
TEACUP v1.0 – Data Analysis Functions
Sebastian Zander, Grenville Armitage

Centre for Advanced Internet Architectures, Technical Report 150529B
Swinburne University of Technology

Melbourne, Australia
szander@swin.edu.au, garmitage@swin.edu.au

Abstract—Over the last few decades several TCP congestion control algorithms were
developed in order to optimise TCP’s behaviour in certain situations. While TCP
was traditionally used mainly for file transfers, more recently it is also becoming
the protocol of choice for streaming applications, for example video streaming from
YouTube and Netflix is TCP-based [1], [2] and there is an ISO standard for Dynamic
Adaptive Streaming over HTTP (DASH) [3]. However, the impact of different TCP
congestion control algorithms on TCP-based streaming flows (within a mix of other
typical traffic) is not well understood. Experiments in a controlled testbed allow
shedding more light on this issue. TEACUP (TCP Experiment Automation Controlled
Using Python) version 1.0 is a software tool for running automated TCP experiments
in a testbed [4]. This report describes the analysis functions TEACUP provides to
extract statistics and plot graphs based on data collected during the experiments.

Index Terms—TCP, experiments, automated control, data analysis

CONTENTS

I Introduction 2

II Overview 2
II-A Architecture 3
II-B Experiment configuration infor-

mation 3
II-C Modifying or replacing analysis

functionality 3
II-D Interim data file names 3
II-E Directory caching 4
II-F Flow caching 4

III Data Extraction 4
III-A Extract tasks overview 4
III-B Common parameters 5
III-C extract_pktsizes – Extract packet

sizes for throughput computation . 6
III-D extract_rtt – RTT estimates (based

on SPP) 7
III-E extract_cwnd – TCP CWND . . . 7
III-F extract_tcp_rtt – RTT estimates

from TCP 7
III-G extract_tcp_stat – Extract any

TCP statistic 7

III-H extract_all – Combination of basic
extract methods 8

III-I extract_ackseq – Extract acknowl-
edged bytes or dupACKs 8

III-J extract_dash_goodput – Extract
goodput for DASH experiments . 8

III-K extract_incast – Extract response
times for incast experiments (from
httperf logs) 9

III-L extract_incast_restimes – Extract
response times for incast experi-
ments (from tcpdump) 9

III-M extract_incast_iqtimes – Extract
inter-query times (incast experi-
ments) 9

III-N extract_pktloss – Extract packet
loss information 10

IV Data Analysis 10
IV-A Analysis tasks overview 10
IV-B Common task parameters 11
IV-C Common plotting environment

variables 13
IV-D analyse_throughput – Plot

throughput over time 14
IV-E analyse_rtt – Plot RTT (SPP) over

time 14

CAIA Technical Report 150529B May 2015 page 1 of 28

mailto:szander@swin.edu.au
mailto:garmitage@swin.edu.au

IV-F analyse_cwnd – Plot TCP CWND
over time 14

IV-G analyse_tcp_rtt – Plot TCP RTT
over time 14

IV-H analyse_all – Combines basic
analysis tasks 15

IV-I analyse_tcp_stat – Plot arbitrary
TCP statistic over time 15

IV-J analyse_ackseq – Plot acknowl-
edged bytes or dupACKSs over time 15

IV-K anlyse_dash_goodput – Plot
DASH-like client goodput over time 16

IV-L analyse_goodput – Plot TCP
goodput over time 16

IV-M analyse_incast – Plot response
times over time (incast) 17

IV-N analyse_incast_iqtimes – Plot
inter-query times (incast) 17

IV-O analyse_pktloss – Plot packet loss
rate 18

IV-P analyse_cmpexp – Plot metric de-
pending on experiment variables 18

IV-Q analyse_2_density – Plot two met-
rics against each other depending
on experiment variables 20

IV-R Limits on series/groups per graph 22

V Customise Plotting 22

VI Utility Functions 23
VI-A Combining graphs 23

VII Use Case – Analysing an Incast Experiment 23
VII-A Analysing throughput and RTT . . 23
VII-B Analysing time between queries . 24
VII-C Analysing response times 24
VII-D Analysing acknowledged bytes

and dupACKs 24
VII-E Response times versus number of

responders 25

VIII Conclusions and Future Work 26

References 27

I. INTRODUCTION

Over the last few decades several TCP congestion control
algorithms were developed in order to optimise TCP’s
behaviour in certain situations. While TCP was tradi-
tionally used mainly for file transfers, more recently it
is also becoming the protocol of choice for streaming
applications, for example video streaming from YouTube
and Netflix is TCP-based [1], [2] and there is an ISO
standard for Dynamic Adaptive Streaming over HTTP
(DASH) [3]. However, the impact of different TCP
congestion control algorithms on TCP-based streaming
flows (within a mix of other typical traffic) is not well
understood. Experiments in a controlled testbed allow
shedding more light on this issue.

This report describes the data analysis functionality
of TEACUP (TCP Experiment Automation Controlled
Using Python) version 1.0 – a software tool for run-
ning automated TCP experiments in a testbed [4]. The
TEACUP project originated at Swinburne University of
Technology’s Centre for Advanced Internet Architectures
(http://caia.swin.edu.au/tools/teacup), and from version
1.0 the source code is freely available on SourceForge
at http://sourceforge.net/projects/teacup

Based on a configuration file TEACUP can perform a se-
ries of experiments with different traffic mixes, different
bottlenecks (such as bandwidths, queue mechanisms),
different emulated network delays and/or loss rates, and
different host settings (e.g. TCP congestion control algo-
rithm) [4]. For each experiment TEACUP automatically
collects relevant information that allows analysing TCP
behaviour. Here we describe the various tools provided
by TEACUP for extracting and analysing the data of an
experiment or a series of experiments.

This report is organised as follows. Section II provides an
overview of TEACUP’s architecture for data extraction
and analysis. Section III describes the data extraction
functions of TEACUP. Section IV describes the data
analysis and plotting functions of TEACUP. Sections V
and VI describe customisation of plotting and additional
analysis-related utility functions respectively. Section VII
describes use cases in tutorial-style that demonstrate how
to use various analysis tasks. Section VIII concludes and
outlines future work.

II. OVERVIEW

This section provides an overview of TEACUP’s archi-
tecture for data extraction and analysis including some

CAIA Technical Report 150529B May 2015 page 2 of 28

http://caia.swin.edu.au/tools/teacup
http://sourceforge.net/projects/teacup

�����������	�����������	

�
���������	

����������������

��������������

����

�������������

�
����
��
�����������

������

��������
������������

Figure 1: TEACUP’s data extraction and analysis archi-
tecture

information on how to modify or extend it. It also pro-
vides some information on implementation details that
are common to all extract and analysis functions.

A. Architecture

TEACUP’s extract and analysis functions are imple-
mented as Fabric tasks [4].

The architecture of TEACUP’s analysis part is relatively
straight-forward. At the lowest layer TEACUP uses
extract tasks to extract statistics from the data collected
during experiments and store these in interim data files.
The extract tasks can be invoked by end-users directly
to extract data, but they are also called by higher-layer
analyse tasks, invoked by the user, that generate graphs
based on the extracted data. TEACUP’s analyse tasks
pre-process the data for plotting, but the actual graph
generation is carried out by R functions. Figure 1 depicts
this architecture. As the figure indicates there is not
a one-to-one relationship between analysis and extract
tasks, as some analysis tasks may run multiple extract
tasks.

Extract tasks generate files with interim data and pass the
names of these files to an analyse task if called from that
analysis task. The analysis task will do further processing
and eventually pass (a subset) of the files together with
other parameters to the plot function.

TEACUP cleanly separates the Python pre-processing
and R plotting code with a well-defined interface be-
tween the the two parts. As Figure 1 indicates, infor-
mation regarding the data to be plotted is passed using
environment variables, so TEACUP’s existing plotting
functions can be replaced by alternative user-supplied
plotting functions implemented in any convenient lan-
guage or tool.

B. Experiment configuration information

For experiments carried out with TEACUP prior to
version 0.9, the config.py file used when extract or
analysis tasks are executed must be the file used to run
the experiments (as far as the testbed configuration is
concerned) or the config file used to run the experi-
ments must be specified with –set teacup_config (see
technical report [4] on how to load user-specified config
files).

Since version 0.9 TEACUP stores all config
variables for a series of experiments in a file
<test_id_pfx>_varying_params.log.gz located in the
experiment series sub-directory (see technical report
[4]). Extract and analysis functions will access this file
and the config file used to run the experiments is not
required anymore when running analysis tasks.

C. Modifying or replacing analysis functionality

The data extraction and analysis aspect of TEACUP
is quite distinct from the tasks that actually run ex-
periments and gather testbed data. Instead of using
TEACUP’s analysis functions, end-users may want to
develop their own data analysis and graphing tools. How-
ever, TEACUP also provides some options to customise
the behaviour of its analysis functions, so users may
find it easier to modify or extend the existing functions
instead. For example, Section V describes how to cus-
tomise the plotting by (1) manipulating the environment
variables passed to the plot script and (2) replacing the
default plot scrips with customised scripts.

D. Interim data file names

Interim data files are named as follows. The first part of
the file name is the experiment ID, which allows to link
the interim data file to the experiment it was generated
from. Then for extract and analysis task that process per-
flow data, the next part of the file name is of the form
<src_ip>_<src_port>_<dst_ip>_<dst_port>,
where <src_ip> is the source IP address, <src_port> is
the source port, <dst_ip> is the destination IP address
and <dst_port> is the destination port. The last part of
the file name is an extension that indicates the type of
data a file contains. The extension is specific to the
extract function. Section III describes the extension
names in more detail. Listing 1 shows an example
interim data file name.

CAIA Technical Report 150529B May 2015 page 3 of 28

20150218-135735_experiment_aqm_pfifo_responders_4_172.16.10.60_50001_172.16.11.61_80.rtimes

Listing 1: Example interim data file name

E. Directory caching

Most of TEACUP’s extract and analyse tasks make use
of the find command line tool to locate experiment data
files or intermediate data files used for plotting. The root
directory for find is the directory in which the task is run
(or in other words the fabfile.py directory). In case there
are many experiment series’ stored in sub directories
under this directory the find process will be slow.

To speed up the extraction and analysis, since version 0.9
TEACUP uses a directory cache, which stores a map of
test ID prefixes and their associated sub directories. If
there is a cache entry for the test ID of a particular file
that TEACUP is trying to locate, then the search will
only be carried out under the cached sub directory. The
cache file is named teacup_dir_cache.txt and is stored in
the directory where fabfile.py is located.

Note that if experiment data files or intermediate data
files are moved to different locations, the user must
manually update existing entries in teacup_dir_cache.txt
or simply remove the cache file. In the latter case
TEACUP will rebuild the cache based on the user’s
future extract or analyse commands.

F. Flow caching

Many of TEACUP’s extract and analysis functions work
on a per-flow basis. They first extract the 5-tuples
(source IP address, source port, destination IP address,
destination port, protocol) of the different flows that
occurred during experiments. Then, they extract the per-
flow data.

To speed up the extraction and analysis, since version
0.9 TEACUP uses a flow cache, which stores a map of
file names (including the path relative to the directory in
which fabfile is located) and their associated flow tuples.
If a cache entry is present for a file, TEACUP will use
the flow tuples from the cache as basis for the analysis.
If there is no cache entry, TEACUP will extract the
flow tuples from the file (e.g. tcpdump file) and create a
new cache entry. The cache file is teacup_flow_cache.txt
and is stored in the directory where fabfile.py is lo-
cated.

Note that if experiment data files are moved to different
locations, the user must manually update existing entries
in teacup_flow_cache.txt or simply remove the cache file.
In the latter case TEACUP will rebuild the cache based
on the user’s future extract or analyse commands.

III. DATA EXTRACTION

TEACUP provides a number of basic extract tasks for
extracting data to be plotted from the data collected
during the experiments. Here we describe the extract
tasks, their parameters and their output. The extracted
data is used by the analysis tasks described in Section
IV. Note that analysis tasks automatically call relevant
extract tasks to extract the data needed for plotting.
However, the extract tasks can be executed directly by
an end-user who wishes to only extract data but not plot
graph(s).

First, we provide an overview of all extract tasks and
describe common parameters for all extract tasks (which
can also be passed to analysis tasks). Then we describe
the different extract tasks and their task-specific param-
eters (if any).

A. Extract tasks overview

Currently extract tasks exist for:

1) Extracting the packet size data for throughput plots
from tcpdump data (extract_pktsizes);

2) Extracting Round Trip Time (RTT) using SPP [5],
[6] based on tcpdump data (extract_rtt);

3) Extracting the TCP congestion window size
(CWND) from SIFTR and Web10G data (ex-
tract_cwnd);

4) Extracting TCP’s RTT estimate from SIFTR and
Web10G data (extract_tcp_rtt). The task extracts
both, the smoothed estimate and an unsmoothed
estimate (for SIFTR the unsmoothed estimate is
the improved ERTT [7] estimate);

5) Extract arbitrary TCP statistics from SIFTR and
Web10G data (extract_tcp_stat);

6) Extracting cumulative bytes acknowledged or du-
pACKs over time from tcpdump data (extract-
ing_ackseq);

CAIA Technical Report 150529B May 2015 page 4 of 28

7) Extracting the goodput for DASH-like streaming
clients (extract_dash_goodput);

8) Extracting the response times for incast experi-
ments from httperf log files (extract_incast);

9) Extracting the response times for
incast experiments from tcpdump files
(extract_incast_restimes);

10) Extrating the inter-query times for incast experi-
ments from tcpdump files (extract_incast_iqtimes).

B. Common parameters

This section describes the common parameter. Most of
these are supported by all extract tasks, but some of them
are only supported by a subset of tasks.

1) Specifying experiments to process: The test_id

parameter specifies the ID of the experiment from which
to extract data. The test_id parameter accepts multiple
test IDs separated by semicolons.1 If a list is specified,
data will be extracted for each test ID. Extracted data is
stored in files that start with the experiment ID and have
a task-specific extension.

2) Replot only: All extract tasks have a parameter
replot_only. While the parameter can be used when
executing an extract task, it is mainly used for analysis
tasks and passed on to the underlying extract tasks. This
parameter allows to replot the graphs without extracting
the data again (e.g. from tcpdump, SIFTR or Web10G
files). If replot_only is set to ‘1’ data is still ex-
tracted for experiments where data has not been extracted
before, but for experiments with already extracted data
the graph(s) are created based on the existing extracted
data.

3) Data output directory: By default all extracted data
files are generated in the sub directory where the ex-
periment data is located (the sub directory name being
the test ID prefix) inside the directory where fab is
executed. To put the output files into a specific directory,
the out_dir parameter can be used. If out_dir is an
absolute path, the output files will be put in the specified
directory. However, if out_dir is a relative path, it is
treated as relative to the location of the log files when
determining the directory for the output files.

4) Clock offset analysis and correction: TEACUP pro-
vides an additional mechanism to evaluate the qual-
ity of the time synchronisation between hosts and

1Since TEACUP v0.5. No trailing semicolon for only one test ID.

(optionally) correct for clock offsets in the post-
analysis.2 This mechanism requires that broadcast/mul-
ticast pings were enabled for an experiment (with TP-
CONF_bc_ping_enable=‘1’) as described in Section IV-I
in technical report [4],

a) Computing clock offsets: The get_clock_offsets tasks
allows computing the clock offsets between all hosts
using the clock of one host as reference (by default the
router’s clock). The task will generate a file for each
experiment in experiments_completed.txt by default, for
a specific experiment if the test_id parameter is spec-
ified, or for a number of experiments listed in a file
specified with the exp_list parameter.

The baseline_host parameter can be used to spec-
ify the reference clock and the out_dir parame-
ter specifies the directory in which the clock off-
set file is generated. Assuming <test_id> is the ex-
periment ID, the name of the clock offsets file is
<test_id>_clock_offsets.txt.

The following is an example of using the
get_clock_offsets task where we specify a specific
output directory and instruct TEACUP to use the clock
of host ‘testrouter’ as reference:

> fab get_clock_offsets:out_dir=../clock_data,

baseline_host=testrouter

b) Correcting timestamps during data extraction or
analysis: The ts_correct parameter instructs extract
tasks to use previously-computed clock offset data to
correct timestamps for plotting (e.g. timestamps from
tcpdump or web10g files). As explained earlier, the cor-
rection can only be done if an experiment was run with
broadcast/multicast pings (see Section IV-I in technical
report [4]).

No timestamp correction occurs if ts_correct=0 or
is undefined. If ts_correct=1, the extract functions
will generate uncorrected data files as well as additional
data files with all timestamps corrected according to the
clock offsets calculated by the get_clock_offsets task
(the additional files have an appended .tscorr extension),
and analyse functions will plot the data with timestamps
corrected (based on the .tscorr files).

Note that if ts_correct is set to 1 and no clock offsets
file is present, TEACUP will automatically try to create
the file3. Also note that enabling ts_correct will only

2 Since TEACUP version 0.7.
3<test_id>_clock_offsets.txt file

CAIA Technical Report 150529B May 2015 page 5 of 28

modify timestamps in the additional interim data files
used for plotting. Original timestamps in the actual log
files (e.g. timestamps in tcpdump or web10g files) are
not modified.

Prior to TEACUP version 0.9 ts_correct=0 was
the default, but since version 0.9 the default is
ts_correct=1. If an experiment was run without
broadcast/multicast pings, ts_correct=0 must be spec-
ified for extract or analysis tasks, or otherwise these tasks
will fail.

5) Data series selection: All extract tasks, except ex-
tract_dash_goodput, provide the source_filter pa-
rameter that provides each extract and analysis function
with a rudimentary mechanism to identify the flows to
be plotted. Note, source_filter only limits what is
plotted. Intermediate data files are always extracted for
all flows in an experiment. However, the list of files
passed by the extract task to the analysis task will only
contain files for the selected flows.

Desired flows may be specified using combinations of
patterns matching source and/or destination IP address
and port numbers.

The filter string format is:

(S|D)_<ip>_<port>[;(S|D)_<ip>_(<port>|’*’)]*

For example, the following command only plots data for
flows from host 172.16.10.2 port 80:

> fab analyse_all:source_filter=

"S_172.16.10.2_80"

Note, that the notion of ‘flow’ here is unidirectional. The
flow consisting of packets heading to host 172.16.10.2
port 80 would be selected by specifying:

> fab analyse_all:source_filter=

"D_172.16.10.2_80"

The specified filter string also determines the order of the
flows in the graph(s). Flows are plotted in the order of
the filters specified. For example, if there are two flows,
one from host 172.16.10.2 port 80 and another from host
172.16.10.2 port 81 by default the port 80 flow would
be the first data series and the port 81 flow would be the
second data series. One can reverse the two flows in the
graphs by specifying:

> fab analyse_all:source_filter=

"S_172.16.10.2_81;S_172.16.10.2_80"

Instead of an actual port number on can specify the wild-
card character (‘*’). This allows to filter on a specific
source or destination with any port number. For example,
we can plot data for all flows from host 172.16.10.2
regardless of their port numbers:

> fab analyse_all:source_filter=

"S_172.16.10.2_*"

Note that source_filter identifies the flows selected,
not the flows filtered out.

6) Filtering SIFTR log lines: The extract_all, ex-
tract_cwnd, extract_tcp_rtt and extract_tcp_stat tasks
have a parameter io_filter that allows specifying
whether TCP statistics are extracted based on incoming
(set value to ‘i’) outgoing (set value to ‘o’) or incoming
and outgoing packets (set value to ‘io’) from SIFTR log
files. The default value is ‘o’. Currently, the parameter
is only effective with SIFTR log files, it does nothing
with web10g log files.

Note: this parameter only takes effect if replot_only
is set to ‘0’ (i.e. you must re-extract intermediate data if
you want to change io_filter)

7) Burst-separation (incast experiments): The tasks ex-
tract_rtt, extract_ackseq and extract_incast can extract
data on a per-burst basis for incast experiments, where
we have bursts of TCP requests sent by a querier to
multiple responders interspersed by idle times. The pa-
rameter burst_sep allows to specify the time between
bursts. Any idle time longer than burst_sep signals the
start of a new burst. If burst_sep is set to 0, data will
not be separated according to bursts.

The parameters sburst and eburst can be used to
select the bursts to be plotted (start index of 1). They are
not useful when running an extract task directly. They
are only useful when passed to an analyse task, which
passes them further to an extract task.

C. extract_pktsizes – Extract packet sizes for throughput
computation

This task extracts packet size information from tcp-
dump files. The packet size data is used by the analy-
sis_throughput task to compute and plot the throughput.
Extracted data files are created for each traffic flow and
have a .psiz extension. They contain the following space-
separated columns with one line per packet: timestamp,
packet size in bytes (from tcpdump file).

CAIA Technical Report 150529B May 2015 page 6 of 28

Besides the common parameters the task has the param-
eters link_len and total_per_experiment.

1) IP layer vs link layer packet size: The parameter
link_len allows to specify whether the packet sizes
extracted are the IP sizes (‘0’) or the sizes including the
link layer header (‘1’).

2) Total over all flows: By default data is extracted
per flow, but if total_per_experiment is set to ‘1’
in addition a file with all packet sizes will be created.
Note that if total_per_experiment is set to ‘1’, a
source_filter should be specified to prevent aggregating
both directions of traffic.

3) Examples: The following shows an example of how
to use the task:

> fab extract_pktsizes:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

link_len=1

D. extract_rtt – RTT estimates (based on SPP)

This task computes RTTs for bidirectional flows using
SPP [6]. Extracted data files are created for each bidi-
rectional traffic flow with .rtts extension. They contain
the following space-separated columns with one line per
timestamp: timestamp of RTT and RTT estimated by
SPP.

Besides the common parameters the task has the
parameter udp_map. This parameter allows to map
unidirectional UDP flows in opposite direction into
bidirectional UDP flows, as SPP needs bidirectional
flows to estimate the RTT. The format for the
parameter is a semicolon-separated list of source
IP source port pairs. Each pair must be speci-
fied as <src_ip1>,<src_port1>:<src_ip2>,<src_port2>,
where <src_ip1>,<src_port1> is the source IP ad-
dresses and source port pair of one UDP flow and
<src_ip2>,<src_port2> is the source IP addresses and
source port pair of another UDP flow (in opposite
direction). The task also has the burst_sep, sburst
and eburst parameters which make it possible to extract
the RTT estimates on a burst-by-burst bases for incast
experiments.

1) Examples: The following shows an example of how
to use the task:

> fab extract_rtt:test_id=

20131206-102931_tcp_newreno,

out_dir=./results/

The following command shows how to combine
two unidirectional UDP flows, one originating from
192.168.0.10 port 5000 and the other originating from
192.168.0.11 port 5001:

> fab extract_rtt:test_id=

20131206-102931_tcp_newreno, udp_map=

”192.168.0.10,5000:192.168.0.11,5001”

E. extract_cwnd – TCP CWND

This task extracts the CWND data from TCP log files.
Extracted data files are created for each traffic flow
and have a .cwnd extension. They contain the following
comma-separated columns with one line per timestamp:
timestamp and CWND value (from SIFTR or web10g
log file). Besides the common parameters the task has the
parameter io_filter that can be used in case of SIFTR
logs to use TCP statistics only for incoming, outgoing
or incoming and outgoing packets (explained in Section
III-E).

1) Examples: The following shows an example of how
to use the task:

> fab extract_cwnd:test_id=

20131206-102931_tcp_newreno,

out_dir=./results/

F. extract_tcp_rtt – RTT estimates from TCP

This task extracts TCP’s RTT estimates from the TCP
log files (SIFTR or web10g). Extracted data files are
created for each traffic flow and have a .tcp_rtt extension.
They contain the following comma-separated columns
with one line per timestamp: timestamp, smoothed RTT
estimate and sample/unsmoothed RTT estimate. Besides
the common parameters the task has the parameter
io_filter (explained in Section III-E).

1) Examples: The following shows an example of how
to use the task:

> fab extract_cwnd:test_id=

20131206-102931_tcp_newreno,

out_dir=./results/,io_filter=o

G. extract_tcp_stat – Extract any TCP statistic

This task extracts a user-defined statistic from the TCP
log files. Extracted data files are created for each traffic
flow and have a .tcpstat<num> extension where <num>
is the index of the statistic (the column number in the

CAIA Technical Report 150529B May 2015 page 7 of 28

SIFTR or web10g log file). They contain the follow-
ing comma-separated columns with one line per times-
tamp: timestamp, TCP statistic selected (from SIFTR or
web10g log file).

Besides the common parameters the task has the param-
eter io_filter (explained in Section III-E), and the
parameters siftr_index and web10g_index.

1) Statistic to extract: The parameter siftr_index is
used to specify the column of the statistic in SIFTR
log files and the parameter web10g_index is used to
specify the column of the statistic in web10g log files.
The start index for both parameters is 1, which selects
the statistic in the first column. If the log files are a
mix of SIFTR and web10g both parameters must be
specified. Otherwise it is sufficient to specify just one
of the parameters.

2) Examples: The following shows an example of how
to use the task:

> fab extract_tcp_stat:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

siftr_index=22,web10g_index=120

H. extract_all – Combination of basic extract meth-
ods

This task executes the following tasks: extract_rtt, ex-
tract_cwnd, extract_tcp_rtt and extract_pktsizes. The
task parameters are a superset of the parameters of the
individual tasks.

I. extract_ackseq – Extract acknowledged bytes or du-
pACKs

This task extracts TCP acknowledgement data. It is
useful for incast experiments but not limited to these.
Extracted data files are created for each traffic flow
and have an .acks.0 extension (without burst separa-
tion) or a file extension is .acks.<burst_number> (with
burst separation). The data files contain the following
space-separated columns with one line per timestamp:
timestamp, cumulative acknowledged bytes (from tcp-
dump log) and cumulative dupACKs (from tcpdump
log).

The task has the common parameters as well as the
burst-separation parameters burst_sep, sburst and
eburst described in Section III-B7. The task also has
the parameter total_per_experiment that if set to ‘1’
will generate an additional file with the total cumulative

acknowledged bytes and total cumulative dupACKs over
all flows.

Since this function extracts data from the ACK
stream, source_filter is effectively reversed compared
to other tasks, such as extract_pktsizes. For
example, if one wanted to extract throughput
for the source with IP 192.168.0.10 one would
specify source_filter=”S_192.168.0.10_*”.

However, to extract the corresponding ACK
data with extract_ackseq one has to specify
source_filter=”D_192.168.0.10_*”, as the
ACKs travel in the opposite direction.

1) Total over all flows: By default data is extracted
per flow, but if total_per_experiment is set to
‘1’ in addition a file with total acknowledged bytes
and total dupACKs will be created. Note that if
total_per_experiment is set to ‘1’, a source_filter
should be specified to prevent aggregating both direc-
tions of traffic.

2) Examples: The following shows an example of how
to use the task:

> fab extract_ackseq:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

burst_sep=1.0

J. extract_dash_goodput – Extract goodput for DASH
experiments

This task extracts goodput for DASH-like clients. Ex-
tracted data files are created for each DASH-like client
and have a .dashgp extension. They contain the follow-
ing comma-separated data columns with one line per
data block downloaded: timestamp of request, size of
requested and downloaded block in bytes, bit rate in
megabit per second, response time in seconds, nominal
cycle length in seconds, nominal rate in kilobits per
second, and block number.

Besides the common parameters the task has a
dash_log_list parameter. This parameter is an alter-
native to specifying a list of test IDs, and allows a user to
specify a file name that contains a list of httperf log files
for DASH-like clients which should be processed. The
format of the log list file is one file name per line. The
file paths do not need to be specified, as TEACUP will
automatically find the files assuming they are in a sub
directory below the fabfile.py directory. If the test_id

parameter is specified, the dash_log_list parameter
is ignored.

CAIA Technical Report 150529B May 2015 page 8 of 28

1) Examples: The following shows an example of how
to use the task:

> fab extract_dash_goodput:

dash_log_list=dash_logs.txt,out_dir=./results/

K. extract_incast – Extract response times for incast
experiments (from httperf logs)

This task extracts response times for incast experiments.
Extracted data files are created for each traffic flow
and have an .rtimes extension (single responders) or
an .rtimes.all extension (all responders merged). They
contain the following space-separated columns with one
line per timestamp: timestamp, burst number (starting
from 1), response time in seconds (from httperf log
file).

Besides the common parameters the task has the sburst
and eburst parameters (burst_sep is not needed here
as the httperf log data is already separated in bursts) to
enable plotting of the response times only for selected
bursts.

1) Filtering on flows: Note that for extract_incast flows
are bidirectional, and the source of an incast flow is
always the querier and the destination of an incast flow is
always one of the responders. This needs to be taken into
account when using source_filter. Also note that
since there is no information about a querier’s source
port numbers in httperf log files, TEACUP will create
fake source port numbers.

2) Slowest response only: The task has a parameter
slowest_only (default is ‘0’). If slowest_only is set
to ‘1’, the task will also generate a file with the extension
.rtimes.slowest that only contains the slowest response
time over all flows for each burst. If slowest_only is
set to ‘2’, the task will also generate a file with the exten-
sion .rtimes.slowest that only contains the time between
the first request sent and the time the last response was
finished for each burst (default is ‘0’).

3) Examples: The following shows an example of how
to use the task:

> fab extract_incast:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

sburst=2,eburst=0

L. extract_incast_restimes – Extract response times for
incast experiments (from tcpdump)

This task extracts response times for incast experiments.
The difference between the extract_incast task (Sec-
tion III-K) and this task is that the former extracts
the response times from httperf logs while this task
extracts the response times from tcpdump files. Ex-
tracted data files are created for each traffic flow and
have an .restimes extension. They contain the following
space-separated columns with one line per timestamp:
timestamp the request was sent, burst number (starting
from 1), <IP>.<port> of the querier, <IP>.<port> of
the responder, and the response time in seconds (time
between last packet of response and GET packet from
tcpdump).

The task has the common parameters. Furthermore, it
has the parameter query_host, which must be used
to specify the querier (set to name as used in TP-
CONF_hosts)

1) Filtering on flows: Note that for ex-
tract_incast_restimes flows are bidirectional, and
the source of an incast flow is always the querier and
the destination of an incast flow is always one of the
responders. This needs to be taken into account when
using source_filter.

2) Slowest response only: The task has a parameter
slowest_only (default is ‘0’). If slowest_only is set
to ‘1’, the task will also generate a file with the extension
.restimes.slowest that only contains the slowest response
time over all flows for each burst. If slowest_only

is set to ‘2’, the task will also generate a file with
the extension .restimes.slowest that only contains the
time between the first request sent and the time the
last response was finished for each burst (default is
‘0’).

M. extract_incast_iqtimes – Extract inter-query times
(incast experiments)

This task extracts the times between requests sent by
the querier for incast experiments. Extracted data files
are created for each traffic flow and have an .iq-
time.all extension (combined inter-query times) and .iq-
time.<responder> where <responder> is the IP plus port
number of a responder (per responder inter-query times).
They contain the following space-separated columns
with one line per timestamp: timestamp, IP of responder,
port number of responder, time between request and first

CAIA Technical Report 150529B May 2015 page 9 of 28

request in burst sent by querier, and time between request
and previous request in same burst sent by querier.

The task has the common parameters. It also has
the burst_sep parameter used to detect the bursts;
however, the semantic here is slightly different as
burst_sep must be a number greater than 0 (default is
1.0) in order to separate the query bursts. The parameter
query_host must be used to specify the querier (set to
name as used in TPCONF_hosts).

1) Aggregate responders: The parameter
by_responder is set to ‘1’ by default meaning
per responder data files are created. If set to ‘0’ one file
with the times for all responders is created.

2) Cumulative data: By default and if the parame-
ter cumulative is set to ‘0’ raw inter-query times
are computed (as explained above). If the parameter
cumulative is set to ‘1’ subsequent bursts are plotted
in a cumulative fashion, i.e. the time of the first request
in a burst is the time of the last request in the previous
burst. Cumulative numbers make it easier to see long
term trends, such as the inter-query times being con-
sistently larger in one experiment compared to another
experiment.

3) Examples: The following shows an example of how
to use the task:

> fab extract_iqtimes:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

query_host=testhost1,cumulative=1

N. extract_pktloss – Extract packet loss informa-
tion

This task can only be used with emulated FPS game
traffic generated with the start_fps_game function. Ex-
tracted data files are created for each traffic flow and
have a .loss extension. They contain the following space-
separated columns with one line per packet: timestamp,
lost flag (0 if packet arrived, 1 if packet was lost). The
task has the common parameters.

1) Examples: The following shows an example of how
to use the task:

> fab extract_pktloss:test_id=

20141003-111821_game_traffic_aqm_pfifo,

out_dir=./results

IV. DATA ANALYSIS

Now we describe TEACUP’s analyse tasks that allow
to plot various types of graphs. First, we give an
overview of the existing analysis tasks. Then we discuss
parameters common to most tasks as well as common
environment variables that are used by the plotting code.
Next, we discuss the tasks in detail. Finally, we discuss
ways to customise the plotting beyond using the existing
tasks.

A. Analysis tasks overview

Currently basic analysis tasks exist for:

1) Plotting the throughput including all header bytes
based on tcpdump data (analyse_throughput);

2) Plotting the Round Trip Time (RTT) using SPP
[5], [6] based on tcpdump data (analyse_rtt);

3) Plotting the TCP congestion window size (CWND)
based on SIFTR and Web10G data (anal-
yse_cwnd);

4) Plotting the TCP RTT estimate based on SIFTR
and Web10G data (analyse_tcp_rtt). The task can
plot both, the smoothed estimate and an un-
smoothed estimate (for SIFTR the unsmoothed
estimate is the improved ERTT [7] estimate);

5) Plotting an arbitrary TCP statistic from SIFTR and
Web10G data (analyse_tcp_stat);

6) Plotting cumulative bytes acknowledged or du-
pACKs over time from tcpdump data (anal-
yse_ackseq);

7) Plotting the goodput for DASH-like streaming
clients (analyse_dash_goodput);

8) Plotting the goodput for TCP flows based on
acknowledged bytes (analyse_goodput);

9) Plotting the response times for incast experiments
(analyse_incast);

10) Plotting the inter-query times for incast experi-
ments (analyse_incast_iqtimes).

A convenience function exists that plots graphs 1–4 listed
above (analyse_all).

The above tasks usually plot a single statistic over time.
However, there are two tasks that allow to compare
the above statistics across different experimental set-
tings:

1) Plotting boxplots, mean or median of a statistic for
different combinations of experiment parameters
(analyse_cmpexp);

CAIA Technical Report 150529B May 2015 page 10 of 28

2) Plotting 2D-density plots or ellipse plots of two
statistics for different combinations of experiment
parameters (analyse_2d_density).

B. Common task parameters

This section describes common task parameters. Many
of them are supported by all tasks, but some of them
are only supported by a subset of tasks, as noted in the
task-specific sections. For precise information on task
parameters refer to the TEACUP command reference [8].
Task-specific parameters are described in the sections
that describes the task.

1) Specifying experiment(s) to analyse: Most analyse
task have a test_id parameter. The analysis can
be run for a single experiment only by specifying
a single test ID. For example, the following com-
mand generates the RTT graph for the experiment
20131206-102931_dash_2000_tcp_newreno:

> fab analyse_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno

The test_id parameter also accepts multiple test IDs
separated by semicolons.4 If multiple IDs are specified,
results from each test ID will be plotted on the same
graph(s). For time series graphs, produced by analyse_rtt
or analyse_throughput etc., the resulting graphs’ file
name(s) will be the first test ID specified followed by
the string "_comparison" to distinguish from graphs
where only one experiment is plotted, created in the sub
directory of the test ID specified first.

Instead of the test_id parameter some tasks, such as
analyse_cmpexp and analyse_2d_density, have a param-
eter that allows specifying a file that contains a list of
experiment IDs.

2) Data series selection: All analyse tasks, except anal-
yse_dash_goodput, provide the source_filter param-
eter that gives each extract and analysis function a
rudimentary mechanism to identify the flows to be plot-
ted. Note, source_filter only limits what is plotted.
Intermediate data files are always extracted for all flows
in an experiment. However, the list of files passed by the
extract task to the analysis task will only contain files
for the selected flows. Section III-B5 describes how to
use the parameter.

4Since TEACUP v0.5. No trailing semicolon for only one test ID.

3) Re-using previously extracted data: All analysis
functions above have a parameter replot_only. This
parameter allows to replot the graphs without extracting
the data again (e.g. from tcpdump, SIFTR or Web10G
files). If replot_only is set to ‘1’ data is still ex-
tracted for experiments where data has not been extracted
before, but for experiments with already extracted data
the graph(s) are created based on the existing extracted
data. For example, the following command recreates
the graphs without extracting already extracted data
again:

> fab analyse_all:replot_only=1

4) Specifying the location of intermediate data files:
By default all interim data files are generated in a sub
directory (with the directory name being the test ID
prefix) inside the directory where fab is executed. To
put the output files into a specific directory the out_dir

parameter can be specified (and it will be passed to
the extract tasks(s)). If out_dir is an absolute path,
the output files will be put in the specified directory.
If out_dir is a relative path, it is treated as relative
to the location of the log files when determining the
directory for the output files. The directories are created
automatically if they do not exist. The following is an
example where the output files are put in sub-directories
named ‘results’ inside each test ID prefix sub directory
with experiment data:

> fab analyse_all:out_dir=./results/

Assuming we executed the last command in a fabfile
directory <fabfile_dir> with two sub directories, one for
test ID prefix 20131206-102931_exp and one for test
ID prefix 20131206-124510_exp, the output files will
be put in the directories:
<fabfile_dir>/20131206-102931_exp/results/
<fabfile_dir>/20131206-124510_exp/results/

5) Specifying the location of final graphs: By default,
the final PDF files (graphs) will be created in out_dir.
This can be adjusted using the pdf_dir parameter. Like
out_dir the specified directory is either an absolute path
or a relative path which is relative to the location of
the experiment’s log files. The directory is automatically
created if it does not exist. The parameter can be used
as follows:

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

out_dir=./results,pdf_dir=./pdfs

CAIA Technical Report 150529B May 2015 page 11 of 28

6) Suppressing small or unchanging datasets: In many
experiments we may have TCP flows where data only/-
mostly flows in one direction and TCP statistics in the
other direction are basically constant. The omit_const

parameter can be used to suppress any completely con-
stant series (i.e. all values are identical). It can be used
as follows:

> fab analyse_all:omit_const=1

Any flows that have only very few data points (less
or equal than min_values) are excluded from the plot
(by default min_values = 3). The min_values parameter
can be changed on the command line, for example the
following command omits any flows with 20 data points
or less from the plots:

> fab analyse_all:min_values=20

7) Adjusting the y-axes: All analyse tasks have the
parameters ymin and ymax. These parameter can be used
to set the y-axis limits to specific values, for example to
produce multiple plots with the same scale (by default
ymin is 0 and ymax is determined automatically). The
parameters can be used as follows (here the y-axis range
is set to 100–200 ms):

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

ymin=100,ymax=200

8) Adjusting time (x-axes) scales: All tasks tasks that
plot data over time have the parameters stime and etime

to control the x-axis limits of the plots (by default stime
is 0.0 and etime is the duration of the experiment).
Note that using these parameters allows to zoom in,
but the data outside the specified interval is not filtered
out. The y-axis maximum is adjusted automatically to
the maximum occurring in the specified x-axis interval,
but the legend is not adjusted. To remove unwanted
entries in the legend (e.g. flows not in the time window),
one must use source_filter to filter out the the
unwanted flows (see Section III-B5). The parameters can
be used as follows (here the x-axis range is set to 5–10
seconds):

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

stime=5,etime=10

9) User-supplied legend names: By default the legend
entries are simply the flow tuples (source IP, source port,
destination IP, destination port). The parameter lnames

can be used to replace these with more informative

names. One must specify the same number as names
as there are data series. Names specified must be sep-
arated by semicolons. The parameter can be used as
follows:

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

lnames=’TCP Reno;TCP Cubic’

10) Prefix for pdf file names: The out_name parameter
allows to change the name of the PDF files produced.
If out_name is specified, the prefix for the PDF files is
out_name followed by the test ID (followed by "_com-
parison" for comparison graphs based on multiple test
IDs). The parameter can be used as follows:

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

out_name=’ExperimentA’

11) Filtering SIFTR log lines: The analyse_all, anal-
yse_cwnd, analyse_tcp_rtt and analyse_tcp_stat tasks
have a parameter io_filter that allows specifying
whether TCP statistics are plotted based on incoming
(set value to ‘i’) outgoing (set value to ‘o’) or incoming
and outgoing packets (set value to ‘io’) for SIFTR log
files. The default value is ‘o’. Currently, the parameter
is only effective with SIFTR log files, it does nothing
with web10g log files.

Note: this parameter only takes effect if replot_only
is set to ‘0’ (i.e. you must re-extract intermediate data if
you want to change io_filter)

12) Correcting timestamps: All analyse tasks provide
a ts_correct parameter that can be used to correct
timestamps in the measurement data (e.g. timestamps
in tcpdump files) based on estimated clock offsets (see
Section III-B4). This parameter is passed to the extract
task(s) and Section III-B4 describes in more detail how
it works.

13) Burst-separation (incast experiments): The tasks
analyse_rtt, analyse_ackseq and analyse_incast can ex-
tract and plot data on a per-burst basis for incast exper-
iments, where we have bursts of TCP requests sent by a
querier to multiple responders interspersed by idle times.
The parameter burst_sep allows to specify the time
between bursts. Any idle time longer than burst_sep

signals the start of a new burst. If burst_sep is set
to 0, data will not be separated according to bursts. The
parameters sburst and eburst can be used to select the
bursts to be plotted (they start with an index of 1). Setting
eburst=0 means to end with the last burst.

CAIA Technical Report 150529B May 2015 page 12 of 28

14) Total throughput/goodput: The tasks
analyse_throughput and analyse_goodput by default plot
throughput and goodput for each direction of each traffic
flow. The parameter total_per_experiment can
be used to plot the total throughput or goodput. Note
that this parameter will cause the tasks to sum up all
the traffic in both directions unless a source_filter

is specified. Usually, we want the total only in one
direction, so a source_filter should be specified
that filters on a particular source or destination.

C. Common plotting environment variables

Plotting behaviour can be further controlled by a number
of shell environment variables. Here we explain the
parameters that work for many analyse functions. Task-
specific variables are described in the task sections. How
to set these environment variables depends on your Unix
shell.

1) Space for the legend: The variable YMAX_INC
controls the space for the legend. It assumes the legend
is plotted at the top, which is the default. The actual y-
axis maximum for the plot is ymax (1 + YMAX_INC),
where ymax is the maximum based on the data (or the
maximum specified by the user).

2) Smoothing the throughput calculations: Throughput
always needs to be computed over some time
interval. The variables AGGR_WIN_SIZE and
AGGR_INT_FACTOR allow you to specify the
window size and interpolation for throughput plots
(including comparison plots for throughput using the
task described in Section IV-P). Interpolation is useful
to ‘fill in the gaps’ when a long window size is chosen
to mitigate noise in the data.

AGGR_WIN_SIZE is specified in seconds, with
fractional values allowed. Setting AGGR_INT_FACTOR
to 1 means no interpolation, whereas setting
it to an integer value n greater than 1 means
you will get n times the number of data points
(where n − 1 points are interpolated points).
Effectively the interpolation creates overlapping
time windows, with the gaps between windows
being AGGR_WIN_SIZE/AGGR_INT_FACTOR
seconds. By default AGGR_WIN_SIZE=1 and
AGGR_INT_FACTOR=4.

3) Point thinning: By default all plot functions will plot
every point for each data series. If the data series’ are
very large, the resulting PDF files will be large and the

figures will take a long time to display. To reduce the size
of the plots and the time for opening them without loos-
ing important information TEACUP implements “point
thinning”, which can be controlled with the variable
PTHIN_DIST or PTHIN_DIST_FAC.

Using PTHIN_DIST one can set the minimum (Eu-
clidean) distance between plotted data points. Any data
points within the minimum distance are not plotted.
For example, PTHIN_DIST=0.25 means the minimum
(Euclidean) distance between two plotted points is 0.25
and any data points in-between are not plotted. By
default PTHIN_DIST=0, which means point thinning is
disabled.

Using the absolute Euclidean distance is problematic
if the scales of x-axis and y-axis differ significantly.
Then, we are likely to have either too few points in one
dimension or too many points in the other dimension.
Also specifying an absolute distance means we may
need to adjust the distance if we create zoomed-in
graphs.

Since version 0.8 TEACUP also allows to specify the
variable PTHIN_DIST_FAC which controls the mini-
mum distance of points in x-dimension and y-dimension
separately, relative to the x-range and y-range plotted.
A point is plotted if either the distance in x-dimension
is larger or equal PTHIN_DIST_FAC*<xrange> or
the distance in y-dimension is larger or equal
PTHIN_DIST_FAC*<yrange>, where <xrange> and
<yrange> are given by the data to plot and the settings
applied by the user through specifying ymin, ymax,
stime, and etime.

4) Size of plotted points: The point size in graphs can
be controlled with a variable POINT_SIZE. Note that
POINT_SIZE does not specify an absolute point size,
but it is a scaling factor that is multiplied with the actual
default point size. Hence, if POINT_SIZE is set to 1.0
the size of points will be the default size, if POINT_SIZE
is set to 0.5 the size of points will be half the default
size and so on. By default POINT_SIZE is 0.5.

5) Filter out inactive flows in time interval: By default
TEACUP does not filter out flows that were not active
within the time interval specified by the user with etime,
stime. Legend entries for these flows are still plotted, al-
though they can be supressed by using source_filter.
If FILTER_FLOWS is set to 1, TEACUP will filter out
all flows for which there is no data in the time interval
specified by the user. FILTER_FLOWS only works for

CAIA Technical Report 150529B May 2015 page 13 of 28

the tasks that plot time series, such as analyse_rtt,
analyse_cwnd, analyse_throughput, with the exception
that it does not work for analyse_dash_goodput.

6) Sorting flows by start time: By default, for
time series plots TEACUP sorts flows by the 5-
tuple or in the order of specified source filters. If
SORT_FLOWS_BY_START_TIME is set to 1, the de-
fault order is ignored and flows are sorted in the order
of their start times. Ordering flows by their start times
can be useful in some situations, for example, if more
than 12 flows are plotted as series of PDF files. The
variable works for all time series plots (except anal-
yse_dash_goodput).

7) Examples: The following shows an example where
we plot the throughput with a modified aggregation time
window and enabled point thinning (using the BASH
shell):

> AGGR_WIN_SIZE=2 AGGR_INT_FACTOR=8

PTHIN_DIST=0.25 fab analyse_throughput:

test_id=20131206-102931_dash_2000_tcp_newreno

D. analyse_throughput – Plot throughput over
time

This task plots the total or per-flow throughput over time.
The task has the standard parameters etime, lnames,
min_values, omit_const, out_dir, out_name,
pdf_dir, replot_only, source_filter, stime,
test_id, ts_correct, ymin, and ymax. It also has
the total_per_experiment_parameter.

1) Calculating IP-layer or link-layer throughput:
The analyse_all and analyse_throughput tasks have a
link_len parameter. If set to ‘0’ (default) throughput
is based on IP-layer packet length, if set to ‘1’ through-
put is based on link-layer frame length. Note that the
bandwidth limits specified on the router are link-layer
limits.

2) Examples: The following command generates a
throughput graph:

> fab analyse_throughput:test_id=

20131206-102931_dash_2000_tcp_newreno

The following shows an example where we plot
the throughput based on the length of link layer
frames:

> fab analyse_throughput:test_id=

20131206-102931_dash_2000_tcp_newreno,

link_len=1

E. analyse_rtt – Plot RTT (SPP) over time

This task plots RTT estimated by SPP for each
bidirectional flow over time. The task has the
standard parameters etime, lnames, min_values,
omit_const, out_dir, out_name, pdf_dir,
replot_only, source_filter, stime, test_id,
ts_correct, ymin, and ymax. It also has the burst
separation parameters burst_sep, sburst, eburst

and the udp_map parameter (explained in Section
III-D).

F. analyse_cwnd – Plot TCP CWND over time

This task plots the TCP CWND from SIFTR or web10g
logs for each direction of a TCP flow over time. The
task has the standard parameters etime, lnames,
min_values, omit_const, out_dir, out_name,
pdf_dir, replot_only, source_filter, stime,
test_id, ts_correct, ymin, and ymax. It also
has the io_filter parameter described in Section
IV-B11.

G. analyse_tcp_rtt – Plot TCP RTT over time

The analyse_tcp_rtt task plots a graph of TCP’s estimate
of the RTT (from SIFTR or web10g log files). The
task has the standard parameters etime, lnames,
min_values, omit_const, out_dir, out_name,
pdf_dir, replot_only, source_filter, stime,
test_id, ts_correct, ymin, and ymax. It also
has the io_filter parameter described in Section
IV-B11.

1) Smoothed or unsmoothed TCP RTT: By default the
TCP RTT graphs generated are for the smoothed RTT
estimates (and in case of SIFTR this is not the ERTT
estimates). If the parameter smoothed is set to ‘0’, non-
smoothed estimates are plotted (and in the case of SIFTR
this is the ERTT estimates). Note, the smoothed param-
eter can also be used with analyse_all, analyse_cmpexp
and analyse_2d_density.

2) Examples: The following command generates the
TCP RTT graph for the non-smoothed estimates:

> fab analyse_tcp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

smoothed=0

CAIA Technical Report 150529B May 2015 page 14 of 28

H. analyse_all – Combines basic analysis tasks

This task combines analyse_throughput, analyse_rtt,
analyse_cwnd and analyse_tcp_rtt and has the superset
of all the parameters of these tasks.

The easiest way to generate the four basic graphs (see
Section IV-A) for all experiments is to run the following
command in the directory containing the sub directories
with experiment data:

> fab analyse_all

This command will generate results for all experiments
listed in the file experiments_completed.txt. How-
ever, the test_id parameter can be used to only gen-
erate the plots for a specific experiment. Furthermore,
we can pass a custom list of experiment IDs (see
below).

1) Modifying the list of test IDs to analyse:
For analyse_all the parameter exp_list allows to
change the file used as list of test IDs (by default
experiments_completed.txt), which makes it pos-
sible to adjust the list of experiments we generate results
for. The following shows an example:

> fab analyse_all:exp_list=myexp_list.txt,

out_dir="./results"

2) Resuming an interrupted analyse_all: If an
analysis_all was interrupted (e.g. because a log
file was corrupted) we can resume the analysis
after the experiment with the corrupted files. First,
one needs to look up the next test ID after the
corrupted test ID in experiments_completed.txt.
Then, one can resume at this test ID using the
resume_id parameter. For example, if for a test ID
20131206-102931_dash_2000_tcp_newreno_run_0
we cannot do the analysis because of corrupted
data files and the next test ID is 20131206-
102931_dash_2000_tcp_newreno_run1, we can continue
the analysis with this command:

> fab analyse_all:resume_id=

20131206-102931_dash_2000_tcp_newreno_run_1

I. analyse_tcp_stat – Plot arbitrary TCP statistic over
time

The analyse_tcp_stat function can be used to plot
any TCP statistic from SIFTR or Web10G logs. The
task has the standard parameters etime, lnames,
min_values, omit_const, out_dir, out_name,

pdf_dir, replot_only, source_filter, stime,
test_id, ts_correct, ymin, and ymax. It also
has the io_filter parameter described in Section
IV-B11.

1) Selecting statistic: The parameter siftr_index de-
fines the index of the column of the statistic to plot for
SIFTR log files. The parameter web10g_index defines
the index of the column of the statistic to plot for
Web10G log files. The start index for both parameters
is 1, which selects the statistic in the first column. If
one has only SIFTR or only Web10G log files the other
index does not need to be specified. But for experiments
with SIFTR and Web10G log files both indexes must
be specified. By default both indexes are set to plot
CWND. The lists of available statistics (including the
column numbers) are in the SIFTR README [9] and
the Web10G documentation [10].

2) Adjusting y-axis label and scaler: The parameter
ylabel can be used to set the y-axis label to a user-
defined string. The parameter yscaler can be used
to scale the extracted data values by a user-defined
factor.

3) Examples: We can plot the number of kilo bytes
in the send buffer at any given time with the com-
mand:5

> fab analyse_tcp_stat:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

siftr_index=22,web10g_index=120, ylabel="Snd

buf (kbytes)",yscaler=0.001

J. analyse_ackseq – Plot acknowledged bytes or du-
pACKSs over time

This task plots the cumulative number of bytes
acknowledged or the cumulative number of dupACKs
for TCP flows. The task has the standard parameters
etime, lnames, min_values, omit_const,
out_dir, out_name, pdf_dir, replot_only,
source_filter, stime, test_id, ts_correct,
ymin, and ymax.

It also has the burst separation parameters burst_sep,
sburst, eburst. If burst_sep is set to 0, data will not
be separated according to bursts and the plot will show
acknowledged bytes or dupACKs for the whole flow. If
burst_sep is set to 1, each burst between idle times will

5This command works with web10g version 2.0.9 logs. Use
web10g_index=116 when parsing web10g version 2.0.7 logs.

CAIA Technical Report 150529B May 2015 page 15 of 28

be plotted as separate data series and the acknowledged
bytes or dupACKs are normalised to that they are zero
at the start of each burst. The parameters sburst and
eburst can be used to select the bursts to be plotted
(assuming burst_sep is not set to 0). Both start with
an index of 1. Setting eburst=0 means to end with the
last burst.

Note that since analyse_ackseq processes the ac-
knowledgement number stream, source_filter needs
to be specified in the opposite direction as for
other tasks. For example, if we want to plot
the throughput for a source 172.16.10.60 we set
source_filter=S_172.16.10.60_*, but to plot the ac-
knowledged bytes for this source we have to use
source_filter=D_172.16.10.60_*.

1) Choosing between bytes and dupACKs: The param-
eter dupacks allows to choose whether acknowledged
bytes (dupacks=0, default) or dupACKs (dupacks=1)
are plotted.

2) Examples: The following shows an example of how
to use the task to plot per burst acknowledged bytes
omitting the first burst (assuming the gaps between bursts
are at least 1 second long):

> fab analyse_ackseq:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

burst_sep=1.0,sburst=2,eburst=0

K. anlyse_dash_goodput – Plot DASH-like client good-
put over time

The analyse_dash_goodput task allows to plot the
goodput for DASH-like traffic over time. The plot is
based on data from the httperf log files of the DASH-
like clients (named <test_id>_httperf_dash.log.gz). The
task has the common parameters etime, lnames,
out_dir, out_name, pdf_dir, replot_only,
stime, test_id, ts_correct, ymin, and ymax.
Note that ts_correct has no effect for this task as
the timestamps are not taken from log files, but are
generated based on the nominal request times given by
the configuration of the DASH-like client.

1) Extracting data for specific experiments: By default
the task extracts data from all client log files for all test
IDs specified. However, if dash_log_list is specified
the task extracts the data from the log files listed in a
text file (the value of dash_log_list is the file name).
This allows to explicitly list which dash client logs are
used, and these files can also be from experiments with

different test IDs. The format of the log list file is
one file name per line. The paths do not need to be
specified, as TEACUP will automatically find the files
assuming they are in a sub directory below the fabfile.py
directory.

Note that the number of legend names specified with
lnames must be equal to the number of files names
specified in the log list file (if dash_log_list is used)
or equal to the number of log files with the specified test
ID (if dash_log_list is not used).

2) Plot nominal goodput: By default anal-
yse_dash_goodput will also plot the nominal
goodput, i.e. goodput according to the DASH rate
specified in the traffic generation configuration. The
NO_NOMINAL environment variable can be used to tell
plot_dash_goodput to not plot this. If NO_NOMINAL=1
the nominal goodput will not be plotted. Note that the
task can only plot a maximum of 11 data series in a
single graph.

3) Examples: The task can be used as follows:

> fab analyse_dash_goodput:

dash_log_list=dash_logs.txt,out_dir=./results/,

lnames="newreno;cdg;vegas"

L. analyse_goodput – Plot TCP goodput over
time

This task plots goodput for TCP flows. This task
plots the total or per-flow goodput over time. The
task has the standard parameters etime, lnames,
min_values, omit_const, out_dir, out_name,
pdf_dir, replot_only, source_filter, stime,
test_id, ts_correct, ymin, and ymax. It also has
the total_per_experiment_parameter.

Note that this task is work in progress. Currently, the
goodput is computed based on the acknowledged bytes
over time (extract_ackseq). This has the side effect that
source_filter needs to be specified in the opposite
direction as for other tasks (see Section IV-J). In the
future it would be better to compute the goodput from
the TCP sequence numbers directly.

1) Examples: The following command generates
a graph of total goodput for the source
172.16.11.60:

CAIA Technical Report 150529B May 2015 page 16 of 28

> fab analyse_goodput:test_id=

20131206-102931_dash_2000_tcp_newreno,

source_filter=D_172.16.11.60_*,

total_per_experiment=1

M. analyse_incast – Plot response times over time (in-
cast)

The task analyse_incast can be used to plot response
times for incast experiments over time. It plots the
response times as reported by httperf (httperf log
files are present if incast traffic was generated). The
task has the standard parameters etime, lnames,
min_values, omit_const, out_dir, out_name,
pdf_dir, replot_only, source_filter, stime,
test_id, ts_correct, ymin, and ymax.

It also has the burst separation parameters burst_sep,
sburst, and eburst (explained in Section III-D).
These allow to select only a subset of the queries, aka
bursts, to be plotted. sburst specified the first burst
included in the plot (starting from index of 1) and
eburst specifies the last burst included in the plot.
By default, the plot will include the response time of
all bursts. Note, that sburst and eburst are currently
only supported for the default case of tcpdump=’0’ (see
below).

1) Filtering on flows: Note that for analyse_incast
flows are bidirectional, and the source of an in-
cast flow is always the querier and the destination
of an incast flow is always one of the responders.
This needs to be taken into account when using
source_filter. For example, to filter the response
times for responder 172.16.11.61 one needs to specify
source_filter=D_172.16.11.60_*.

2) Boxplots instead of lines: The task has a boxplot

parameter. If this parameter is set to ‘1’, instead of
plotting one line for the response times of each flow, a
boxplot is generated for each point in time that captures
the distribution of response times over all flows (default
is ‘0’).

3) Selecting data source: By default analyse_incast ex-
tracts the data from the httperf log files. Alternatively, if
tcpdump is set to ‘1’ the task will extract the response
times from the tcpdump files collected at the querier
(time between seeing the GET and the last packet of
the response). If tcpdump is set to ‘1’, the parameter
query_host must be set to the host name of the querier
(as specified in the config file).

4) Slowest response only: The task has a parameter
slowest_only (default is ‘0’). If slowest_only is
set to ‘1’, instead of plotting separate data for each flow,
the task will only plot the slowest response time over
all flows for each burst. If slowest_only is set to ‘2’,
instead of plotting separate data for each flow, the task
will only plot the time between the first request sent and
the time the last response was finished for each burst
(default is ‘0’).

5) Examples: The following shows an example where
we plot the slowest response time for each burst based
on the times in the httperf logs:

> fab analyse_incast:

test_id=20140704-181632_incast_tcp_newreno,

,out_dir=./results/, slowest_only=’1’

The following shows an example where we plot the re-
sponse times based on tcpdump data (assuming testhost1
was the querier):

> fab analyse_incast:

test_id=20140704-181632_incast_tcp_newreno,

,out_dir=./results/, tcpdump=’1’,

query_host=testhost1

N. analyse_incast_iqtimes – Plot inter-query times (in-
cast)

This task plots the times between requests sent
by the querier (for checking whether requests
were sent close together in time). The task has
the standard parameters etime, lnames, min_values,
omit_const, out_dir, out_name, pdf_dir,
replot_only, source_filter, stime, test_id,
ts_correct, ymin, and ymax. It also has the
parameter query_host that must be used to specify
the querier (name as specified in TPCONF_hosts) and
the parameter burst_sep that must be used to specify
the time between request bursts (by default this is set to
1 second).

1) Definition of inter-query time: By default inter-query
time is defined as the time difference between a request
and the first request in the same burst of requests. This
allows to view how far query times are spread within
each burst. To get a better idea of the timing jitter, the
parameter diff_to_burst_start can be set to ‘0’, to
compute the time differences between each request and
the previous request within the same burst.

CAIA Technical Report 150529B May 2015 page 17 of 28

2) No grouping by responders: By default response
times are extracted and plotted separately (in dif-
ferent colours) for each responder. The parameter
by_responder can be set to ‘1’ to extract only one
file with all response times and plot the response time
for all responders in the same colour.

3) Cumulative response times: By default inter-query
times are plotted against the time they occurred. The
task also supports a cumulative plot mode to be able to
analyse whether inter-query times significantly differ be-
tween different responders or different experiments. Set-
ting the parameter cumulative to ‘1’ means the inter-
query times will be plotted in a cumulative fashion. In-
stead of each y-value being the inter-query time, each y-
value will be either the current inter-query time plus the
duration of all previous bursts (if by_responder=0) or
the current inter-query time plus all previous inter-query
times (if by_responder=1). Note that if cumulative
is set to ‘1’, diff_to_burst_start should be set to
‘1’ (the default), otherwise the resulting graph is hard to
interpret.

4) Examples: The following command plots the inter-
query times as computed in different colours for each
host (assuming the querier was testhost1):

> fab analyse_incast_iqtimes:

test_id=20140704-181632_incast_tcp_newreno,

,out_dir=./results/, query_host=testhost1,

cumulative=0

The following command plots the inter-query times in a
cumulative fashion separately for each responder (again
assuming the querier was testhost1):

> fab analyse_incast_iqtimes:

test_id=20140704-181632_incast_tcp_newreno,

,out_dir=./results/, query_host=testhost1,

cumulative=1,by_responder=1

O. analyse_pktloss – Plot packet loss rate

This task plots the packet loss rate in percent for
emulated FPS game traffic flows. The task has the
standard parameters etime, lnames, min_values,
omit_const, out_dir, out_name, pdf_dir,
replot_only, source_filter, stime, test_id,
ts_correct, ymin, and ymax. Packet loss is
computed from the raw data by computing the
percentage of lost packets for each time window. The
environment variables AGGR_WINDOW_SIZE and

AGGR_INT_FACTOR can be used to control the
window size and oversampling.

1) Examples: The following command plots the packet
loss rate for two game traffic flows originating from the
same source:

> fab analyse_pktloss:

test_id=20141003-111821_game_traffic_aqm_pfifo,

,out_dir=./results/,

source_filter=”S_172.16.10.2:10000;

S_172.16.10.2:10001”

P. analyse_cmpexp – Plot metric depending on experi-
ment variables

The task analyse_cmpexp allows to plot the metrics
‘throughput’, ‘spprtt’, ‘tcprtt’ (unsmoothed/ERTT),
‘cwnd’, ‘tcpstat’, ‘ackseq’, ‘restime’ and ‘iqtime’
depending on the different experiment parameters
for different selected flows. It can show the metric
distribution as boxplots (default), or plot the mean
or median. The task has the standard parameters
etime, lnames, min_values, omit_const,
out_dir, out_name, pdf_dir, replot_only,
source_filter, stime, ts_correct, ymin, and
ymax. However, a few of these parameters are handled
slightly differently (explained below).

1) Specifying test IDs: The task has no test_id param-
eter. The exp_list parameter allows to specify a text file
containing the list of experiments as for analyse_all (one
experiment ID per line), making it possible to precisely
select which combinations of parameters should be con-
sidered. For example, we can remove certain parameter
values by removing all test IDs with these values from
the list passed via exp_list. Note that all experiments
to be compared must have the same test ID prefix and
the same parameters varied.

2) Specifying the test ID prefix: Prior to version 0.9
TEACUP identified which variables were used and
what their names are in the log file names from
the config.py file (TPCONF_vary_parameters and TP-
CONF_parameter_list). This meant that at the time of
running analyse_cmpexp, the TPCONF_vary_parameters
in config.py had to be the configuration used for the
experiment(s) specified in exp_list.

Since version 0.9 TEACUP identifies which variables
were used and what their names are from the exper-
iment file names directly and does not need to ac-
cess config.py. In order to reliable detect the param-

CAIA Technical Report 150529B May 2015 page 18 of 28

eter names, the user must specify the test ID pre-
fix format (as regular expression) using the parameter
test_id_prefix. By default the parameter is set to
‘[0-9]{8}\-[0-9]{6}_experiment’ (to match the default
YYYYMMDD_HHMMSS_experiment format for test ID
prefixes).

3) Intermediate files and final graphs: Intermediate data
must already exist from previous executions of extract or
analyse tasks, or analyse_cmpexp will trigger extraction
of the data itself using the appropriate extract task(s).
This extraction process is controlled by the parameter
res_dir.

If res_dir is set and points to the existing intermedi-
ate files6, analyse_cmpexp will search for and use the
existing files. If files are missing analyse_cmpexp will
abort. If res_dir is an empty string or unspecified,
analyse_cmpexp will run the necessary extract tasks and
the extracted data will be placed in out_dir (if set)
or in the experiment directory (default). If you want
analyse_cmpexp to explicitly (re-)run the data extraction,
leave res_dir unset and (optionally) set out_dir with
the desired destination for the extracted intermediate
files.

4) Controlling which data to plot: The variables pa-
rameter can be a semicolon-separated list of variable
names (names as used in the log file names) with asso-
ciate values (separated by an equal sign). This provides
a simple filter, as only experiments are considered where
the variable(s) had the value(s) specified. Note that the
equals (=) must be escaped with backslashes, otherwise
Fabric will parse these.

The parameter source_filter works as explained in
Section III-B5 and must be specified to control for which
flows the metrics will be plotted.

5) Plot type: The metric parameter specifies the met-
ric to plot: ‘throughput’ (default), ‘spprtt’, ‘tcprtt’ (un-
smoothed/ERTT), ‘cwnd’, ‘tcpstat’, ‘ackseq’, ‘restime’
and ‘iqtime’. The ptype parameter specifies the plot
type: ‘box’ (default), ‘mean’, or ‘median’.

6) Plot scaling, legend and labeling: The ymin and
ymax parameters allow to specify custom minimum and
maximum values for the y-axis (as for the other analyse
tasks). The lnames parameter allows to specify the
legend names used as list of semicolon-separated strings

6E.g. The location given by the out_dir parameter to the
previously run extract or analyse.

(as for the other analyse tasks). Note, the number of
legend strings must the same as the number of source
filters. By default the legend names are the source filters
specified.

The stime and etime parameters allow to plot data for
selected time windows only. In contrast to the other
tasks this is not zooming (as there is no time axis), but
all the data series are actually filtered to only contain
values from inside the time window prior to plotting the
data.

Currently it is not possible to reorder the different
parameters for plotting other than by generating a cus-
tom experiment ID list. The default order is the order
specified in the config (which is the same as the order
in the file names). By default the x-axis labels contains
all variable parameters, even the ones that had only one
value (and were de-facto constant). The Boolean pa-
rameter omit_const_xlab_vars allows to automatically
exclude constant variables from the x-axis labels. If set
to ‘1’ any variables that always had the same value in
all experiments do not appear in the x-axis labels.

7) Grouping flows: By default analyse_cmpexp groups
experiments by traffic flow, meaning each group in the
plot is for one traffic flow, identified by a unique flow
tuple (source IP, source port, destination IP, destination
port), regardless of the series of experiments (test ID
prefix) in which the traffic was produced. The Boolean
parameter group-by-experiment allows to group by test
ID prefix instead by setting group-by-experiment=1.
With this each group in the plot relates to a particular
series of experiments (identified by a test ID prefix) and
the actual flow tuples can differ for different test ID
prefixes. Of course in this case the number of (filtered)
flows must be the same for all series of experiments and
also the flows must be comparable across different series,
i.e. the same type of test traffic was used in all series of
experiments.

8) Merging data: The parameter merge_data specifies
whether to merge the extracted data over all flows/re-
sponders per experiment. By default (merge_data=0)
data for each flow/responder is plotted as separate
box/median/mean. If merge_data=1 only one box/me-
dian/mean will be plotted for each experiment. Note,
TEACUP simply merges all types of data – the user must
decide whether merging actually makes sense.

9) Metric specific parameters: The task has a number of
metric specific parameters that are passed to the appro-

CAIA Technical Report 150529B May 2015 page 19 of 28

priate extract functions and/or select the data columns in
the interim data files needed.

The parameter link_len defines whether to use IP
layer packet length or link layer packet length for
metric ‘throughput’ (see Section III-C). The parameter
smoothed defines the type of RTT for metric ‘tcprtt’
(see Section IV-G). The parameter stat_index defines
the statistic to be extracted and plotted for metric ‘tcp-
stat’ (see Section III-G). The parameter dupacks defines
whether to plot acknowledged bytes or dupACKs for
metric ‘ackseq’ (see Section IV-J), and the parameter
cum_ackseq specifies whether to plot the cumulative
values (cum_ackseq=1) or averages per time window
(cum_ackseq=0). The parameters sburst and eburst can
be used to select the bursts for metrics ‘ackseq’ and
‘restime’. The parameter slowest_only can be used
to plot the slowest response time for each burst, or the
time between the first request sent and the last response
finished (see Section III-K).

10) Response time special modes: If metric is set to
‘restime’, the parameter res_time_mode controls special
plot modes for response time plots. If res_time_mode is
set to 0 the plot is generated as normal.

If res_time_mode is set to 1 in addition to the observed
response times the nominal response time is plotted as
points. This only works if the parameters ‘incSz’ (block
size), ‘down’ (bandwidth), and ‘responders’ (number of
responders) are present in all the interim data file names.7

The nominal response time is computed as: block_size
* number_of_responders / (bandwidth / 8).

If res_time_mode is set to 2 and ptype is set to ‘median’
or ‘mean’, the ratio of observed median/mean response
time and nominal response time is plotted. This only
works if the nominal response time can be computed as
described above.

11) Environment variables: The plotting can be further
controlled by task-specific environment variables.

The variable OUTLIER_QUANT removes any points
in the lowest OUTLIER_QUANT and highest OUT-
LIER_QUANT quantiles. For example, specifying OUT-
LIER_QUANT=0.01 will remove all data points that fall
in the <0.01 quantile and all data points that fall in the
>0.99 quantile.

7We assume responder to querier traffic was considered the ‘down-
stream’ direction during the actual TEACUP experiment

Setting NICER_XLABS=1 will modify the plotting of
x-axis labels so that variable names are plotted once (on
the left side) and only the variable values will be plotted
at each tick. The environment variables YMAX_INC,
AGGR_WIN_SIZE, and AGGR_INT_FACTOR can also
be used and work as explained in Section IV-C.

The variable DIFF=1 can be set to convert cumulative
data into non-cumulative data. Effectively the data vector
of non-cumulative values is generated by taking the dif-
ferences of subsequent values of the original cumulative
data vector.

The variable NO_BARS=1 can be set to plot points
instead of the default bars when ptype is set to ‘median’
or ‘mean’.

12) Examples: The following command shows an ex-
ample, where we plot TCP RTT as boxplots:

> fab analyse_cmpexp:exp_list=

myexp_list.txt,res_dir="./results/",

variables="run\=0", source_filter=

"D_172.16.10.2_5001;D_172.16.10.3_5006",

metric=tcprtt, lnames="CDG;Newreno"

Q. analyse_2_density – Plot two metrics against each
other depending on experiment variables

The analyse_2_density task can create 2-dimensional
density plots or ellipse plots allowing to explore the
relationship between two metrics depending on differ-
ent experiment parameter combinations. It supports the
same metrics as analyse_cmpexp: ‘throughput’, ‘spprtt’,
‘tcprtt’ (unsmoothed/ERTT), ‘cwnd’, ‘tcpstat’, ‘ackseq’,
‘restime’ and ‘iqtime’. The task has the standard parame-
ters out_dir, replot_only, source_filter, ymin,
ymax, lnames, out_name, min_values, ts_correct,
and pdf_dir. A few of these parameters are handled
slightly differently (explained below).

Please note that this task is somewhat experimental and
still under development.

1) Specifying test IDs: The task has no test_id pa-
rameter. The exp_list parameter allows to specify a
text file containing the list of experiments as for anal-
yse_cmpexp. Also, as for analyse_cmpexp, the parameter
test_id_prefix must be specified in case the test ID
prefix used is not the standard prefix.

2) Intermediate files and final graphs: Intermediate
data must already exist from previous executions of
extract or analyse tasks, or analyse_2d_density will

CAIA Technical Report 150529B May 2015 page 20 of 28

trigger extraction of the data itself using the appro-
priate extract task(s). This extraction process is con-
trolled by the parameter res_dir as described for anal-
yse_cmpexp.

3) Controlling which data to plot: The variables pa-
rameter can be a semicolon-separated list of variable
names (names as used in the log file names) with asso-
ciate values (separated by an equal sign). This provide a
simple filter, as only experiments are considered where
the variable(s) had the value(s) specified. Note that the
equals (=) must be escaped with backslashes, otherwise
Fabric will parse these.

The parameter source_filter works as explained in
Section III-B5 and must be specified to control for which
flows the metrics will be plotted.

4) Plot type: The xmetric parameter specifies the met-
ric for the x-axis and the ymetric parameter specifies
the metric for the y-axis. Both parameter values must be
selected from the set of available metrics.

5) Axis limits: Instead of the usual parameters stime,
etime, analyse_2d_density has the parameters xmin,
xmax for limiting the x-axis values. Note that due to the
internals of a different plotting function used (R ggplot2),
the parameters xmin, xmax, ymin, ymax do not only
zoom-in on the data, they actually filter out any data
points outside of the specified limits.

6) Grouping: The parameter group_by can be used to
specify the different groups. Each group will be plotted
in a different colour and will appear as a separate entry
in the legend. The value must be set to the name of a
parameter varied during the experiment (the name of the
variable in the file names). By default group_by is set
to ‘aqm’.

7) Merging data: The parameters merge_xdata and
merge_ydata specify whether to merge the extracted
data over all flows/responders per experiment for the
x-axis and/or y-axis. If set to ‘0’ data is extracted
per flow/responder and for the plot a single flow
needs to be selected with source_filter. If set to ‘1’
source_filter can be used to select multiple flows, i.e.
by using a wildcard for the port number, and the data
for all flows will be merged. Note that TEACUP simply
merges all types of data, it is the user’s responsibility to
decide whether it makes sense to merge the data.

8) Metric specific parameters: The task has a number
of metric specific parameters that are passed to the

extract functions and/or select the data columns in the
interim data files needed. It has all the metric-specific
parameters of analyse_cmpexp, except stat_index. In-
stead of stat_index analyse_2d_density has the pa-
rameters xstat_index and ystat_index to specify the
indexes for both axes. xstat_index must be set if
xmetric=tcpstat and ystat_index must be set if
ymetric=tcpstat.

9) Environment variables: The plotting can be further
controlled by task-specific environment variables.

The variable OUTLIER_QUANT removes any points
in the lowest OUTLIER_QUANT and highest OUT-
LIER_QUANT quantiles. For example, specifying OUT-
LIER_QUANT=0.01 will remove all data points that fall
in the <0.01 quantile and all data points that fall in the
>0.99 quantile.

The variable ELLIPSE controls whether a 2D density
plot or a ellipse plot will be created. By default 2D
density plots are created (ELLIPSE=0). To create ellipse
plots instead set ELLIPSE=1. For 2D density plots
the PDF files have a ‘2d_density_plot.pdf’ extension
whereas for ellipse plots the PDF files have a ‘el-
lipse_plot.pdf’ extension.

The variable BINS can be used to set the number of
bins for the 2D density estimation (only effective if
ELLIPSE=0). By default the number of bins is set
to 4. The variable ADD_RAND can be used to add
randomness to the data (noise is drawn from a uniform
distribution within the interval of (-0.5, 0.5)). By default
no randomness is added. If 2D density should be plotted
(ELLIPSE=0) and the data consists of discrete values, the
resulting graphs can look better with added randomness
(ADD_RAND=1).

The variable MEDIAN can be set to 1 to plot the median
for each group. By default the task does not plot the
median. The variable NO_LEGEND can be set to 1 to
suppress the legend, which by default is shown to the
right of the graph.

By default only the estimations or ellipses are plotted.
The variable SCATTER can be set to 1 to superimpose
a scatter plot of all points on the 2D density or ellipse
plot.

The variable DIFF=1 can be set to convert cumulative
data into non-cumulative data. Effectively the data vector
of non-cumulative values is generated by taking the dif-

CAIA Technical Report 150529B May 2015 page 21 of 28

ferences of subsequent values of the original cumulative
data vector.

10) Examples: The following example command plots
a 2D density plot for traffic going to a particular destina-
tion (172.16.11.68 port 5000) with throughput as metric
on the x-axis and TCP RTT as metric on the y-axis, and
three different groups based on the AQM method that
was used (FIFO, Codel, PIE):

> ADD_RAND=1 fab analyse_2d_density:

exp_list= myexp_list.txt,res_dir="./results/",

variables="run\=0",source_filter=

"D_172.16.11.68_5000",xmetric=throughput,

ymetric=tcprtt,link_len=1,

group_by=”aqm”,lnames="fifo;codel;pie"

The following example command is the same as the
previous, except that now we plot an ellipse plot instead
of a 2D density plot:

> ELLIPSE=1 ADD_RAND=1

fab analyse_2d_density:

exp_list=myexp_list.txt,res_dir="./results/",

variables="run\=0",source_filter=

"D_172.16.11.68_5000",xmetric=throughput,

ymetric=tcprtt,link_len=1,

group_by=”aqm”,lnames="fifo;codel;pie"

R. Limits on series/groups per graph

Currently the underlying plot function for all time se-
ries graphs, such as analyse_throughput, analyse_spp_rtt,
analyse_cwnd, analyse_tcp_rtt, and analyse_tcp_stat, can
only plot 12 different time series on a single graph.
If the number of data series to plot is larger than 12,
multiple graphs are generated with a _<graph_number>
at the end of each file name to indicate the number of
the graph in the series of graphs (graph number starting
from 1).

The number of groups (corresponding to legend entries)
that can be plotted in one graph with analyse_cmpexp
and analyse_2d_density is limited to 12.

V. CUSTOMISE PLOTTING

The previous section explained some environment vari-
ables that a user can use to customise the plotting. Inter-
nally, TEACUP also sets a variety of other environment
variables and passes them to the plotting script. The
plotting script reads these environment variables and
generates the plot based on their values. For example,

TEACUP sets a variable YLAB with the value being
the label string plotted on the y-axis. All existing en-
vironment variables are explained at the beginning of
each default plot script and the parameters passed are
also explained in the TEACUP code calling the script
(analyse.py).

All analyse tasks have a parameter called plot_params

that can be used to override any of the environment
variables. This allows the user to customise things for
which there is no TEACUP task parameter, such as the y-
axis label. For example, we can set environment variables
to plot the throughput in Megabits per second instead
of the default kilobits per second as follows (note that
any ’=’ must be escaped, so they are not interpreted by
Fabric):

> fab analyse_throughput:test_id=

20131206-102931_dash_2000_tcp_newreno,

plot_params="YLAB\=\"Throughput (mbps)\"

YSCALER\=0.000008"

Furthermore, all analyse tasks have a parameter called
plot_script that can be used to specify the script
used for plotting. If this parameter is set, the specified
script will be executed instead of the default script. The
default plotting scripts are R scripts located in the teacup
source directory, so by default plot_script looks like
this:
R CMD BATCH --vanilla

<TPCONF_script_path>/<R_script>

The simplest way of customising things is to create a
modified R script (say <my_R_script>) based on the
original plotting script (<R_script>).Then one can simply
set plot_script to:
R CMD BATCH --vanilla

<TPCONF_script_path>/<my_R_script>

However, one could also specify an entirely different
script written in an entirely different scripting lan-
guage.

The plot script gets its input from TEACUP via the
environment variables. The plot script is called with a
single command line argument, which is a file name
for logging output from the script, e.g. log messages,
warning, or errors. The output file is only created if TP-
CONF_debug_level is greater than 0 (see [4]). The name
of the log file is currently hard-coded and corresponds to
the name of the default R script used for plotting.

CAIA Technical Report 150529B May 2015 page 22 of 28

VI. UTILITY FUNCTIONS

This section describes some analysis and plotting re-
lated utility functions TEACUP provides. For example,
TEACUP provides some functionality to combine multi-
ple graphs into a single graph, so results can be compared
more easily.

A. Combining graphs

There are two simple shell scripts to combine different
result graphs (different PDF files) on a single page
for easy comparison.8 The assumption is that the TCP
congestion control algorithm is the innermost parameter
varied (i.e. the last parameter in the file name).

The script tcp_comparison.sh can be used to combine
throughput, RTT, CWND or SPP RTT graphs for up to
four different TCP congestion control algorithms on one
page. For example, the following command creates four
PDFs, each with four graphs for each TCP congestion
control algorithm (assuming the test ID is 20131220-
182929_del_<delay>_tcp_<tcp_algo>):

> tcp_comparison.sh 20131220-182929_del_10_tcp

test

The output files are:
test_cwnd_different_tcps.pdf
test_spprtt_different_tcps.pdf
test_tcprtt_different_tcps.pdf
test_throughput_different_tcps.pdf

The second script tcp_comparison_allinone.sh cre-
ates the same PDFs as above but in addition creates one
single-page PDF with all throughput, RTT, CWND and
SPP RTT graphs for up to four TCP congestion control
algorithms (up to 16 graphs in total). It can be used as
follows:

> tcp_comparison_allinone.sh

20131220-182929_del_10_tcp test

The output files are:
test_cwnd_different_tcps.pdf
test_spprtt_different_tcps.pdf
test_tcprtt_different_tcps.pdf
test_throughput_different_tcps.pdf
test_different_tcps_allinone.pdf

The two scripts are not strictly limited to combining the
results for different TCP congestion control algorithms.

8These scripts require that the pdfjam package is installed (on
FreeBSD this can be installed from the ports tree).

They can be used with any last parameter as long as
there are no more than four values. However, part of the
output file names is hard-coded.

To combine graphs with more flexibility one can use the
script combine_graphs.sh, which is used by the scripts
for TCP comparison. The script allows to combine an
arbitrary number of graphs one one page. For example,
if we want to compare the CWND graphs for two
different delay values and four different TCP congestion
control algorithms we can do this with the following
command:

> combine_graphs.sh -c 4x2 -o test.pdf
‘find . -name

20131220-182929_del_*_tcp_*cwnd*.pdf | sort‘

Here the find command is used with wild-cards to
select the PDF files to combine on one page and the -c

parameter is used to specify that the graphs are organised
in a layout with 2 rows and 4 columns. Instead of using
find one can specify all file names explicitly. This
allows for full control of the location of graphs on the
single page, but is cumbersome if there are many graphs.
Note that combine_graphs.sh puts the graphs on the
page row after row, i.e. for a 4x2 layout the first four
graphs go in the first row, the second four graphs go in
the second row, etc.

VII. USE CASE – ANALYSING AN INCAST

EXPERIMENT

In this use case we analyse the data from incast ex-
periments carried out with TEACUP where one Linux
querier sent quasi-simultaneous queries to multiple
Linux responders in fixed five-second time intervals.
Over successive experiments we have increased the num-
ber of responders from 4 to 12. Upstream/downstream
bandwidth was 50 Mpbs, emulated delay was 1 ms, the
buffer size of the bottleneck was 120 packets, and the
size of the responses was 512 kB. TCP was Linux Cubic
and the AQM was varied.

A. Analysing throughput and RTT

First, we use analyse_throughput to plot throughput.
We filter so that only the flows from the responder
are included as the flows from the querier are mainly
ACKs after the initial query (using source_filter). We
reduce the point size in the plot with POINT_SIZE
and tweak the window for throughput calculations with

CAIA Technical Report 150529B May 2015 page 23 of 28

AGGR_WIN_SIZE and AGGR_INT_FACTOR (the de-
fault window settings are inappropriate for short sub-
second traffic bursts). We use plot_params to change
from the default kbps to Mbps. We only plot the first
two bursts (by setting etime=6), since all bursts look
relatively similar and we are interested to see more
details for single bursts. We set link_len=1 to plot
throughput including link-layer headers. The following
shows the command:

> POINT_SIZE=0.25 AGGR_WIN_SIZE=0.05

AGGR_INT_FACTOR=10 fab analyse_throughput:test_id=

20150218-135735_experiment_aqm_pfifo_responders_4,

out_dir=../result,link_len=1,source_filter=

"S_172.16.11.61_80; S_172.16.1

1.62_81;S_172.16.11.63_82;S_172.16.11.64_83",

etime=6,plot_params=’YLAB\="Throughput (mbps)"

YSCALER\=0.000008’

Next, we use analyse_rtt to plot the RTT. The parameters
used are a subset of the above:

> POINT_SIZE=0.25 fab analyse_rtt:test_id=

20150218-135735_experiment_aqm_pfifo_responders_4,

out_dir=../results,source_filter="S_172.16.11.61_80;

S_172.16.11.62_81;S_172.16.11.63_82;

S_172.16.11.64_83",etime=6

Figure 2 shows the throughput and RTT figures for the
experiment with 4 responders. The throughput graph
shows that the throughput varies depending on the re-
sponder. For example, in the first part of the first burst
responders 1, 3 and 4 have roughly 12–15 mpbs whereas
responder 2 has 7–10 mbps, and only when the first three
responders are finishing responder 2 is catching up. The
second burst is even more unequal with responders 1 and
3 getting a higher share of the bandwidth at the start, and
responder 2 and 4 catching up later. The RTT estimated
by SPP reaches up to 29 ms with is the theoretical limit
(1500 byte packet size multiplied with 120 buffer slots
divided by 50 mbps).

B. Analysing time between queries

For incast experiments the goal is that the querier in
each round/burst sends out the queries as closely together
in time as possible. We now investigate the time gaps
between queries for the experiment with 4 responders.
We use the analyse_incast_iqtimes task to plot the times
between a query sent to a responder and the first query
sent in each burst separately for all responders (by setting
by_responder=1 and cumulative=1). The querier must

be specified with query_host, in this case it was host
newtcp20. The following shows the command:

> POINT_SIZE=0.5 fab analyse_incast_iqtimes:test_id=

20150218-135735_experiment_aqm_pfifo_responders_4,

out_dir=../results,query_host=newtcp20,

by_responder=1,cumulative=1

Figure 3 shows the plot of inter-query times for the
experiment with 4 responders. It shows that for the first
7 bursts the requests were sent very closely together
within 2 ms. However, from burst 8 onwards, the requests
were sent more and more spread out with the request to
responder 1 falling behind more and more. Still, even for
the last burst all requests were sent within 9 ms.

C. Analysing response times

Now let us have a look at the actual response times for
the experiment with 4 responders. To plot the response
times over time for each responder separately, we use
the analyse_incast task without any parameters (except
that we use out_dir to put the interim data files and the
PDF files in the desired directory):

> POINT_SIZE=0.5 fab analyse_incast:test_id=

20150218-135735_experiment_aqm_pfifo_responders_4,

out_dir=../results

Figure 4 shows the response times over time for the dif-
ferent responders for the experiment with 4 responders.
Response time varies for the different responders but in
general is between 0.3 and 0.35 seconds for all bursts.
For the first two bursts we can see that response times
are exactly as expected from the throughput graphs, e.g.
in burst one responder 2 has the highest response time
since it has the lowest throughput initially.

D. Analysing acknowledged bytes and dupACKs

To plot the acknowledged bytes and dupACKs we use the
analyse_ackseq task. We set burst_sep to 1 second and
select only the first and second burst with sburst=1 and
eburst=2. We select the ACK flows corresponding to the
data flows from the four responders using source_filter.
Since the ACK flows travel in the opposite direction as
the data, our source filters from Section VII-A (which
filtered the data coming from the various responders) now
become filters that filter the ACKs going to the various
responders.

CAIA Technical Report 150529B May 2015 page 24 of 28

●

●●

●

●●●

●

●●●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●●

●

●
●

●
●●

●

●

●
●●●
●
●
●●●

●
●

●●●

●

●

●●●
●

●

●●●●

●

●●●●

●

●●●●

●

●
●

●

●●

●
●

●●●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●
●

0 1 2 3 4 5 6

0

5

10

15

20

25

30

35

20150218−135735_experiment_tcp_cubic_del_1_aqm_pfifo_responders_4_down_50mbit_up_50mbit_incPer_5_incSz_512_bs_120_ecn_0_run_0

Time (s)

T
hr

ou
gh

pu
t (

m
bp

s)

●

●●

●

●●●

●

●●●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●●

●

●
●

●
●●

●

●

●
●●●
●
●
●●●

●
●

●●●

●

●

●●●
●

●

●●●●

●

●●●●

●

●●●●

●

●
●

●

●●

●
●

●●●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●
●

● 172.16.11.61_80_172.16.10.60_42192
172.16.11.62_81_172.16.10.60_55673

172.16.11.63_82_172.16.10.60_39335
172.16.11.64_83_172.16.10.60_49270

(a) Throughput

●

●●
●●
●●
●
●●
●

●●
●
●●●
●
●●
●●
●●
●●
●●
●●
●

●●●
●●
●●
●●
●●
●●●
●
●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●
●●
●●●●●
●●
●●●
●●
●●

●●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●●
●
●●

●●
●●
●●

●●
●
●
●●
●

●
●●
●●
●

●

●●●
●●●●●

●

●●●●
●●●

●●●●
●●●●●●●

●●
●
●
●
●●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●
●
●

●
●
●
●
●
●
●
●●●●●
●●

●●
●●●●●
●●
●●●
●●
●●

●●●●●

●
●
●●●●●●●

●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●●●●
●
●●●
●

0 1 2 3 4 5 6

0

5

10

15

20

25

30

35

20150218−135735_experiment_tcp_cubic_del_1_aqm_pfifo_responders_4_down_50mbit_up_50mbit_incPer_5_incSz_512_bs_120_ecn_0_run_0

Time (s)

S
P

P
 R

T
T

 (
m

s)

●

●●
●●
●●
●
●●
●

●●
●
●●●
●
●●
●●
●●
●●
●●
●●
●

●●●
●●
●●
●●
●●
●●●
●
●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●
●●
●●●●●
●●
●●●
●●
●●

●●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●●
●
●●

●●
●●
●●

●●
●
●
●●
●

●
●●
●●
●

●

●●●
●●●●●

●

●●●●
●●●

●●●●
●●●●●●●

●●
●
●
●
●●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●
●
●

●
●
●
●
●
●
●
●●●●●
●●

●●
●●●●●
●●
●●●
●●
●●

●●●●●

●
●
●●●●●●●

●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●●●●
●
●●●
●

● 172.16.10.60_42192_172.16.11.61_80
172.16.10.60_55673_172.16.11.62_81

172.16.10.60_39335_172.16.11.63_82
172.16.10.60_49270_172.16.11.64_83

(b) RTT

Figure 2: Throughput and RTT statistics for experiment with 4 responders

● ● ● ● ●

●

●

●

●

●

●

●

0 10 20 30 40 50

0

2

4

6

8

10

20150218−135735_experiment_tcp_cubic_del_1_aqm_pfifo_responders_4_down_50mbit_up_50mbit_incPer_5_incSz_512_bs_120_ecn_0_run_0

Time (s)

In
te

r−
qu

er
y

tim
e

(m
s)

● ● ● ● ●

●

●

●

●

●

●

●

● 172.16.11.61.80
172.16.11.62.81

172.16.11.63.82
172.16.11.64.83

Figure 3: Incast inter-query times for experiment with 4
responders

> POINT_SIZE=0.25 fab analyse_ackseq:test_id=

20150218-135735_experiment_aqm_pfifo_responders_4,

out_dir=../results,source_filter=

"D_172.16.11.61_80;D_172.16.11.62_81;

D_172.16.11.63_82;D_172.16.11.64_83",

burst_sep=1,sburst=1,eburst=2

Figure 5 shows the acknowledged bytes per burst for
each responder for the experiment with 4 responders.
Again we can see that the download speed varies for
the different responders with responder 2 being the
slowest.

●

●

●
●

●
●

● ● ● ● ● ●

0 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

20150218−135735_experiment_tcp_cubic_del_1_aqm_pfifo_responders_4_down_50mbit_up_50mbit_incPer_5_incSz_512_bs_120_ecn_0_run_0

Time (s)

R
es

po
ns

e
tim

e
(s

)
●

●

●
●

●
●

● ● ● ● ● ●

● 172.16.10.60_50001_172.16.11.61_80
172.16.10.60_50001_172.16.11.62_81

172.16.10.60_50001_172.16.11.63_82
172.16.10.60_50001_172.16.11.64_83

Figure 4: Incast response times for experiment with 4
responders

E. Response times versus number of responders

Finally, let us compare the response times for an increas-
ing number of responders. To plot comparison graphs
we use the analyse_cmpexp task. We create a file called
explist.txt that contains the list of experiment IDs for all
the experiments with different responders. The file has
the following content:
20150218-135735_experiment_aqm_pfifo_responders_4
20150218-135735_experiment_aqm_pfifo_responders_5
20150218-135735_experiment_aqm_pfifo_responders_6
20150218-135735_experiment_aqm_pfifo_responders_7
20150218-135735_experiment_aqm_pfifo_responders_8
20150218-135735_experiment_aqm_pfifo_responders_9
20150218-135735_experiment_aqm_pfifo_responders_10
20150218-135735_experiment_aqm_pfifo_responders_11
20150218-135735_experiment_aqm_pfifo_responders_12

CAIA Technical Report 150529B May 2015 page 25 of 28

● ●●●
●●●
●●●
● ●●●

●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●

●●●
●● ●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●●●

●●●
●●●
●●●
●●●
●●●
●●

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0

100

200

300

400

500

600

700

20150218−135735_experiment_tcp_cubic_del_1_aqm_pfifo_responders_4_down_50mbit_up_50mbit_incPer_5_incSz_512_bs_120_ecn_0_run_0

Time (s)

B
yt

es
 a

ck
no

w
le

dg
ed

 (
K

by
te

s)

● ●●●
●●●
●●●
● ●●●

●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●

●●●
●● ●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●●●

●●●
●●●
●●●
●●●
●●●
●●

● 172.16.10.60_42192_172.16.11.61_80%1
172.16.10.60_42192_172.16.11.61_80%2
172.16.10.60_55673_172.16.11.62_81%1
172.16.10.60_55673_172.16.11.62_81%2

172.16.10.60_39335_172.16.11.63_82%1
172.16.10.60_39335_172.16.11.63_82%2
172.16.10.60_49270_172.16.11.64_83%1
172.16.10.60_49270_172.16.11.64_83%2

Figure 5: Acknowledged bytes per burst and responder
for experiment with 4 responders

First, let us have a look at the first four responders. We
specify source_filter to select the first four responders.
We set metric to response time (‘restime’) and the type
of plot to boxplot (‘box’). The PDF file name prefix is
set to “FIRST_FOUR” to get a file name we can identify
later.

To make the x-axis look nicer we set NICER_XLABS=1
and omit_const_xlab_vars=1. We decided to change the
first default colour, as the default dark blue makes the
median lines inside the boxes harder to read (and as
excuse to introduce the plot_script parameter). We cre-
ated a slightly modified version of the default plot script
named my_plot_cmp_experiments.R, in which the first
colour is changed from the default dark blue to a lighter
blue (by redefining the cols array defined in plot_func.R
after the point where plot_func.R is included).9 Then
we instructed TEACUP to use the modified script for
plotting with the plot_script parameter.

The command used for plotting is:

9Note that my_plot_cmp_experiments.R includes other R
scripts, such as plot_func.R. The included scripts also need to be
copied in the same directory as my_plot_cmp_experiments.R

even if they are not modified. Alternatively, one needs to modify
the include paths to point to the original scripts from the TEACUP
distribution.

> NICER_XLABS=1 fab analyse_cmpexp:exp_list=

explist.txt,out_dir=../results,

source_filter="D_172.16.11.61_80;D_172.16.11.62_81;

D_172.16.11.63_82;D_172.16.11.64_83",

metric=restime,ptype=box,omit_const_xlab_vars=1,

out_name="FIRST_FOUR",plot_script="R CMD BATCH

--vanilla ./my_plot_cmp_experiments.R"

Figure 6 shows the response time distribution as boxplots
for the first four responders over all the experiments
(the boxplots are the distributions of the response times
over all burst in each experiment). We can see that
response time is increasing with the total number of
responders as expected, but depending on the experiment
and responder there variations.

Next, let us simply plot the response time distributions
over all responders in each experiment. We specify
source_filter to select all flows to the querier and instruct
TEACUP to merge all flows in each experiment into one
box instead of plotting a box for each flow (by setting
merge_data=1). The other parameters used are the same
as before.

The command used for plotting is:

> NICER_XLABS=1 fab analyse_cmpexp:exp_list=

explist.txt,out_dir=../results,

source_filter="S_172.16.10.60_*",merge_data=1,

metric=restime,ptype=box,omit_const_xlab_vars=1,

out_name="ALL",plot_script="R CMD BATCH --vanilla

./my_plot_cmp_experiments.R"

Figure 7 shows the response time distributions as box-
plots, where each box shows the distribution of response
times over all bursts of all responders in each experiment.
The figures shows that response time is increasing with
an increasing number of responders as expected. It also
shows that the variance of the response times increases
with an increasing number of responders.

VIII. CONCLUSIONS AND FUTURE WORK

TEACUP is a Python-based software tool we developed
to run automated TCP performance tests in a controlled
testbed [4]. In this report we described TEACUP’s
functionality to extract statistics and plot graphs based
on data collected during the experiments.

ACKNOWLEDGEMENTS

TEACUP versions prior to 1.0 were developed as part
of a project funded by Cisco Systems and titled "Study

CAIA Technical Report 150529B May 2015 page 26 of 28

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

FIRST_FOUR_20150218−135735_experiment_restime_box

R
es

po
ns

e
tim

e
(s

)

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

4 5 6 7 8 9 10 11 12responders

0.0

0.2

0.4

0.6

0.8

1.0

1.2
D_172.16.11.61_80
D_172.16.11.62_81

D_172.16.11.63_82
D_172.16.11.64_83

Figure 6: Response time distributions for the first four responders depending on the number of responders

●●

●
●

●

●
●●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

ALL_20150218−135735_experiment_restime_box

R
es

po
ns

e
tim

e
(s

)

●●

●
●

●

●
●●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

4 5 6 7 8 9 10 11 12responders

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Merged data

Figure 7: Response time distributions for all responders depending on the number of responders

in TCP Congestion Control Performance In A Data
Centre". This was a collaborative effort between Swin-
burne University of Technology’s Center for Advanced
Internet Archectures and Fred Baker of Cisco Systems.
These may be found at http://caia.swin.edu.au/tools/
teacup/downloads.html.

Starting with TEACUP v1.0, development will be
community supported and publicly hosted at http://
sourceforge.net/projects/teacup/.

REFERENCES

[1] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G.
Rao, “Youtube everywhere: Impact of device and infrastructure
synergies on user experience,” in Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference,
ser. IMC ’11, 2011, pp. 345–360.

[2] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and
W. Dabbous, “Network characteristics of video streaming traf-
fic,” in Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’11,
2011, pp. 25:1–25:12.

[3] “Dynamic adaptive streaming over HTTP (DASH) – Part 1: Me-
dia presentation description and segment formats,” ISO, 2012,
iSO/IEC 23009-1:2012. http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=57623.

[4] S. Zander, G. Armitage, “TEACUP v1.0 – A System for
Automated TCP Testbed Experiments,” Centre for Advanced
Internet Architectures, Swinburne University of Technology,
Tech. Rep. 150529A, 2015. [Online]. Available: http://caia.
swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf

[5] S. Zander and G. Armitage, “Minimally-Intrusive Frequent
Round Trip Time Measurements Using Synthetic Packet-Pairs,”
in The 38th IEEE Conference on Local Computer Networks
(LCN 2013), 21-24 October 2013.

[6] A. Heyde, “SPP Implementation,” August 2013. [Online].
Available: http://caia.swin.edu.au/tools/spp/downloads.html

CAIA Technical Report 150529B May 2015 page 27 of 28

http://caia.swin.edu.au/tools/teacup/downloads.html
http://caia.swin.edu.au/tools/teacup/downloads.html
http://sourceforge.net/projects/teacup/
http://sourceforge.net/projects/teacup/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.pdf
http://caia.swin.edu.au/tools/spp/downloads.html

[7] D. Hayes, “Timing enhancements to the FreeBSD kernel
to support delay and rate based TCP mechanisms,” Centre
for Advanced Internet Architectures, Swinburne University
of Technology, Melbourne, Australia, Tech. Rep. 100219A,
19 February 2010. [Online]. Available: http://caia.swin.edu.au/
reports/100219A/CAIA-TR-100219A.pdf

[8] S. Zander, “TEACUP v1.0 – Command Reference,”
Centre for Advanced Internet Architectures, Swinburne
University of Technology, Tech. Rep. 150529C, 2015.

[Online]. Available: http://caia.swin.edu.au/reports/150529C/
CAIA-TR-150529C.pdf

[9] L. Stewart, “SIFTR v1.2.3 README,” July 2010.
[Online]. Available: http://caia.swin.edu.au/urp/newtcp/tools/
siftr-readme-1.2.3.txt

[10] M. Mathis, J. Semke, R. Reddy, J. Heffner, “Documentation
of variables for the Web100 TCP Kernel Instrumentation Set
(KIS) project.” [Online]. Available: http://www.web100.org/
download/kernel/tcp-kis.txt

CAIA Technical Report 150529B May 2015 page 28 of 28

http://caia.swin.edu.au/reports/100219A/CAIA-TR-100219A.pdf
http://caia.swin.edu.au/reports/100219A/CAIA-TR-100219A.pdf
http://caia.swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf
http://caia.swin.edu.au/reports/150529C/CAIA-TR-150529C.pdf
http://caia.swin.edu.au/urp/newtcp/tools/siftr-readme-1.2.3.txt
http://caia.swin.edu.au/urp/newtcp/tools/siftr-readme-1.2.3.txt
http://www.web100.org/download/kernel/tcp-kis.txt
http://www.web100.org/download/kernel/tcp-kis.txt

	Contents
	Introduction
	Overview
	Architecture
	Experiment configuration information
	Modifying or replacing analysis functionality
	Interim data file names
	Directory caching
	Flow caching

	Data Extraction
	Extract tasks overview
	Common parameters
	extract_pktsizes -- Extract packet sizes for throughput computation
	extract_rtt -- RTT estimates (based on SPP)
	extract_cwnd -- TCP CWND
	extract_tcp_rtt -- RTT estimates from TCP
	extract_tcp_stat -- Extract any TCP statistic
	extract_all -- Combination of basic extract methods
	extract_ackseq -- Extract acknowledged bytes or dupACKs
	extract_dash_goodput -- Extract goodput for DASH experiments
	extract_incast -- Extract response times for incast experiments (from httperf logs)
	extract_incast_restimes -- Extract response times for incast experiments (from tcpdump)
	extract_incast_iqtimes -- Extract inter-query times (incast experiments)
	extract_pktloss -- Extract packet loss information

	Data Analysis
	Analysis tasks overview
	Common task parameters
	Common plotting environment variables
	analyse_throughput -- Plot throughput over time
	analyse_rtt -- Plot RTT (SPP) over time
	analyse_cwnd -- Plot TCP CWND over time
	analyse_tcp_rtt -- Plot TCP RTT over time
	analyse_all -- Combines basic analysis tasks
	analyse_tcp_stat -- Plot arbitrary TCP statistic over time
	analyse_ackseq -- Plot acknowledged bytes or dupACKSs over time
	anlyse_dash_goodput -- Plot DASH-like client goodput over time
	analyse_goodput -- Plot TCP goodput over time
	analyse_incast -- Plot response times over time (incast)
	analyse_incast_iqtimes -- Plot inter-query times (incast)
	analyse_pktloss -- Plot packet loss rate
	analyse_cmpexp -- Plot metric depending on experiment variables
	analyse_2_density -- Plot two metrics against each other depending on experiment variables
	Limits on series/groups per graph

	Customise Plotting
	Utility Functions
	Combining graphs

	Use Case -- Analysing an Incast Experiment
	Analysing throughput and RTT
	Analysing time between queries
	Analysing response times
	Analysing acknowledged bytes and dupACKs
	Response times versus number of responders

	Conclusions and Future Work
	References

