
side ECN negotiation [44]. Wide client-side support
for ECN-fallback means only 0.5% of websites suffer
additional connection setup latency when fallback per
RFC 3168 is correctly implemented.

Baker and Fairhurst [8] recently recommended de-
ployment of AQM with ECN within the Internet. ECN-
marking is now supported by default in CoDel and PIE
within the Linux kernel and is enabled by default in
router firmware, e.g., CeroWRT [1].

In light of increased interest in AQM, ABE provides
a new incentive to deploy and enable ECN more widely.
ABE is a new method to replace the simple TCP re-
sponse defined in [41]. ECN support has matured to the
point where there is little downside in doing so.

C. Paper structure

The rest of this paper is structured as follows. We mo-
tivate ABE in Section II, showing the inter-relationship
between TCP backoff, bottleneck buffer size and path
BDP, and demonstrating how TCP degrades over CoDel
and PIE bottlenecks at plausible domestic and interna-
tional round-trip times (RTTs). ABE is introduced in
Section III. Section IV evaluates ABE using a combi-
nation of simulations and real-world experiments; both
Linux and FreeBSD systems, considering CUBIC and
NewReno congestion controllers, were used, which cov-
ers the majority of TCP variants actually deployed in
the Internet. Related work is reviewed in Section V.
Section VI concludes with a discussion of potential
issues and ideas for future work.

II. PROBLEM AND BACKGROUND

TCP congestion control [22] is based on an Additive
Increase, Multiplicative Decrease (AIMD) mechanism

CAIA Technical Report 150710A July 2015 page 2 of 15

for controlling the congestion window. A decrease factor
β = 0.5 has commonly been used in the congestion
avoidance phase. However, the convergence of AIMD
is due to its multiplicative behaviour, irrespective of the
value of the backoff factor β; there are no major reasons
why the value should be 0.5, and [22] states this choice
was a heuristic, conservative one.

The choice of β may have implications in terms of
link utilisation. To better understand the problem with
AQMs enforcing small queues on long-RTT paths, we
revisit how backoff factor, path characteristics and buffer
space are intertwined.

A. TCP backoff, path characteristics and link utilisation

Consider a bottleneck link with capacity C and Drop-
Tail buffer of size b, traversed by a single long-lived
TCP flow. The BDP of the path, C × RTT, will be
denoted by δ. We assume that: (a) the TCP flow is
operating in congestion avoidance, following a linear
additive-increase function with parameter α = 1, and
multiplicative decrease factor β ∈ (0, 1); (b) transmis-
sion is not limited by a small TCP receiver window.
Bottleneck utilisation will be denoted as U .

Using an argument similar to [6, § 2] but with an
arbitrary value for β, the only way to ensure U = 1 is
with a minimum amount of buffering given by:

b ≥ δ 1− β
β

. (1)

With β = 0.5, (1) yields the well-known rule-of-thumb
for buffer sizing: b ≥ δ. The “sweet spot” corresponds
to: b = δ; larger b merely results in a longer queue.

Eq. (1) can be rewritten as

β ≥ δ

b+ δ
, (2)

where it becomes obvious that, for given path character-
istics (δ), a shallower buffer (smaller b) requires a larger
β in order for (2) to hold, i.e., to sustain U = 1.

Figure 1 illustrates the U < 1 case, i.e., when (1)-(2)
do not hold. Buffering permits cwnd to grow up to a
maximum value of δ + b before packet loss occurs.

Since we assume that α = 1, cwnd increases by one
unit per RTT from β(b + δ) to b + δ, the sawtooth has
a slope of 1 and duration between two loss events of
(1− β) · (b+ δ). The maximum amount of data D that
can be sent in one cycle over the link is given by the
area below δ:

D = δ(1− β)(b+ δ) (3)

link capacity
(C.2Tp)

time

Under-utilized portion of the link capacity

buffering (b)

CWmax

β.CWmax

Fig. 1. TCP’s sawtooth behaviour.

 7.6
 7.8

 8
 8.2
 8.4
 8.6
 8.8

 9
 9.2
 9.4
 9.6
 9.8
 10

 10 20 30 40 50 60 70 80 90 100
T

hr
ou

gh
pu

t (
M

bp
s)

Buffer Size (pkts)

BDP

2/3 BDP

3/7 BDP

1/4 BDP

1/9 BDP

β=0.5
β=0.6
β=0.7
β=0.8
β=0.9

Fig. 2. Throughput (Single NewReno flow @ 10 Mbps,
RTT=100 ms) (model and simulation).

Dark triangles correspond to periods where cwnd < δ
(i.e., the TCP sender cannot “fill the pipe”). The buffer
is empty, the link is under-utilised, and the amount of
data not sent in a cycle corresponds to the area ∆cwnd<δ

of a dark triangle:

∆cwnd<δ =
(δ − β(b+ δ))2

2
(4)

Therefore, we can compute U as:

U = 1− ∆cwnd<δ

D
= 1− (δ − β(b+ δ))2

2δ(1− β)(b+ δ)
(5)

Considering both the cases U = 1 and U < 1, the
throughput, that is ψ = C × U , is given by:

ψ =

{
C if b ≥ δ 1−β

β ,

C
(

1− (δ−β(b+δ))2
2δ(1−β)(b+δ)

)
otherwise.

(6)

For b = 0 and β = 0.5, this yields ψ = 3
4C, in line

with the model in [5]. The relation between utilisation,
backoff factor and buffer size is illustrated in Figure 2,
showing values given by both (6) and simulation results.

It also worth noting that (6) holds for all ranges of
bottleneck link capacity (C) since the utilised fraction

CAIA Technical Report 150710A July 2015 page 3 of 15

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●●
●

●

●

●

●●

●

●

●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●

T
hr

ou
gh

pu
t (

M
bp

s) ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●●
●

●

●

●

●●

●

●

●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●

20 40 80 160 240RTT (ms)

10

12

14

16

18

20

No_ECN ECN

(a) CoDel throughput degrades at higher RTT.

●
●

●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

T
hr

ou
gh

pu
t (

M
bp

s)

●
●

●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

20 40 80 160 240RTT (ms)

10

12

14

16

18

20

No_ECN ECN

(b) PIE throughput degrades at higher RTT.

Fig. 3. Performance through CoDel and PIE bottlenecks is signifi-
cantly degraded over high-RTT paths (real-life test).

of the link capacity (U) derived in (5) is independent of
C.

B. Using AQM with a large path RTT

AQM mechanisms try to reduce the queuing delay
incurred when DropTail buffers are sized according to
(1) (i.e., b ≥ δ when β = 0.5). CoDel’s target delay and
PIE’s Ttarget parameters control how aggressively they
mark or drop packets based on the sojourn time. Small
values of target delay or Ttarget do reduce delay but also
reduce TCP throughput when the RTT is large [24], [42].

The problem is illustrated by Figure 3, showing the
throughput of a single CUBIC flow through a 20 Mbps
bottleneck using CoDel or PIE, both with and without
ECN, as a function of the path’s intrinsic RTT1; simu-
lated time was 90 s. Increasing path RTT has a detrimen-
tal impact on a CUBIC flow’s throughput through both
CoDel and PIE bottlenecks2. ECN on its own provides
limited assistance; simply (naively) replacing drops by
marks does not address the problem.

An explanation lies in the way CoDel and PIE both
aim for a buffer of 5-20 ms (see § IV-A for the AQM
parameters used). For a given bottleneck rate, this target
equates to a shallow buffer (b) relative to the BDP (δ) of

1CUBIC’s use of β = 0.7 does not alter the key point.
2Using DropTail, CUBIC achieves 100% throughput under the

same circumstances, albeit with a well-known spike in queuing delay.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50 100 150 200 250 300

B
ot

tle
ne

ck
 u

til
iz

at
io

n
in

 C
on

ge
st

io
n

A
vo

id
an

ce

RTT (ms)

(a) CoDel

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50 100 150 200 250 300

RTT (ms)

Sim. β=0.5
Model β=0.5

Sim. β=0.7
Model β=0.7

Sim. β=0.9
Model β=0.9

(b) PIE

Fig. 4. Model vs. simulation (NewReno @ 20 Mbps); error bars not
shown for CoDel because fluctuations were negligible.

an entire path. As path RTT increases, the condition in
(1) is increasingly violated and utilisation trends below
100%.

Figure 4 compares the median bottleneck utilisation
generated both by simulation and Eq. (5) for a TCP
NewReno flow in congestion avoidance over an AQM-
controlled, 20 Mbps bottleneck with various RTTs and
β. Error bars represent standard deviation.

The results are based on the average sending rate over
five congestion cycles (saw-teeth) of a simulated flow
that lasted 100 cycles. CoDel exhibited negligible varia-
tions over multiple runs (too small for error bars), while
PIE’s probabilistic nature created noticeable variations.
At high RTTs with β = 0.9 PIE would sometimes trigger
multiple consecutive backoffs immediately after slow
start (dropping cwnd to 37% of δ when RTT=300 ms).

The model (Eq. (5)) was applied by tracking the queue
length at the time of packet loss (i.e., the largest queue
length that CoDel and PIE gave to the flow in each cycle)
and taking the median of these values as b.

Figure 4 illustrates that the AQMs seem to roughly
behave like a shallow DropTail queue: the utilisation
drop with large RTTs is an expected outcome of the
small queue granted to the TCP flow, and a larger β is
needed to increase utilisation.

C. Selecting the right backoff factor

TCP will clearly benefit from larger β when con-
fronted by shallow queues. But we cannot simply raise β
without regard to network conditions. A TCP flow risks
creating a significant standing queue if it uses high β on
a path whose bottleneck queue is large.

CAIA Technical Report 150710A July 2015 page 4 of 15

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60

cw
nd

 (
pa

ck
et

s)

Time (sec)

Capacity limit

RTTmin 213ms

RTTmin 283ms

Queue length: 1/2 BDP
Queue length: 1 BDP

Fig. 5. CUBIC generates a standing queue.

Figure 5 illustrates the issue with Linux CUBIC
(using β = 0.7 since Linux kernel 2.6.25 in 2008)
over two sizes of DropTail queue. With a bottleneck
rate of 10 Mbps and base RTT of 200 ms, a queue
of 1/2×BDP never completely drains whilst a queue
of 1×BDP experiences significant and sustained extra
delay.

We therefore need a way for end systems to distin-
guish between the cases of a potentially large DropTail
queue and the often much smaller average queue that is
under control of an AQM mechanism.

III. SOLUTION

We propose “Alternative Backoff with ECN” (ABE),
a mechanism in which TCP backs off with a new value
βecn > β instead of the default β in response to an
ECN mark, and the back-off in response to loss remains
unchanged.

ABE differs from the recommendation in [41], which
is that ECN marks should be treated the same way
as congestion drops (i.e., same reaction to both at the
TCP sender). An ABE sender’s behaviour is based on
the assumption that an ECN mark is only generated by
an AQM mechanism and therefore the queue is likely
to be significantly smaller than in case of loss (if this
assumption is wrong, another ECN mark or a packet
loss is likely to occur, causing TCP to back off further).

The analysis in § II focused on motivating the use
of ABE during congestion avoidance, however, having a
different response to marks at the end of slow start can
also be beneficial, as we will see next.

A. ABE in Slow Start

TCP doubles cwnd every RTT during the slow start
phase and enters the congestion avoidance phase after
the first packet loss or mark [41] by halving cwnd (using

β=0.5).3 The rationale behind this is to fall back to the
last cwnd that successfully transmitted all its data.

Depending on how a certain multiple of TCP’s initial
window is aligned with the path BDP and the queue
length, slow start can exceed the available capacity with
an overshoot that may be as large as almost one BDP
or as small as one packet. While halving the rate is
the only way to reliably terminate the overshoot of one
flow within one RTT, it can create significant under-
utilisation, depending on how large that overshoot was.
This problem is more pronounced for short flows such
as common web traffic which may terminate with a
cwnd of just above 0.5×BDP, shortly after slow start.
Recent trends [2] show a substantial increase in the
length of short flows, increasing the probability that
they terminate not during slow start but rather shortly
after it, during the congestion avoidance phase, making
the impact of the choice βecn = β in slow start more
profound (§ IV-D). Also, SPDY and HTTP/2 [10], [43]
reuse existing connections for multiple objects, further
increasing the probability of web flows to leave slow
start.

This issue is depicted in Figure 6. The solid lines
illustrate two single NewReno flows, with intrinsic RTTs
of 160 ms and 240 ms, when βecn = β = 0.5 is used. The
flow with RTT=240 ms suffers from under-utilisation:
after slow-start overshoot, a small cwnd results in a slow
increase during congestion avoidance. The flow with
RTT=160 ms was luckier after slow start, but then the
default βecn wastes capacity in congestion avoidance.

Dashed lines in Figure 6 show the same scenarios
with βecn = 0.9. In both cases, cwnd is just below the
BDP soon after slow start, which prevents the bottleneck
from severe under-utilisation, reducing the completion
time of short flows such as the ones common in web
traffic. However, a large overshoot results in cwnd being
reduced in multiple steps, which increases the latency
over multiple RTTs after slow-start (however, the number
of these RTTs is bounded by logβecn

(0.5)).
In § IV-D we evaluate the costs versus benefits of us-

ing a higher βecn at the end of slow start and demonstrate
that its gains are significant.

IV. EVALUATION

The experimental setup for both simulations and real-
world tests is described in detail in Appendix A.

3This is the case for both NewReno and CUBIC. While the latest
implementation of CUBIC includes Hystart [20] (a mechanism that
tries to prevent slow start’s overshoot by examining the delays of
ACK arrivals), if an overshoot happens it causes cwnd to be halved.

CAIA Technical Report 150710A July 2015 page 5 of 15

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0

Time (s)

cw
nd

 (
pa

ck
et

s)

RTT, βecn

160ms,0.5
240ms,0.5
160ms,0.9
240ms,0.9

160ms X 20Mbps capacity

240ms X 20Mbps capacity

Fig. 6. The effect of overshoot at the end of slow-start for βecn =
{0.5, 0.9} @ 20 Mbps (real-life test).

A. AQM algorithms and parameters

Both CoDel and PIE were used in all experiments. We
did not run tests with FQ CoDel [21] because it shares
some of CoDel’s issues, and it may introduce other issues
that are beyond the scope of this paper (e.g., problems
with classifying flows due to use of IPsec or tunnels such
as VPNs).

For CoDel and PIE, in all experiments, we used the
code that was shipped with Linux 3.17.4 and the ns-2
code that is publicly available, and applied the Linux
default parameters everywhere. CoDel’s interval and
target were set to 100 ms and 5 ms, respectively, while
PIE’s target and tupdate were set to 20 ms and 30 ms.
PIE’s alpha is 0.125 and beta is 1.25. A parameter called
max burst is described in [39], with a default value of
150 ms. This parameter allows bursts of a given size
to pass without being affected by PIE’s operation, is
100 ms by default in the simulation code and is hard
coded as such in the Linux implementation. bytemode
was turned off in Linux and accordingly queue in bytes
was disabled in ns-2.

None of the specifications mention the maximum
physical queue length – this is not a parameter of the
AQM itself. In the Linux man pages, limit is 1000
packets.

In Linux kernel 3.17.4, packets on ECN-enabled flows
are dropped rather than marked when PIE’s drop/mark
probability exceeds 10%, yet we could find no published
literature providing a rationale for such behaviour. One
might argue it provides a defense against non-responsive,
ECN-enabled flows. However, here we recommend dis-
abling it due to its detrimental impact on well-behaved
ECN-enabled flows4.

4See Appendix B for experiments supporting this choice.

0 50 100 150 200 250 300

0
10

20
30

40
50

60
70

80

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.6
0.7
0.75
0.8

0.85
0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

5
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 50 100 150 200 250 300

RTT=400ms

(a) CoDel

0 50 100 150 200 250 300

0
20

50
80

11
0

14
0

17
0

20
0

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.6
0.7
0.75
0.8

0.85
0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

5
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 50 100 150 200 250 300

RTT=400ms

(b) PIE

Fig. 7. Improvement over βecn=0.5 (bytes departed) for a single
NewReno flow @ 10 Mbps.

B. Latency vs. throughput for a single flow

Finding the right βecn value requires investigating
a trade-off between latency and throughput. Generally,
the larger the multiplication factor (β) the higher the
throughput, but also the latency. However, the ECN
congestion signal is a notification of the presence of an
AQM mechanism on the bottleneck. The state-of-the-art
AQM schemes already mark at low buffering thresholds,
limiting the latency increase that can be caused by a
larger than standard β.

We investigated this trade-off for different βecn values
for a single long-lived TCP NewReno flow using simu-
lations with CoDel and PIE, and for a set of RTT values
(100 ms, 200 ms and 400 ms) as presented in Figures 7
and 8.

Figure 7 shows that significant gains in throughput
can be achieved as βecn increases with both PIE and
CoDel, especially during the period right after slow-start
and for larger RTTs. Moreover, a higher βecn improves
the throughput of longer transfers compared to βecn=0.5,
especially on large RTT paths—e.g. with an RTT of
400 ms, by 13%, 24% and 31% (CoDel) and 9%, 16%
and 37% (PIE) for βecn values of 0.7, 0.85 and 0.95,
respectively.

Figure 8 shows the CDF of queuing delay for the

CAIA Technical Report 150710A July 2015 page 6 of 15

0 2 4 6 8 10

0
20

40
60

80
10

0
RTT=100ms

C
D

F
 (

%
)

βecn

0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 2 4 6 8 10

RTT=200ms

Queueing Delay (ms)
0 2 4 6 8 10

RTT=400ms

(a) CoDel

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0

RTT=100ms

C
D

F
 (

%
)

βecn

0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 5 10 15 20 25 30 35

RTT=200ms

Queueing Delay (ms)
0 5 10 15 20 25 30 35

RTT=400ms

(b) PIE

Fig. 8. CDF of queuing delay for a single NewReno flow @
10 Mbps.

scenario of Figure 7. CoDel is able to keep queuing delay
close to its default target delay parameter of 5 ms for all
ranges of βecn (Figure 8(a)). In case of PIE (Figure 8(b)),
the latency distribution becomes somewhat more heavy-
tailed with increasing βecn, although the 90% percentile
stays below PIE’s default target of 20 ms for the range
0.5 ≤ βecn ≤ 0.85. This is due to the burst-absorbing
and random nature of PIE in contrast to the deterministic
dropping policy of CoDel [25].

When RTT=100 ms, while CoDel adds 1 ms/4 ms to
the median/90th percentile for βecn=0.95 compared to
βecn=0.5, PIE adds 18 ms/11 ms to the median/90th per-
centile for the same scenario which is slightly significant
relative to the intrinsic RTT. However, with βecn of
0.7 and 0.85, this can be reduced to 2 ms/3 ms and
10 ms/6 ms respectively.

We can deduce that for a NewReno flow, a βecn value
in the range 0.7 ≤ βecn ≤ 0.85 would be an optimal
trade-off between latency and throughput.

We also evaluated the above scenarios for a single
CUBIC flow as presented in Figure 9 and Figure 10.
Similar trends as for NewReno can be observed with
CUBIC with regards to the achieved throughput gain for
the period after slow-start and short flows for 0.7 ≤ βecn
although with a less profound gain due to the already

0 50 100 150 200 250 300

−
10

0
10

20
30

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.5
0.6
0.75
0.8

0.85
0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

7
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 50 100 150 200 250 300

RTT=400ms

(a) CoDel

0 50 100 150 200 250 300

−
20

−
10

0
10

20
30

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.5
0.6
0.75
0.8

0.85
0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

7
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 50 100 150 200 250 300

RTT=400ms

(b) PIE

Fig. 9. Improvement over βecn=0.7 (bytes departed) for a single
CUBIC flow @ 10 Mbps.

aggressive nature of CUBIC’s additive increase and
βecn=0.7 (Figure 9). The trend for the queuing delay
is also similar to that of NewReno (Figure 10).

In terms of long-term throughput the exception is only
for the scenario of CoDel on a path with large RTT
where, surprisingly, an improvement of 5% and 10% can
be gained by choosing βecn of 0.5 and 0.6 instead of the
default 0.7 and using any value of 0.75 ≤ βecn ≤ 0.8
will decrease the long-term throughput. However using a
higher than default βecn will always lead to a better gain
in throughput for all other RTT scenarios with CoDel
(Figure 9(a)). In case of PIE, the trend in all scenarios
is consistent with NewReno gaining 14% and 19% over
the default βecn for 0.85 and 0.95 values respectively
(Figure 9(b)).

Choosing these βecn values comes at the cost of an
increase in the median/90th percentile of queuing delay
equal to 6 ms/3 ms (PIE, βecn=0.85) and 12 ms/5 ms
(PIE, βecn=0.95) and 1 ms/1 ms (CoDel, βecn=0.85) and
3 ms/2 ms (CoDel, βecn=0.95) when RTT=100 ms (Fig-
ure 10), which is negligible compared to the gain in
throughput.

We can deduce that for a CUBIC flow, a βecn value
in the range of 0.85 ≤ βecn ≤ 0.95 would be an optimal
trade-off between latency and throughput.

CAIA Technical Report 150710A July 2015 page 7 of 15

0 2 4 6 8 10

0
20

40
60

80
10

0
RTT=100ms

C
D

F
 (

%
)

βecn

0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 2 4 6 8 10

RTT=200ms

Queueing Delay (ms)
0 2 4 6 8 10

RTT=400ms

(a) CoDel

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0

RTT=100ms

C
D

F
 (

%
)

βecn

0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 5 10 15 20 25 30 35

RTT=200ms

Queueing Delay (ms)
0 5 10 15 20 25 30 35

RTT=400ms

(b) PIE

Fig. 10. CDF of queuing delay for a single CUBIC flow on @
10 Mbps.

C. Bulk transfers

Figure 11(a) illustrates how increasing βecn (0.5, 0.6,
0.7 and 0.8) allows a FreeBSD NewReno flow to recover
some of the throughput otherwise lost when running
through a CoDel bottleneck at a large RTT. At the
same time, Figure 11(b) shows that the resulting RTT
is basically unaffected.

We also investigated how βecn affects the time that
similar flows need to converge to a fair rate allocation.
Intuitively, one might believe that using a larger βecn
increases the time needed by a new flow to reach its
fair share because already converged flows would give
up less of their bandwidth when they hit the capacity
limit. This is not necessarily correct. Simplifying, if we
call the rates (or congestion windows) of two flows X
and Y , perfect fairness is achieved if their ratio X/Y
is 1. Then, if a congestion event affects both flows at
the same time, this ratio becomes X

βecn
∗ βecn

Y , rendering
the value of βecn irrelevant for convergence to fairness.
The ratio will obviously become different if only one
flow is affected – but by this argument, convergence to
fairness should mainly depend on how often each flow
is affected, and not on how often congestion happens
in total. In the absence of a per-flow scheduler like
FQ CoDel, this depends on how queuing dynamics

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T
hr

ou
gh

pu
t (

M
bp

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

40
0.5

80
0.5

160
0.5

240
0.5

40
0.6

80
0.6

160
0.6

240
0.6

40
0.7

80
0.7

160
0.7

240
0.7

40
0.8

80
0.8

160
0.8

240
0.8

RTT (ms)
βecn

5

10

15

20

(a) Increased βecn improves throughput at higher RTTs

R
T

T
 (

m
s)

40
0.5

80
0.5

160
0.5

240
0.5

40
0.6

80
0.6

160
0.6

240
0.6

40
0.7

80
0.7

160
0.7

240
0.7

40
0.8

80
0.8

160
0.8

240
0.8

RTT (ms)
βecn

0

50

100

150

200

250

(b) Increased βecn causes insignificant change in median RTT

Fig. 11. Increasing βecn (single NewReno flow over CoDel
bottleneck @ 20 Mbps).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

Convergence time / default (βecn 0.7)

βecn 0.5
βecn 0.6

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(a) CoDel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

Convergence time / default (βecn 0.7)

βecn 0.5
βecn 0.6

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(b) PIE

Fig. 12. Ratio of convergence time to a test with default βecn,
CUBIC.

affect flow synchronization, which may itself not depend
heavily on the value of βecn used by all flows.

We measured convergence by calculating Jain’s Fair-
ness Index [23] of the cumulative number of bytes
transferred per flow from the time a new flow entered,
and noting the time it took until this index reached a
threshold (which, for the graphs presented, was set to
0.95). We tested using two, four and ten flows with
equal RTTs, starting with a delay of 30 seconds in
between, and did not find any consistent improvement or
disadvantage from changing βecn. Therefore we opted to
explore the parameter space with a set of more controlled
experiments of only two flows, using different capacity

CAIA Technical Report 150710A July 2015 page 8 of 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

Convergence time / default (βecn 0.5)

βecn 0.6
βecn 0.7

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(a) CoDel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

Convergence time / default (βecn 0.5)

βecn 0.6
βecn 0.7

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(b) PIE

Fig. 13. Ratio of convergence time to a test with default βecn,
NewReno.

and RTT values for every test (all combinations of 1,
5, 10, 20, 40, 100 Mbps and 10, 20, 40, 60, 80, 160,
240, 320 ms). Figures 12 and 13 show the convergence
time from 485 90-second two-flow experiments (97 for
every beta value, including 0.5; we also tested values
0.55, 0.65, 0.75, 0.85 and 0.95 with similar results and
omit these lines for clarity) each for NewReno and
CUBIC. The simulation time was long enough to ensure
convergence in all experiments.

Convergence time is shown as the ratio of the time
taken in an experiment with similar conditions but the
default behaviour of CUBIC (βecn = 0.7) and NewReno
(βecn = 0.5), respectively, i.e. a value of 2 means that it
took twice as long for a flow to converge than the default
case. The distribution is heavy-tailed because there were
some extreme outliers – not only very large times for
the depicted βecn values, but also very small ones for
βecn = 0.5. Some were caused by the initially explained
scheduling (one flow was simply “unlucky” because it
was perpetually affected by a congestion mark). In other
cases, the default flow saw slow start ending at just the
right value, creating an outlier for all non-default values
of βecn.

Unsurprisingly, a significantly lower βecn than CU-
BIC’s default consistently increases its convergence time.
All βecn values can sometimes cause even faster conver-
gence than the default, but for CUBIC no value of βecn
could significantly improve it (generally, less than half of
the cases converged faster than the default case). This is
somewhat different with NewReno, where at least with
PIE the value βecn = 0.75 seemed to have consistently
improved convergence.

The point of this evaluation was to see if convergence
time would be significantly (and consistently) harmed by

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 vs 9 3 vs 7 5 vs 5 7 vs 3 9 vs 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 ra

tio
(E

C
N

 fl
ow

s
/ n

oE
C

N
 fl

ow
s)

noECN flows vs # ECN flows

βecn=0.5
βecn=0.6

βecn=0.7
βecn=0.75

βecn=0.8
βecn=0.85

βecn=0.9

Fig. 14. Normalized throughput ratio between two groups of 10
flows @ 10 Mbps with a CoDel queue using several RTTs. Lines
pass through the arithmetic mean, dots indicate the median.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 vs 9 3 vs 7 5 vs 5 7 vs 3 9 vs 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 ra

tio
(E

C
N

 fl
ow

s
/ n

oE
C

N
 fl

ow
s)

noECN flows vs # ECN flows

βecn=0.5
βecn=0.6

βecn=0.7
βecn=0.75

βecn=0.8
βecn=0.85

βecn=0.9

Fig. 15. Normalized throughput ratio between two groups of 10
flows @ 10 Mbps with a PIE queue using several RTTs. Lines pass
through the arithmetic mean, dots indicate the median.

changing βecn. Our results let us conclude that this is not
the case.

Next, we investigated the long-term impact that flows
with a large βecn value can have on legacy traffic that
does not support ECN. To study the worst case, we tested
CUBIC flows with various βecn values in competition
with NewReno flows that do not support ECN. Figures
14 and 15 show the throughput ratio for various com-
binations of 10 flows across a 10 Mbps bottleneck link
using CoDel and PIE. The plotted value was normalized
by weighting it with the number of flows in each group.
Each test lasted five minutes, of which we cut the first
two seconds to remove slow start. We carried out every
test 3 times, using RTTs of 20, 80, 160 and 320 ms;
with the largest RTT, this duration included 133 TCP

CAIA Technical Report 150710A July 2015 page 9 of 15

0

5

10

15

20

25

 600

 800

 1000
 1200
 1400
 1600
 1800
 2000

R
ed

uc
ti

on
 in

 F
lo

w
 C

om
pl

et
io

n
T

im
e

(%
)

File Size (KB)

CoDel

0

5

10

15

20

25

 600

 800

 1000
 1200
 1400
 1600
 1800
 2000

File Size (KB)

CoDel PIEβecn=0.6
βecn=0.7
βecn=0.75
βecn=0.8
βecn=0.85
βecn=0.9
βecn=0.95

Fig. 16. Percentage reduction in FCT (compared to using βecn =
0.5) with different flow sizes over a 10 Mbps link with 100 ms base
RTT

sawteeth.
The difference between CoDel and PIE is marginal,

and generally a larger βecn value increased the through-
put ratio, as could be expected. Our goal was to assess
the potential “danger” of upgrading βecn on the Internet.
The increase in the throughput ratio is limited to a factor
of 3 for the already quite extreme value of βecn=0.9.
The expected throughput difference is about double for
βecn=0.85, and smaller values seem to be even closer
together. This is CUBIC, where βecn=0.8 has been used
on the Internet for several years and βecn=0.7 is now the
default value in the Linux kernel.

D. Short flows

Much of the Internet’s traffic consists of short flows
(i.e. web traffic, e-mails etc). Recent trends show that the
average web page size is increasing but most web flows
still have a size of less than 2 MB [2]. So flows that
do not terminate during slow-start may terminate shortly
after, and the value of βecn at the end of slow-start will
have an impact on the load time of the corresponding
pages.

We simulated one TCP NewReno (Initial Window=3)
flow over a 10 Mbps bottleneck with different flow sizes
ranging from 500 KB to 2000 KB and a base RTT of
100 ms. Figure 16 shows the percentage reduction in
Flow Completion Time (FCT) for different βecn values
compared to using βecn=0.5. TCP flows started randomly
within the first second of simulation time and the results
were averaged over 1000 different seed values.

According to Figure 16, there is a reduction in FCT
when the file size is larger than 700 KB for both PIE
and CoDel. A flow with a size of less than 700 KB ends

during or just after slow-start (for the selected link speed
and RTT). Therefore changing βecn has no impact on the
performance of very small files.

However, when a file is larger than 700 KB it may
experience one or more cwnd reductions after slow-start
overshoot. These consecutive reductions (up to one per
RTT) slow down the sending rate to match the link
speed. In Figure 17, PIE (target delay=20 ms) reduces the
cwnd four times (from 448 packets to 29 packets) with
βecn=0.5 (the cwnd is reduced suddenly as opposed to a
smooth reduction which is shown in the figure with ns-2).
This quickly drains the standing queue developed during
the exponential growth. With βecn=0.9, a larger standing
queue is created, and it takes only three reductions (up
to 324 packets) until the file transfer is completed. When
βecn is changed from 0.5 to 0.9 with CoDel (target
delay=5 ms), it results a number of cwnd reductions
from 2 (from 190 packets to 49 packets) to 8 (up to
84 packets).

In both schemes βecn=0.5 brings the cwnd much below
the target link rate (the BDP of 83 packets), resulting in
poor link utilisation with 100 ms RTT. This is particularly
significant with large RTTs where the cwnd growth rate
becomes very slow. Small reductions with a large βecn
bring the cwnd more precisely to the bottleneck rate,
resulting in better bottleneck utilisation. This yields a
better FCT for short flows with a moderate file size.

In the case of Figure 17, it reduces FCT by 300 ms
with PIE and by 570 ms with CoDel. However, the
increased number of ECN-marked packets with βecn=0.9
due to a larger standing queue does not have a negative
impact on FCT when used with an ECN-capable trans-
port.

The improvement in FCT with CoDel is greater for
file sizes below 2000 KB compared to PIE. CoDel over-
shoots less than PIE and marks earlier, creating a smaller
standing queue. As a result, a large βecn causes less
improvement in PIE than in CoDel.

We simulated the same scenario for different RTTs
(100 ms, 200 ms and 400 ms) keeping the file size at
2000 KB. In Figure 18, PIE shows a better performance
for the whole range of RTTs. PIE also randomises
packet drops, making FCT improvement consistent. The
improvement of PIE saturates at βecn near 0.75.

With CoDel, the performance is not consistent for all
RTTs if flow is terminated after the slow-start. It shows
the same number of cwnd reductions for all different
seed values due to the deterministic behaviour of packet
drops with a single flow. Because one reduction with
βecn=0.5 is more significant than with βecn=0.9, results

CAIA Technical Report 150710A July 2015 page 10 of 15

0

20

40

60

80

100

120

 0 0.5 1 1.5 2 2.5 3

A

CoDel: βecn=0.5

ECN

 0 0.5 1 1.5 2 2.5 3
0

50

100

150

200 A

CoDel: βecn=0.5 CoDel: βecn=0.9

0

100

200

300

400

 0 0.5 1 1.5 2 2.5 3

B
ot

tl
en

ec
k

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (s)

CoDel: βecn=0.5 CoDel: βecn=0.9

PIE: βecn=0.5

 0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

T
C

P
C

on
ge

st
io

n
W

in
do

w
 (

P
ac

ke
ts

)

Time (s)

CoDel: βecn=0.5 CoDel: βecn=0.9

PIE: βecn=0.5 PIE: βecn=0.9

Fig. 17. Bottleneck queue and cwnd behaviour with one TCP
NewReno flow. A large βecn results in precise cwnd adaptation (file
size 2000 KB)

 0

 5

 10

 15

 20

 25

 30

0.60
0.65

0.70
0.75

0.80
0.85

0.90
0.95

R
ed

uc
ti

on
 in

 F
lo

w
 C

om
pl

et
io

n
T

im
e

(%
)

βecn

CoDelRTT=100ms

RTT=200ms

RTT=400ms

0

5

10

15

20

25

30

0.60
0.65

0.70
0.75

0.80
0.85

0.90
0.95

βecn

CoDel PIE

Fig. 18. FCT reduction performance with three (100 ms, 200 ms,
400 ms) different RTTs (file size 2000 KB)

are not consistent with CoDel depending on how many
reductions have occurred and depending on the mismatch
in cwnd under each RTT. Therefore to minimise this
impact we randomized the RTT by +/-10 ms for each
selected RTT in our simulations.

V. RELATED WORK

Since its inception, ECN has attracted much interest
in the research community. One obvious question that
papers have tried to answer was: can we get “more
bang for the bits”? Given that there are two ECN bits
in the IP header, they can be re-defined to distinguish
between multiple levels of congestion [15], [47], or used
as defined, but marked with a different rule that must be
known to the end hosts [45], [40]. LT-TCP [18] proposed
using ECN to distinguish between random packet losses
on wireless links and congestion; NF-TCP [7] suggests

using it as a means to detect congestion early and
back off more aggressively than standard TCP, thereby
reducing the delay caused for competing applications.
The potential applications are broad – yet, none of these
methods were designed to interoperate with the currently
deployed mix of standards-compliant ECN-capable and
-incapable routers and end hosts such that it could be
gradually introduced in the Internet.

“Congestion Exposure” (ConEx) [13], which is based
on Re-ECN [12], uses traffic shapers to hold users
accountable for the congestion they cause on the whole
path (as opposed to giving most capacity to the host
running the most aggressive congestion control). ConEx
is gradually deployable, but needs significant changes
to the infrastructure (hosts must be modified to give
information to the network, traffic shapers must be
deployed).

Some schemes were defined for use within a pre-
configured operator domain. In “Pre-Congestion Noti-
fication” (PCN) [33], the ECN bits are used to inform
DiffServ ingress routers of incipient congestion to better
support admission control. Data Center TCP (DCTCP)
[4] is another proposal to update TCP’s ECN response.
This has been shown to offer measurable benefits when
network devices update their ECN marking behaviour.
Only the software in hosts needs to change for DCTCP—
deployment in routers can be achieved via an unusual
configuration of RED to operate on the instantaneous
queue length. However, in contrast to our proposal, this is
only currently considered safe when all network devices
along a path use the updated marking rules, and hence is
only enabled by default for network paths with an RTT
less than 10 ms [11], the primary reason why this has
only been specified for Data Center usage.

A recent IETF presentation [28] discussed the pos-
sibility of gradually introducing a DCTCP-like scheme
in the Internet; this is very close in spirit to the work
presented in this paper. However, just like DCTCP, it
requires a change to the receiver to more precisely
feed back the number of ECN marks at a greater
precision than today (i.e., more than one signal per
RTT). Incorporating such feedback in TCP is ongoing
IETF work [27]. Because marking the instantaneous
queue length provides faster feedback, such an approach
should theoretically be expected to perform better than
the marking that we propose, provided it can also be
combined with a sender behaviour that strikes the correct
balance between efficiency across updated routers and
compatibility across old routers. We regard both this
paper and [28] as necessary investigations of the problem

CAIA Technical Report 150710A July 2015 page 11 of 15

space before a decision can be made regarding an update
of the ECN standard.

Compared to DCTCP, our response to ECN is still
based on a reduction each RTT, rather than per marked
segment, but our method releases the network from the
deployment pre-requisites of DCTCP. However, we note
that a network device configured for DCTCP can also
provide appropriate marking for our method, as can
other router marking policies. This lack of sensitivity
to marking removes a key obstacle to ECN deployment.

The idea of using values of β 6= 0.5 is at the basis of
proposals for improving performance of long-lived TCP
flows in high-speed networks. CUBIC is one example
of such congestion controllers tailored to high-speed
links, but other similar schemes can be found in the
literature. For instance, H-TCP [30] uses β ∈ (0.5, 0.8),
and the value of β is adapted as a function of measured
minimum and maximum RTTs. In a similar vein, after
loss is experienced TCP Westwood [14] sets cwnd to
the product of the estimated available capacity and the
lowest observed RTT—thus, the equivalent β is variable
and dependent on network conditions. High-Speed TCP
(HSTCP) [16] adapts β in the range (0.5, 1), with β
taking higher values for larger cwnd above a threshold.
In these proposals, the rationale behind the choice of
a larger β is to allow for a faster recovery of cwnd
after loss5; something that, with “standard” congestion
control, can take many RTTs over paths with large BDP.

VI. CONCLUDING REMARKS

This paper proposes and motivates Alternative Backoff
with ECN (ABE), a simple change in a TCP sender’s
reaction to observing ECN congestion marks. We show
that ABE can bring important performance improve-
ments, with a low cost in terms of implementation effort.
ABE achieves this performance using the ECN marking
specified in RFC 3168 for routers/middleboxes and the
TCP receiver. It also defaults to a conservative behaviour
whenever ECN is not supported along the path, ensuring
it is incrementally deployable.

As our results in § IV show, the choice of βecn

is important but not overly critical, in the sense that
ABE seems robust and offers performance improvements
across a range of values of βecn. Setting βecn ∈ [0.7, 0.85]
for NewReno and βecn ≈ 0.85 for CUBIC seems to pro-
vide reasonable trade-offs between latency, throughput
and fairness across a wide range of scenarios.

5Adaptation of the window-increase parameter α is also used by
these mechanisms for such purpose.

We expect methods like ABE to encourage usage of
ECN, and as this usage increases, we believe the time
will become ripe to revisit proposals for alternative ECN
marking, along the lines of Section V. When use be-
comes widespread, router/middlebox manufacturers will
have an incentive to implement these improved ECN
specifications to further optimise performance. Hosts
using ABE will then also be able to update their βecn.

Our study explored two well-known auto-tuning AQM
methods with their standard pre-set parameter values
(§ IV-A). To limit the problem space, we did not in-
vestigate the impact of changing the CoDel and PIE
parameters. We also used the same β value in both slow
start and congestion avoidance. Intuitively, one may think
that using more aggressive AQM parameters for marking
should advocate a higher β value. However, we expect
there is a limit to how aggressively an AQM scheme
can react, before even packets in a natural packet burst
are punished by ECN marks or drop. Such questions
concerning AQM tuning should be investigated in future
work.

ECN-enabled routers need to protect themselves from
overload by unresponsive traffic. RFC 3168 recom-
mended routers to avoid high levels of ECN marking,
assuming this was an indication of congestion collapse,
and therefore encouraged drop under these conditions, as
an appropriate response to overload. However, DCTCP
and other modern AQM schemes use a low marking
threshold, where this assumption becomes invalid, and
can significantly impact performance (§ B). We therefore
agree with the recommendation in [8], which encourages
new research into more appropriate overload protection
methods.

The use of ECN must be initiated by the TCP client.
This makes ABE immediately applicable for use cases
where a host updated with ABE initiates a connection
and then transmits data, such as uploads to the Cloud,
Web 2.0 applications, etc. In use cases where a client
initiates a connection for data sent by a server, such
as web surfing, ABE requires the server to be updated.
An example of the expected performance with ECN, but
without ABE is shown in Figure 3. Given such results
and the increasing ability of routers to correctly pass
ECN-enabled packets, no significant disadvantage is to
be expected in this case, and the impact of ABE will
increase as servers introduce support for it.

In conclusion, results have been presented from ex-
periments, theory and simulation that show real benefit
can be derived from updating TCP’s ECN response, and
we assert that this can provide a significant performance

CAIA Technical Report 150710A July 2015 page 12 of 15

incentive towards greater use of the ECN across the
Internet.

VII. ACKNOWLEDGEMENTS

This work was partly funded by the European Com-
munity under its 7th Framework Programme through
the Reducing Internet Transport Latency (RITE) project
(ICT-317700). The views expressed are solely those of
the authors.

APPENDIX

A. Simulations

All simulations presented in this paper are based on
ns-2.35, using “Linux TCP” updated to use the pluggable
congestion controls shipped in Linux kernel 3.17.4.

B. Experimental testbed

The results in Figures 3, 5, 6, 11, 12, 13, 14 and
15 were created using TEACUP [48] driving a physical
testbed of source and destination hosts in two separate
subnets either side of a PC-based router (the classic
dumbell topology).

The 64-bit end hosts6 are booted into FreeBSD 10.1-
RELEASE or openSUSE 13.2 for NewReno and CUBIC
trials respectively. Dynamic TCP state is logged with
SIFTR under FreeBSD (event driven) and web10g under
Linux (polled). We use iperf to source and sink traffic,
and use tcpdump to capture the traffic actually seen ‘on
the wire’ at each host. Modified FreeBSD NewReno
and Linux CUBIC congestion control modules were
implemented so that loss-triggered β and ECN-triggered
βecn could be separately set and altered via sysctls.

The two subnets are linked by a 64-bit software
router7 based on openSUSE 13.2. The router provides a
configurable rate-shaping bottleneck with CoDel or PIE
AQM as required. The router also separately emulates
configurable artificial delay in each direction.

Shaping, AQM and delay/loss emulation is on the
router’s egress NIC in each direction. The hierarchical
token bucket (HTB) queuing discipline is used for rate-
shaping, with the desired AQM queuing discipline (e.g.
pfifo, codel) as leaf node. After the bottleneck stage,
additional (configurable) fixed delay is emulated with

6HP Compaq dc7800, 4GB RAM, 2.33GHz Intel® Core™2 Duo
CPU, Intel 82574L Gigabit NIC for test traffic and 82566DM-2
Gigabit NIC for control traffic

7Supermicro X8STi, 4GB RAM, 2.80GHz Intel® Core™i7 CPU,
2 x Intel 82576 Gigabit NICs for test traffic and a 82574L Gigabit
NIC for control traffic

netem. We loop traffic through pseudo interfaces (inter-
mediate function block, or IFB, devices) to cleanly sep-
arate the rate-shaping/AQM from the delay/loss instan-
tiated by netem. This ensures the bottleneck buffering
occurs under the control of the selected AQM.

Linux kernel 3.17.4 is used on all hosts and the
router. To get high timer precision for queuing and delay
emulation the router’s kernel is patched and recompiled
to tick at 10000Hz.

Each PC has an additional NIC attached to an indepen-
dent control network. A separate ‘command and control’
host uses ssh over this control network to coordinate
and launch repeated trials. This includes configuration of
source and destination hosts (enabling or disabling ECN,
disabling of hardware segmentation offloading, setting
specific TCP congestion control algorithms and βecn,
etc), configuration of the bottleneck (rates, path delays,
AQM, and ECN on or off), initiation of trials (launching
one or more instances of iperf at particular times with
particular iperf parameters) and subsequent data retrieval
from participating machines.

A key issue is that PIE’s average drop/mark probabil-
ity can be driven high for reasons that do not indicate
a high level of congestion or misbehavior of a non-
responsive TCP flow in the short term. We explore this
with a simulation of a PIE bottleneck carrying 20 long-
lived TCP flows running for 300 s (all started within the
first second of simulation time) and a short flow starting
after 50 s with different values of βecn.

We turned off PIE’s default drop behaviour for Fig-
ure 19(a), which shows that PIE’s drop/mark proba-
bility can frequently rise significantly above 10% for
βecn > 0.7 flows. We further observed that PIE’s
drop/mark probability would even rise above 10% for
βecn = 0.5 flows during normal slow-start. Yet queuing
delays remain bounded, as expected of a PIE bottleneck.

Figure 19(b) shows the same experiments with default
behaviour re-enabled. PIE’s dropping probability is con-
trolled under 10% but the queuing delay is increased
with larger βecn.

We experience a large number of CE packets with
large βecn in the case of Figure 19(a) and counting them
in the PIE algorithm increases the marking probability.
Hence PIE creates a low queuing delay with responsive
TCP flows. In the case of Figure 19(b), large βecn results
in dropping more packets and controlling the probability.
Use of large βecn with less that 10% marking probability
increases queuing delay.

It seems clear that a drop/mark probability of 10% is
far too low a threshold to begin dropping ECN-enabled

CAIA Technical Report 150710A July 2015 page 13 of 15

5 10 15 20 25 30
PIE Dropping Probability (%)

0

20

40

60

80

100

CD
F

(%
)

(a) Without 10% Dropping Margin

16 18 20 22 24 26 28 30
Queuing Delay (ms)

0

20

40

60

80

100

CD
F

(%
)

6 7 8 9 10 11 12
PIE Dropping Probability (%)

(b) With 10% Dropping Margin

16 18 20 22 24 26 28 30
Queuing Delay (ms)

βecn=0.5
βecn=0.6
βecn=0.7
βecn=0.75
βecn=0.8
βecn=0.85
βecn=0.9
βecn=0.95

Fig. 19. PIE without and with 10% dropping threshold (20 long-
lived TCP flows).

packets. It is detrimental to short flows (where slow start
is a significant portion of a flow’s overall lifetime) and
to flows using higher βecn (such as flows originating
from ABE-enabled senders), and appears to provide little
benefit. Therefore, for the rest of our PIE experiments
we disabled this default behaviour.

REFERENCES

[1] CeroWrt Project. http://www.bufferbloat.net/projects/cerowrt.
[2] HTTP Archive. http://httparchive.org/trends.php.
[3] R. Adams. Active Queue Management: A Survey. IEEE Com-

munications Surveys and Tutorials, 15(3):1425–1476, 2013.
[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP
(DCTCP). In Proc. ACM SIGCOMM, pages 63–74, New Delhi,
India, 2010.

[5] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic. Parallel
TCP Sockets: Simple Model, Throughput and Validation. In
Proc. IEEE INFOCOM, pages 1 –12, Apr 2006.

[6] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router
Buffers. In Proc. ACM SIGCOMM, pages 281–292, Portland
(OR), USA, Sep 2004.

[7] M. Arumaithurai, X. Fu, and K. Ramakrishnan. NF-TCP:
Network Friendly TCP. In 17th IEEE Workshop on Local and
Metropolitan Area Networks (LANMAN), pages 1–6, 2010.

[8] F. Baker (ed.) and G. Fairhurst (ed.). IETF recommendations
regarding Active Queue Management. Internet Draft draft-ietf-
aqm-recommendation, work in progress, Jan 2015.

[9] S. Bauer, R. Beverly, and A. Berger. Measuring the State of
ECN Readiness in Servers, Clients,and Routers. In Proc. ACM
IMC, pages 171–180, 2011.

[10] M. Belshe and R. Peon. SPDY Protocol. Internet Draft draft-
mbelshe-httpbis-spdy, work in progress, Feb 2012.

[11] S. Bensley, L. Eggert, and D. Thaler. Datacenter TCP (DCTCP):
TCP Congestion Control for Datacenters. Internet-Draft draft-
bensley-tcpm-dctcp, Feb 2014.

[12] B. Briscoe, A. Jacquet, C. D. Cairano-Gilfedder, A. Salvatori,
A. Soppera, and M. Koyabe. Policing Congestion Response in
an Internetwork Using Re-Feedback. Proc. ACM SIGCOMM,
Computer Communication Review, 35(4):277–288, Aug 2005.

[13] B. Briscoe, R. Woundy, and A. Cooper. Congestion Exposure
(ConEx) Concepts and Use Cases. RFC 6789 (Informational),
Dec 2012.

[14] C. Casetti, M. Gerla, S. Mascolo, M. Sanadidi, and R. Wang.
TCP Westwood: Bandwidth Estimation for Enhanced Transport
over Wireless Links. In Proceedings of ACM MOBICOM, pages
287–297, Rome, Jul 2001.

[15] A. Durresi, L. Barolli, R. Jain, and M. Takizawa. Conges-
tion Control Using Multilevel Explicit Congestion Notification.
Journal of Information Processing Society of Japan, 48(2):514–
526, Feb 2007.

[16] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC
3649 (Experimental), Dec 2003.

[17] S. Floyd and V. Jacobson. Random Early Detection Gateways
for Congestion Avoidance. IEEE/ACM Trans. Netw., 1(4):397–
413, Aug 1993.

[18] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle. Loss-Tolerant
TCP (LT-TCP): Implementation and Experimental Evaluation.
In Military Communications Conference - MILCOM, pages 1–6,
2012.

[19] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in the
Internet. Queue, 9(11):40:40–40:54, Nov 2011.

[20] S. Ha and I. Rhee. Taming the Elephants: New TCP Slow Start.
Computer Networks, 55(9):2092–2110, Jun 2011.

[21] T. Hoeiland-Joergensen, P. McKenney, D. Täht, J. Gettys, and
E. Dumazet. FlowQueue-Codel. Internet Draft draft-ietf-aqm-
fq-codel, work in progress, Dec 2014.

[22] V. Jacobson. Congestion Avoidance and Control. In Symposium
Proceedings on Communications Architectures and Protocols,
SIGCOMM, pages 314–329, New York, NY, USA, 1988. ACM.

[23] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Computer Systems. Technical report TR-301, DEC Research,
Sep 1984.

[24] N. Khademi, D. Ros, and M. Welzl. The New AQM Kids on
the Block: Much Ado about Nothing? Technical Report 434,
University of Oslo, Dept. of Informatics, Oct 2013.

[25] N. Khademi, D. Ros, and M. Welzl. The New AQM Kids on
the Block: An Experimental Evaluation of CoDel and PIE. In
Computer Communications Workshops (INFOCOM WKSHPS),
2014 IEEE Conference on, pages 85–90, April 2014.

[26] R. Kohavi and R. Longbotham. Online experiments: Lessons
learned. IEEE Computer Magazine, 40(9):103–105, 2007.

[27] M. Kuehlewind and R. Scheffenegger. Problem Statement and
Requirements for a More Accurate ECN Feedback. Internet-
Draft (work in progress) draft-ietf-tcpm-accecn-reqs-04, Oct
2013.

[28] M. Kuehlewind, D. Wagner, J. M. R. Espinosa, and B. Briscoe.
Immediate ECN. Presentation at the 88th IETF meeting.

[29] M. Kwon and S. Fahmy. TCP Increase/Decrease Behavior with
Explicit Congestion Notification (ECN). In IEEE ICC, New
York, New York, USA, May 2002.

[30] D. Leith and R. Shorten. H-TCP: TCP for High-speed and
Long-distance Networks. In Proceedings of PFLDnet 2004,
Argonne (IL), USA, Feb 2004.

[31] J. Loveless, S. Stoikov, and R. Waeber. Online Algorithms in
High-frequency Trading. Commun. ACM, 56(10):50–56, Oct
2013.

CAIA Technical Report 150710A July 2015 page 14 of 15

http://www.bufferbloat.net/projects/cerowrt
http://httparchive.org/trends.php

[32] A. Medina, M. Allman, and S. Floyd. Measuring the Evolution
of Transport Protocols in the Internet. SIGCOMM Computer
Communication Review, 35(2):37–52, Apr 2005.

[33] M. Menth, B. Briscoe, and T. Tsou. Precongestion Notification:
New QoS Support for Differentiated Services IP Networks.
Communications Magazine, IEEE, 50(3):94–103, 2012.

[34] K. Nichols and V. Jacobson. Controlling Queue Delay. Queue,
10(5):20:20–20:34, May 2012.

[35] K. Nichols and V. Jacobson. Controlled Delay Active Queue
Management. Internet-Draft draft-nichols-tsvwg-codel-01.txt,
Feb 2013.

[36] J. Padhye and S. Floyd. Identifying the TCP Behavior of Web
Servers. In In ACM SIGCOMM, 2000.

[37] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg. PIE: A Lightweight Control Scheme
to Address the Bufferbloat Problem. In HPSR, pages 148–155.
IEEE, 2013.

[38] R. Pang. PIE: A Lightweight Control Scheme to Address the
Bufferbloat Problem. Internet-Draft draft-pan-tsvwg-pie.txt, Jun
2013.

[39] R. Pang, P. Natarajan, F. Baker, B. VerSteeg, M. S. Prabhu,
C. Piglione, V. Subramanian, and G. White. PIE: A Lightweight
Control Scheme to Address the Bufferbloat Problem. Internet-
Draft draft-ietf-aqm-pie-00, Oct 2014.

[40] I. A. Qazi, L. L. H. Andrew, and T. Znati. Congestion
Control with Multipacket Feedback. Networking, IEEE/ACM
Transactions on, PP(99):1, 2012.

[41] K. Ramakrishnan, S. Floyd, and D. Black. The Addition
of Explicit Congestion Notification (ECN) to IP. RFC 3168
(Proposed Standard), Sep 2001. Updated by RFCs 4301, 6040.

[42] J. Schwardmann, D. Wagner, and M. Kühlewind. Evaluation of
ARED, CoDel and PIE. 20th Eunice Open European Summer
School and Conference, 2014.

[43] B. Thomas, R. Jurdak, and I. Atkinson. SPDYing up the Web.
Commun. of ACM, 55(12):64–73, Dec 2012.

[44] B. Trammell, M. Kühlewind, D. Boppart, I. Learmonth,
G. Fairhurst, and R. Scheffenegger. Enabling Internet-wide De-
ployment of Explicit Congestion Notification. In Proceedings
of the 2015 Passive and Active Measurement Conference, New
York, 03/2015 2015.

[45] N. Vasic, S. Kuntimaddi, and D. Kostic. One Bit is Enough: A
Framework for Deploying Explicit Feedback Congestion Con-
trol Protocols. In First International Communication Systems
and Networks and Workshops (COMSNETS), pages 1–9, 2009.

[46] M. Welzl and G. Fairhurst. The Benefits and Pitfalls of Using
Explicit Congestion Notification (ECN). Internet-Draft draft-
ietf-aqm-ecn-benefits, Oct 2014.

[47] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One
More Bit is Enough. IEEE/ACM Trans. Netw., 16(6):1281–
1294, Dec 2008.

[48] S. Zander and G. Armitage. TEACUP v1.0 - A System for
Automated TCP Testbed Experiments. CAIA Technical Report,
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.
pdf, 29 May 2015.

CAIA Technical Report 150710A July 2015 page 15 of 15

http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf

	Introduction
	ABE: ``Alternative Backoff with ECN''
	ECN past and future
	Paper structure

	Problem and Background
	TCP backoff, path characteristics and link utilisation
	Using AQM with a large path RTT
	Selecting the right backoff factor

	Solution
	ABE in Slow Start

	Evaluation
	AQM algorithms and parameters
	Latency vs. throughput for a single flow
	Bulk transfers
	Short flows

	Related Work
	Concluding remarks
	Acknowledgements
	Appendix
	Simulations
	Experimental testbed

	References

