
TEACUP v0.9 – A System for Automated TCP
Testbed Experiments

Sebastian Zander, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 150414A

Swinburne University of Technology
Melbourne, Australia

szander@swin.edu.au, garmitage@swin.edu.au

Abstract—Over the last few decades several TCP congestion control algorithms were
developed in order to optimise TCP’s behaviour in certain situations. While TCP
was traditionally used mainly for file transfers, more recently it is also becoming
the protocol of choice for streaming applications, for example video streaming from
YouTube and Netflix is TCP-based [1], [2] and there is an ISO standard for Dynamic
Adaptive Streaming over HTTP (DASH) [3]. However, the impact of different TCP
congestion control algorithms on TCP-based streaming flows (within a mix of other
typical traffic) is not well understood. Experiments in a controlled testbed allow
shedding more light on this issue. This report describes TEACUP (TCP Experiment
Automation Controlled Using Python) version 0.9 – a software tool for running
automated TCP experiments in a testbed. Based on a configuration file TEACUP
can perform a series of experiments with different traffic mixes, different bottleneck
configurations (such as bandwidths, queue mechanisms), different emulated network
delays and/or loss rates, and different host settings (e.g. used TCP congestion control
algorithm). For each experiment TEACUP automatically collects relevant information
that allows analysing TCP behaviour, such as tcpdump files and TCP stack information.

Index Terms—TCP, experiments, automated control

CONTENTS

I Introduction 2

II TEACUP Requirements and Design 3
II-A Requirements 3
II-B Overall design 3
II-C Experiment process flow 4
II-D Fabric – overview and installation 5

III Traffic Generation and Logging 5
III-A Traffic sources and sinks 5
III-B Loggers 6
III-C Host information logged 6
III-D Experiment config information

logged 7
III-E Log file naming 7

IV Host and Router Configuration 8
IV-A Host setup 8
IV-B Linux router setup 8

IV-C FreeBSD router setup 10

V Config File 11
V-A Config file location 11
V-B V_variables 11
V-C Fabric configuration 11
V-D Testbed configuration 12
V-E General experiment settings 12
V-F tcpdump/pcap configuration 13
V-G Topology configuration 13
V-H Rebooting, OS selection and

power cycling 14
V-I Clock offset measurement (broad-

cast pings) 15
V-J Custom host init commands . . . 16
V-K Router queue setup 16
V-L Traffic generator setup 17
V-M Available traffic generators 18
V-N Mandatory experiment variables . 21
V-O Experiment-specific variables . . . 22
V-P Defining parameters to vary . . . 23

CAIA Technical Report 150414A April 2015 page 1 of 44

mailto:szander@swin.edu.au
mailto:garmitage@swin.edu.au

V-Q Adding new V_ variables 23

VI Running Experiments 24
VI-A Initial steps 24
VI-B Example config 24
VI-C Running experiments 24
VI-D TEACUP variable information

logged 26

VII Host Control Utility Functions 26
VII-A Remote command execution . . . 27
VII-B Copying files to testbed hosts . . . 27
VII-C Installing ssh keys 27
VII-D Topology configuration 27
VII-E Initialise hosts to a specific oper-

ating system 27
VII-F Power cycling 28
VII-G Check software installations on

testbed hosts 28
VII-H Check testbed host connectivity . 28
VII-I Check TEACUP config file 28

VIII Experiment Examples 29
VIII-A Overview 29
VIII-B Scenario 1: Two TCP flows from

data sender to receiver 29
VIII-C Scenario 2: Scenario 1 plus auto-

matic booting of hosts 33
VIII-D Scenario 3: Scenario 1 plus power

control 34
VIII-E Scenario 4: TCP flows with same

bottleneck queue but different delay 35
VIII-F Scenario 5: Partially overlapping

TCP flows with different TCP CC 36
VIII-G Scenario 6: Two HTTP-based

video streaming clients 37
VIII-H Scenario 7: Incast problem scenario 38

IX Extending TEACUP Functionality 39
IX-A Additional host setup 39
IX-B New TCP congestion control al-

gorithm 39
IX-C New traffic generator 40
IX-D New data logger 40
IX-E New analysis method 41

X Known Issues 42

XI Conclusions and Future Work 43

References 43

I. INTRODUCTION

Over the last few decades several TCP congestion control
algorithms were developed in order to optimise TCP’s
behaviour in certain situations. While TCP was tradi-
tionally used mainly for file transfers, more recently it
is also becoming the protocol of choice for streaming
applications, for example video streaming from YouTube
and Netflix is TCP-based [1], [2] and there is an ISO
standard for Dynamic Adaptive Streaming over HTTP
(DASH) [3]. However, the impact of different TCP
congestion control algorithms on TCP-based streaming
flows (within a mix of other typical traffic) is not well
understood. Experiments in a controlled testbed allow
shedding more light on this issue.

This report describes TEACUP (TCP Experiment Au-
tomation Controlled Using Python) version 0.9 – a
software tool for running automated TCP experiments
in a testbed. It updates the previous tech reports de-
scribing TEACUP version 0.4, version 0.6 and version
0.8 [4]. Based on a configuration file TEACUP can
perform a series of experiments with different traffic
mixes, different bottlenecks (such as bandwidths, queue
mechanisms), different emulated network delays and/or
loss rates, and different host settings (e.g. TCP conges-
tion control algorithm). For each experiment TEACUP
automatically collects relevant information that allows
analysing TCP behaviour, such as tcpdump files, SIFTR
[5] and Web10G [6] logs. The related technical report [7]
describes the design and implementation of our testbed
in which we use TEACUP.

TEACUP also provides a number of tasks for the anal-
ysis of data collected during experiments. The analysis
aspect of TEACUP is quite distinct from the tasks that
actually run experiments and gather testbed data, hence
these are described in the accompanying technical report
[8].

This report is organised as follows. Section II describes
the overall design of TEACUP – the testbed network
model, process flow and use of Fabric. Section III
outlines the traffic generators and logging available under
TEACUP, while host and bottleneck router configuration
is summarised in Section IV. Section V describes the
configuration options available when running experi-
ments as described in Section VI. Section VII describes
utility functions that can be used for host maintenance.
Section IX outlines how to extend TEACUP. Section X

CAIA Technical Report 150414A April 2015 page 2 of 44

lists known issues. Section XI concludes and outlines
future work.

II. TEACUP REQUIREMENTS AND DESIGN

This section describes the design of TEACUP. We first
list the requirements. Then we describe the overall
functional block design and the process flow. Finally,
we describe the naming scheme for log files.

A. Requirements

The following paragraphs describe the requirements that
motivated our design of TEACUP.

1) General: Create a system to automate performing
a series of TCP experiments with varying parame-
ters.

2) Topology: TEACUP runs experiments in a controlled
environment like that shown in Figure 1 [7], where one
bottleneck router interconnects two experiment networks.
The experiment networks contain hosts that can act
as traffic sources and sinks. The router, all hosts and
TEACUP (on a control server) are also connected to
a separate control network.1 TEACUP configures hosts
before each experiment and collects data from hosts after
each experiment.2 Where the control network is a private
network, the control server may act as a NAT gateway
enabling all testbed hosts to access the public Internet if
necessary.

3) TCP algorithms: The following TCP congestion con-
trol algorithms must be supported: NewReno and CU-
BIC (representing classic loss-based algorithms), Com-
poundTCP (Microsoft’s hybrid), CDG (CAIA’s hybrid),
and HD (Hamilton Institutes’ delay-based TCP). Option-
ally other TCPs may be supported. All the noted TCP
algorithms are sender-side variants, so the destination
can be any standard TCP implementation.

4) Path characteristics: The system must be able to
create bottleneck bandwidth limits to represent likely
consumer experience (e.g. ADSL) and some data centre
scenarios. Emulation of constant path delay and loss in
either direction is required to simulate different condi-
tions between traffic sources and sinks. The emulation
is implemented by the bottleneck node (router).

1The control server also runs a DHCP+TFTP server for the PXE
boot setup described in [7].

2If the networks are implemented as VLANs on a suitable Ethernet
switch, TEACUP can also automate the assignment of hosts to one or
the other experiment network and associated VLAN (Section V-G).

5) Bottleneck AQM: The following Active Queuing
Management (AQM) mechanisms are required: Tail-
Drop/FIFO, CoDel, PIE, RED. Optionally other AQM
mechanisms may be supported. Since FreeBSD does not
support some of the required AQMs the router must run
Linux (but to allow comparison TEACUP also has some
basic support for a FreeBSD router). The buffer size must
be configurable.

6) ECN Support: It must be possible to enable/disable
Explicit Congestion Notification (ECN) on hosts and/or
router.

7) Host OS: We are OS-agnostic. However, to cover
the various TCP algorithms and their common im-
plementations TEACUP must support scenarios where
sources and/or destinations are Windows (Compound),
Linux (NewReno, CUBIC), FreeBSD (NewReno, CU-
BIC, CDG, HD) or Mac OS X (NewReno). Cygwin is
used to instrument Windows [7].

8) Traffic loads: The following traffic loads must be
supported: Streaming media over HTTP/TCP (DASH-
like), TCP bulk transfer, UDP flows (VoIP-like), and
data centre query/response patterns (one query to N
responders, correlated return traffic causing incast con-
gestion).

B. Overall design

TEACUP is built on Fabric [9] (Section II-D), a Python
(2.5 or higher) library and command-line tool for stream-
lining the remote application deployment or system
administration tasks using SSH. Our design is based
on multiple small tasks that are combined to run an
experiment or a series of experiments (where some
may also be executed directly from the command line).
Functions which are not Fabric tasks are ordinary Python
functions. Currently, we do not make use of the object-
oriented capabilities of Python.

Figure 2 shows the main functional building blocks. All
the blocks in the diagram have corresponding Python
files. However, we have summarised a number of Python
files in the helper_functions block. The fabfile block
is the entry point for the user. It implements tasks
for running a single experiment or a series of similar
experiments with different parameters. The fabfile block
also provides access to all other tasks via Python im-
ports.

CAIA Technical Report 150414A April 2015 page 3 of 44

��������

����������� �����������

�������������	�
���	�	

����	����	

������������	�	

�����	

�������� ��	������

�������� �� ��!�

����" ���������# ����#�"

�������

���	��

���������

���	��
�

����$ ����#�$

��������

��

Figure 1: Testbed topology

The experiment block implements the main function
that controls a single experiment and uses a number of
functions of other blocks. The sanity_checks block im-
plements functions to check the config file, the presence
of tools on the hosts, the connectivity between hosts,
and a function to kill old processes that are still running.
The host_setup block implements all functions to setup
networking on the testbed hosts (including basic setup of
the testbed router). The router_setup block implements
the functions that set up the queues on the router and
the delay/loss emulation. The loggers block implements
the start and stop functions of the loggers, such as
tcpdump and SIFTR/web10g loggers. The traffic_gens
block implements the start and stop functions of all
traffic generators.

The util block contains utility tasks that can be executed
from the command line, such as executing a command on
a number of testbed hosts or copying a file to a number of
testbed hosts. The analysis block contains all the post-
processing functions that extract measurement metrics
from log files and plot graphs.

C. Experiment process flow

The following list explains the main steps that are
executed during an experiment or a series of experi-
ments.

I) Initialise and check config file
II) Get parameter combination for next experiment

III) Start experiment based on config and parameter
configuration

1) Log experiment test ID in file
experiments_started.txt

2) Get host information: OS, NIC names, NIC
MAC addresses

3) Reboot hosts: reboot hosts as required given
the configuration

4) Topology reconfiguration (assign hosts to
subnets)

5) Get host information again: OS, NIC names,
NIC MAC addresses

6) Run sanity checks
• Check that tools to be used exist
• Check connectivity between hosts
• Kill any leftover processes on hosts

7) Initialise hosts
• Configure NICs (e.g. disable TSO)
• Configure ECN use
• Configure TCP congestion control
• Initialise router queues

8) Configure router queues: set router queues
based on config

9) Log host state: log host information (see
Section III-C)

10) Start all logging processes: tcpdump,
SIFTR/Web10G etc.

11) Start all traffic generators: start traffic gener-
ators based on config

12) Wait for experiment to finish

CAIA Technical Report 150414A April 2015 page 4 of 44

�������

����	�
���

�����������

	����	����� �����	

����

�	���������

�����	���������

������

��������

Figure 2: TEACUP main functional blocks

13) Stop all running processes on hosts
14) Collect all log files from logging and traffic

generating processes
15) Log experiment test ID in file

experiments_completed.txt

IV) If we have another parameter combination to run
go to step III, otherwise finish

D. Fabric – overview and installation

Fabric [9] provides several basic operations for executing
local or remote shell commands and uploading/down-
loading files, as well as auxiliary functions, such as
prompting the user for input, or aborting execution of the
current task. Typically, with Fabric one creates a Python
module where some functions are marked as Fabric tasks
(using a Python function decorator).

These tasks can then be executed directly from the
command line using the Fabric tool fab. The entry point
of the module is a file commonly named fabfile.py,
which is typically located in a directory from which
we execute Fabric tasks (if the file is named differently
we must use fab -f <name>.py). The complete list
of tasks available in fabfile.py can be viewed with
the command fab -l. Parameters can be passed to
Fabric tasks, however a limitation is that all parameter
values are passed as strings. A Fabric task may also
execute another Fabric task with Fabric’s execute()

function.

Sections VI and VII contain a number of examples of
how to run various TEACUP tasks.

TEACUP was developed with Fabric versions 1.8–1.10,
but it should also run with newer versions of Fabric. The
easiest way to install the latest version of Fabric is using

the tool pip. Under FreeBSD pip can be installed with
portmaster:

> portmaster devel/py-pip

On Linux pip can be installed with the package man-
ager, for example on openSUSE it can be installed as
follows:

> zypper install python-pip

Then to install Fabric execute:

> pip install fabric

You can test that Fabric is correctly installed:

> fab --version
Fabric 1.8.0
Paramiko 1.12.0

The Fabric manual provides more information about
installing Fabric [10].

III. TRAFFIC GENERATION AND LOGGING

This section describes the implemented traffic
sources/sinks and loggers, the range of information
logged and the log file naming schemes.

A. Traffic sources and sinks

We now describe the available traffic generator functions.
How these can be used is described in more detail in
Section V-M.

1) iperf: The tool iperf [11] can be used to generate
TCP bulk transfer flows. Note that the iperf client pushes
data to the iperf server, so the data flows in the opposite
direction compared to httperf. iperf can also be used

CAIA Technical Report 150414A April 2015 page 5 of 44

����

�����	

������

���������

�������

��
���

�������������

Figure 3: TCP video streaming (DASH) behaviour

to generate unidirectional UDP flows with a specified
bandwidth and two iperfs can be combined to generate
bidirectional UDP flows.

2) ping: This starts a ping from one host to another
(ICMP Echo). The rate of pings is configurable for
FreeBSD and Linux but limited to one ping per second
for Windows.

3) lighttpd: A lighttpd [12] web server is started. This
can be used as traffic source for httperf-based sinks.
There are also scripts to setup fake content for DASH-
like streaming and incast scenario traffic. However, for
specific experiments one may need to setup web server
content manually or create new scripts to do this. We
choose lighttpd as web server because it is leaner than
some other popular web servers and hence it is easier to
configure and provides higher performance.

4) httperf: The tool httperf [13] can be used to simulate
an HTTP client. It can generate simple request patterns,
such as accessing some .html file n times per second.
It can also generate complex workloads based on work
session log files (c.f. httperf man page at [13]).

5) httperf_dash: This starts a TCP video streaming
httperf client [14] that emulates the behaviour of DASH
or other similar TCP streaming algorithms [1], [2]. In the
initial buffering phase the client will download the first
part of the content as fast as possible. Then the client will
fetch another block of content every t seconds. Figure 3
shows an illustration of this behaviour. The video rate
and the cycle length are configurable (and the size of
the data blocks depends on these).

6) httperf_incast: This starts an httperf client for the
incast scenario. The client will request a block of content
from n servers every t seconds. The requests are sent

as close together as possible to make sure the servers
respond simultaneously. The size of the data blocks is
configurable. Note that emulating the incast problem in
a physical testbed is difficult, if the number of hosts
(number of responders) is relatively small.

7) nttcp: This starts an nttcp [15] client and an nttcp
server for simple unidirectional UDP VoIP flow emu-
lation. The fixed packet size and inter-packet time can
be configured. Note, nttcp also opens a TCP control
connection between client and server. However, on this
connection only a few packets are exchanged before and
after the data flow.

B. Loggers

Currently, there are two types of loggers that log infor-
mation on all hosts. All traffic is logged with tcpdump
and TCP state information is logged with different
tools.

1) Traffic logger: tcpdump is used to capture the traffic
on all testbed NICs on all hosts. All traffic is captured,
but the snap size is limited to 68 bytes by default.

2) TCP statistics logger: Different tools are used to log
TCP state information on all hosts except the router.
On FreeBSD we use SIFTR [5]. On Linux we use
Web10G [6], which implements the TCP EStats MIB
[16] inside the Linux kernel, with our own logging
tool based on the Web10G library. For Windows 7 we
implemented our own logging tool, which can access the
TCP EStats MIB inside the Windows 7 kernel. SIFTR
has not been ported to Mac OS X, so for Mac OS
X we implemented our own logging tool that outputs
TCP statistics logs in SIFTR format based on DTrace
[17]. Note that the DTrace tool collects most but not all
statistics collected by SIFTR (the tool’s documentation
describes the limitations).

The statistics collected by SIFTR are described in the
SIFTR README [18]. The statistics collected by our
Web10G client and the Windows 7 EStats logger are
described as part of the web100 (the predecessor of
Web10G) documentation [19].

C. Host information logged

TEACUP does not only log the output of traffic genera-
tors and loggers, but also collects per-host information.
This section describes the information collected for each

CAIA Technical Report 150414A April 2015 page 6 of 44

host participating in an experiment. The following infor-
mation is gathered before an experiment is started (where
<test_id_prefix> is a test ID prefix and <test_id> is a test
ID):

• <test_id>_ifconfig.log.gz: This file contains the out-
put of ifconfig (FreeBSD, Linux or MacOSX) or
ipconfig (Windows).

• <test_id>_uname.log.gz: This file contains the out-
put of uname -a.

• <test_id>_netstat.log.gz: This file contains informa-
tion about routing obtained with netstat -r.

• <test_id>_ntp.log.gz: This file contains information
about the NTP status based on ntpq -p (FreeBSD,
Linux, MacOSX or Windows with NTP daemon
installed) or w32tm (Windows).

• <test_id>_procs.log.gz: This file contains the list of
all running processes (output of ps).

• <test_id>_sysctl.log.gz: This file contains the output
of sysctl -a (FreeBSD, Linux or MacOSX) and
various information for Windows.

• <test_id>_config_vars.log.gz: This file contains in-
formation about all the V_ parameters in config.py
(see Section V). It logs the actual parameter values
for each experiment. It also provides an indication
of whether a variable was actually used or not
(caveat: this does not work properly with variables
used for TCP parameter configuration, they are
always shown as used).

• <test_id>_host_tcp.log.gz: This file contains infor-
mation about the TCP congestion control algorithm
used on each host, and any TCP parameters speci-
fied.

• <test_id>_tcpmod.log.gz: This file contains the TCP
congestion control kernel module parameter settings
(Linux only).

• <test_id>_ethtool.log.gz: This file contains the net-
work interface configuration information provided
by ethtool (Linux only).

• <test_id_prefix>_nameip_map.log.gz: This file logs
host names and IP addresses (control interface IP
addresses) of all hosts and routers participating in
the series of experiments.

The following information is gathered after an experi-
ment:

• <test_id>_queue_stats.log.gz: Information about the
router queue setup (including all queue discipline
parameters) as well as router queue and filtering
statistics based on the output of tc (Linux) or ipfw

(FreeBSD). Of course this information is collected
only for the router.

D. Experiment config information logged

TEACUP also logs information about the configuration
of each series of experiments and variables set for each
experiment. The following information is gathered before
an experiment is started (where <test_id_prefix> is a test
ID prefix and <test_id> is a test ID):

• <test_id>_config_vars.log.gz: This file logs the val-
ues of all V_ variables for each experiment (see
Section VI-D).

• <test_id_prefix>_config.tar.gz: This file contains
copies of the config file(s) – there can be multiple
files if Python’s execfile() is used to separate the
configuration into multiple files.

• <test_id_prefix>_tpconf_vars.log.gz: This file lists
all TPCONF_ parameters specified in the config
file(s) in a format that can be imported into Python.

• <test_id_pfx>_varying_params.log.gz: This file
contains a list of all V_ variables varied during the
experiment(s) and their short names used in file
names (see Section VI-D).

E. Log file naming

The log file names of TEACUP follow a naming scheme
that has the following format:

<test_ID_pfx>_[<par_name>_<par_val>_]*_<host>_

[<traffgen_ID>_]_<file_name>.<extension>.gz

The test ID prefix <test_ID_pfx> is the start of
the file name and either specified in the config file
(TPCONF_test_id) or on the command line (as described
in Section VI).

The [<par_name>_<par_val>_]* is the zero to n
parameter names and parameter values (separated by an
underscore). Parameter names (<par_name>) should not
contain underscores by definition and all underscores
in parameter values (<par_val>) are changed to hy-
phens (this allows later parsing of the names and values
using the underscores as separators). If an experiment
was started with run_experiment_single there are
zero parameter names and values. If an experiment was
started with run_experiment_multiple there are as
many parameters names and values as specified in
TPCONF_vary_parameters. We also refer to the part
<test_ID_pfx>_[<par_name>_<par_val>_]* (the
part before the <host>) as test ID.

CAIA Technical Report 150414A April 2015 page 7 of 44

The <host> part specifies the IP or name of the testbed
host a log file was collected from. This corresponds to
an entry in TPCONF_router or TPCONF_hosts.

If the log file is from a traffic generator specified
in TPCONF_traffic_gens, the traffic generator number
follows the host identifier ([<traffgen_ID>]). Other-
wise, <traffgen_ID> does not exist.

The <file_name> depends on the process which
logged the data, for example it set to ‘uname’ for uname
information collected, it is set to ‘httperf_dash’ for an
httperf client emulating DASH, or it set to ‘web10g’ for
a Web10G log file. tcpdump files are special in that they
have an empty file name for tcpdumps collected on hosts
(assuming they only have one testbed NIC), or the file
name is <int_name>_router for tcpdumps collected on
the router, where <int_name> is the name of the NIC
(e.g. eth1).

The <extension> is either ‘dmp’ indicating a tcpdump
file or ‘log’ for all other log files. All log files are usually
compressed with gzip, hence their file names end with
‘.gz’.

Figure 4 shows an example name for a tcpdump file
collected on host testhost2 for an experiment where two
parameters (dash, tcp) where varied, and an example
name for the output of one httperf traffic generator
(traffic generator number 3) executed on host testhost2
for the same experiment.

All log files for one experiment (e.g. fab
run_experiment_single) or a series of experiments
(e.g. fab run_experiments_multiple) are stored under a
sub directory named <test_ID_pfx> created inside
the directory where fabfile.py is located.3

IV. HOST AND ROUTER CONFIGURATION

This section provides a general description of how the
hosts and router are configured for each experiment
and test within an experiment. The router implements a
bottleneck with configurable one-way delays, rate limits
and AQM (active queue management).

A. Host setup

The setup of hosts other than the router is relatively
straight-forward. First, each host is booted into the

3Prior to version 0.4.7 TEACUP stored all log files in the directory
where fabfile.py was located.

selected OS. Then, hardware offloading, such as TCP
segmentation offloading (TSO), is disabled on testbed
interfaces (all OS), the TCP host cache is disabled
(Linux) or configured with a very short timeout and
purged (FreeBSD), and TCP receive and send buffers
are set to 2 MB or more (FreeBSD, Linux).

Next ECN is enabled or disabled depending on the con-
figuration. Then the TCP congestion control algorithm
is configured for FreeBSD and Linux (including loading
any necessary kernel modules). Then the parameters
for the current TCP congestion control algorithm are
configured if specified by the user (FreeBSD, Linux).
Finally, custom user-specified commands are executed on
hosts as specified in the configuration (these can overrule
the general setup).

B. Linux router setup

The router setup differs between FreeBSD (where ipfw
and Dummynet is used) and Linux (where tc and netem
is used). Our main focus is Linux, because Linux sup-
ports more AQM mechanisms than FreeBSD and some
of the required AQM mechanisms are only implemented
on Linux.

First, hardware offloading, such as TCP segmentation of-
floading (TSO) is disabled on the two testbed interfaces.
Then, the queuing is configured. In the following two
sub sections we first describe our overall approach to
setup rate limiting, AQM and delay/loss emulation for
the Linux router. Then, we describe an example setup to
illustrate the approach in practice.

1) Approach: We use the following approach. Shaping,
AQM and delay/loss emulation is done on the egress
NIC (as usual). To filter packets and direct them into
the ‘pipes’ we use netfilter [20]. The hierarchical token
bucket (HTB) queuing discipline is used for rate limiting
with the desired AQM queuing discipline (e.g. pfifo,
codel) as leaf node (this is similar to a setup mentioned
at [21]). After rate shaping and AQM, constant loss and
delay is emulated with netem [22]. For each pipe we set
up a new tc class on the two testbed NICs of the router. If
pipes are unidirectional, a class is only used on one of the
two interfaces. Otherwise it is used on both interfaces.
In future work we could optimise the unidirectional case
and omit the creation of unused classes.

The traffic flow is as follows (also see Figure 10):

CAIA Technical Report 150414A April 2015 page 8 of 44

tcpdump file collected on testhost2 for an experiment where two parameters where varied
20131206-170846_windows_dash_1000_tcp_compound_testhost2.dmp.gz
output of httperf traffic generator (traffic generator 3) executed on testhost2
20131206-170846_windows_dash_1000_tcp_compound_testhost2_3_httperf_dash.log.gz

Figure 4: Example file names

1) Arriving packets are marked at the netfilter mangle
table’s POSTROUTING hook depending on source
and destination IP address with a unique mark for
each pipe.4

2) Marked packets are classified into the appropriate
class based on the mark (a one-to-one mapping
between marks and classes) and redirected to a
pseudo interface. With pseudo device we refer to
the so-called intermediate function block (IFB)
device [23].

3) The traffic control rules on the pseudo interface do
the shaping with HTB (bandwidth as per config)
and the chosen AQM (as a leaf queuing discipline).

4) Packets go back to the actual outgoing interface.
5) The traffic control rules on the actual interface

do network delay/loss emulation with netem. We
still need classes here to allow for pipe specific
delay/loss settings. Hence we use a HTB again, but
with the bandwidth set to the maximum possible
rate (so there is effectively no rate shaping or AQM
here) and netem plus pfifo are used as leaf queuing
discipline.5

6) Packets leave the router via the stack and network
card driver.

The main reason for this setup with pseudo interfaces is
to cleanly separate the rate limiting and AQM from the
netem delay/loss emulation. One could combine both on
the same interface, but then there are certain limitation,
such as netem must be before the AQM and [21] reported
that in such a setup netem causes problems. Also, a big
advantage with our setup is that it is possible to emulate
different delay or loss for different flows that share the
same bottleneck/AQM.

2) Example: We now show an example of the setup
based on partial (and for convenience reordered) output

4There also is a dummy rule "MARK and 0x0" inserted first, which
is used to count all packets going through the POSTROUTING hook.
Note that since this dummy rule has ‘anywhere’ specified for source
and destination, it also counts packets going through the router’s
control interface.

5The netem queue has a hard-coded size of 1000 packets, which
should be large enough for our targeted experimental parameter space.

of a queue_stats.log.gz file for a scenario with two
unidirectional pipes: 8 Mbps downstream and 1 Mbps
upstream, both with 30 ms delay and 0% loss.

First, Figure 5 shows the netfilter marking rules. Our
upstream direction is 172.16.10.0/24 to 172.16.11.0/24
and all packets are given the mark 0x1. Our downstream
direction is 172.16.11.0/24 to 172.16.10.0/24 and all
packets are given the mark 0x2.

In the upstream direction our outgoing interface is eth3
and we have the tc filters shown in Figure 6, which put
each packet with mark 0x1 in class 1:1 and redirect it
to pseudo interface ifb1.

Note that the class setting is effective for eth3, but it will
not ‘stick’ across interfaces. Hence we need to set the
class again on ifb1 as shown in Figure 7 (again class 1:1
is set if the mark is 0x1).

On ifb1 we use the queuing discipline setup as shown
in Figure 8. The HTB does the rate limiting to 1 Mbps.
Here he leaf queuing discipline is a bfifo (byte FIFO)
with a buffer size of 18.75 kB.

After packets are through the bfifo, they are passed back
to eth3 where we have an HTB with maximum rate and
netem as leaf queuing discipline (here netem emulates
30 ms constant delay) as shown in Figure 9.

After leaving netem the packets are passed to the stack
which then passes them to the NIC driver. For the sake of
brevity we are not describing the downstream direction
here, but the principle is exactly the same. The only
differences are the interfaces used (eth2 and ifb0 instead
of eth3 and ifb1) and the different HTB, AQM and netem
parameters.

Figure 10 shows the flow of packets with the different
steps carried out in the order of the numbers in paren-
thesis. The marking/classifying is not shown explicitly,
it takes place between step 1 and 2 (netfilter and class
on actual interface) and between step 2 and 3 (class on
pseudo interface).

CAIA Technical Report 150414A April 2015 page 9 of 44

> iptables -t mangle -vL
Chain POSTROUTING (policy ACCEPT 52829 packets, 69M bytes) pkts bytes target prot opt in out
source destination
52988 69M MARK all -- any any anywhere anywhere MARK and 0x0
22774 1202K MARK all -- any any 172.16.10.0/24 172.16.11.0/24 MARK set 0x1
28936 66M MARK all -- any any 172.16.11.0/24 172.16.10.0/24 MARK set 0x2

Figure 5: Netfilter marking rules

> tc -s filter show dev eth3
filter parent 1: protocol ip pref 49152 fw
filter parent 1: protocol ip pref 49152 fw handle 0x1 classid 1:1
action order 33: mirred (Egress Redirect to device ifb1) stolen
index 3266 ref 1 bind 1 installed 99 sec used 12 sec
Action statistics:
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0

Figure 6: tc filter on outgoing network interface

> tc -d -s filter show dev ifb1
filter parent 1: protocol ip pref 49152 fw
filter parent 1: protocol ip pref 49152 fw handle 0x1 classid 1:1

Figure 7: tc filter on pseudo interface

> tc -d -s class show dev ifb1
class htb 1:1 root leaf 1001: prio 0 quantum 12500 rate 1000Kbit ceil 1000Kbit burst 1600b/1
mpu 0b overhead 0b cburst 1600b/1 mpu 0b overhead 0b level 0
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
rate 62112bit 117pps backlog 0b 0p requeues 0
lended: 22774 borrowed: 0 giants: 0
tokens: 191750 ctokens: 191750
> tc -d -s qdisc show ifb1
qdisc htb 1: dev ifb1 root refcnt 2 r2q 10 default 0 direct_packets_stat 0 ver 3.17
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
qdisc bfifo 1001: dev ifb1 parent 1:1 limit 18750b
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0

Figure 8: Queuing discipline setup on pseudo interface

We can see that with our setup it is possible to emulate
different delay or loss for different flows that share
the same bottleneck/AQM. Multiple tc filters on the ifb
interface can classify different flows as the same class
so they share the same bottleneck. However, on the eth
interface we can have one class and one netem queue per
flow and the tc filters classify each flow into a different
class.

3) Notes: Note that in addition to the buffers mentioned
earlier, according to [21] the HTB queuing discipline has
a built-in buffer of one packet (that cannot be changed)
and the device drivers also have separate buffers.

C. FreeBSD router setup

While a Linux router is our main focus, we also imple-
mented a basic router queue setup for FreeBSD.

On FreeBSD each pipe is realised as one Dummynet
pipe, which does the rate shaping, loss/delay emulation
and queuing (FIFO or RED only). ipfw rules are used to
redirect packets to the pipes based on the specified source
and destination IP parameters. If a pipe is unidirectional
then there is a single "pipe <num> ip from <source>
to <dest> out" rule. If a pipe is bidirectional there is
an additional "pipe <num> ip from <dest> to <source>
out" rule. The pipe number <num> is automatically

CAIA Technical Report 150414A April 2015 page 10 of 44

> tc -d -s class show dev eth3
class htb 1:1 root leaf 1001: prio 0 rate 1000Mbit ceil 1000Mbit burst 1375b cburst 1375b
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
rate 62184bit 117pps backlog 0b 0p requeues 0
lended: 22774 borrowed: 0 giants: 0
tokens: 178 ctokens: 178
> tc -d -s qdisc show eth3
qdisc htb 1: dev eth3 root refcnt 9 r2q 10 default 0 direct_packets_stat 3 ver 3.17
Sent 1520991 bytes 22777 pkt (dropped 0, overlimits 66602 requeues 0)
backlog 0b 0p requeues 0
qdisc netem 1001: dev eth3 parent 1:1 limit 1000 delay 30.0ms
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0

Figure 9: Queuing discipline setup on outgoing interface (netem)

����

����� ��	

��

�����������	

���
���������	 �����������	

����������������	����������
�����	

 !"#$%��

����

����� ��	

��&

�����������	

�����������	 ���
���������	

����������
�����	����������������	

'()*"#$%��

Figure 10: Flow of packets through our queue setup

determined by TEACUP. A more sophisticated setup for
FreeBSD remains future work.

V. CONFIG FILE

This section describes TEACUP’s top-level config.py file
that controls the experiments.

A. Config file location

By default TEACUP will load the config.py file that is in
the directory where fabfile.py is located – the directory
from which experiments are started. Since TEACUP
version 0.9, alternative config files can be specified
using fab’s --set parameter. For example, if we want
to run a series of experiments with the configuration

in myconfig.py, we simple need to run TEACUP as
follows:

> fab --set teacup_config=myconfig.py

run_experiment_multiple

B. V_variables

To iterate over parameter settings for each experiment
TEACUP uses V_variables. These are identifiers of
the form V_<name>, where <name> must consist of
only letters, numbers, hyphens (-) or underscores (_).
V_variables can be used in router queue settings (see
Section V-K), traffic generator settings (see Section
V-M), TCP algorithm settings (see Section V-N) or host
setup commands (see Section V-J). Section V-P describes
how to define V_variables.

C. Fabric configuration

The following settings in the config file are Fabric
settings. For a more in-depth description refer to the
Fabric documentation [9]. All Fabric settings are part of
the Fabric env dictionary and hence are Python variables
(and must adhere to the Python syntax).

The user used for the SSH login is specified with
env.user. For example:

env.user = ’root’

The password used for the SSH login is specified with
env.password. The password can be empty if public-key
authorisation is set up properly, e.g. the public SSH key
of the control PC running TEACUP has been added to
all hosts <user>/.ssh/authorized_keys files (and the cor-
responding private key on the control host is ~/.ssh/id_rsa
or a file <key_file> specified with fab -i <key_file> or the
env.key_filename configuration parameter [9]).

CAIA Technical Report 150414A April 2015 page 11 of 44

env.password = ’testroot’

The shell used to execute commands is specified with
env.shell. By default Fabric uses Bash, but Bash is not
standard on FreeBSD. So TEACUP’s default setting
is:

env.shell = ’/bin/sh -c’

The timeout for an SSH connection is specified with
env.timeout.

env.timeout = 5

The number of concurrent processes used for parallel
execution is specified with env.pool_size. The number
should be at least as high as the number of hosts, unless
the number of hosts is large in which case we may want
to limit the number of concurrent processes.

env.pool_size = 10

D. Testbed configuration

All TEACUP settings start with the TPCONF_ prefix and
are Python variables (and must adhere to the Python
syntax).

TPCONF_script_path specifies the path to the TEACUP
scripts, and is appended to the Python path.

TPCONF_script_path = ’/home/test/src/teacup’

Two lists specify the testbed hosts. TPCONF_router
specifies the list of routers. Note that prior to TEACUP
version 0.9 the TPCONF_router list was limited to only
one router. Since version 0.9 a list of routers can be
specified. TPCONF_hosts specifies the list of hosts.
Router and hosts can be specified as IP addresses or host
names (typically for convenience just the name without
the domain part).
TPCONF_router = [’testhost1’,]
TPCONF_hosts = [’testhost2’, ’testhost3’]

The dictionary TPCONF_host_internal_ip specifies the
testbed IP addresses for each host. The hosts (keys)
specified must match the entries in the TPCONF_router
and TPCONF_hosts lists exactly. The current code does
simple string matching, it does not attempt to resolve
host identifiers into some canonical form.

TPCONF_host_internal_ip = {
’testhost1’ : [’172.16.10.1’,’172.16.11.1’],
’testhost2’ : [’172.16.10.2’],
’testhost3’ : [’172.16.10.3’],
}

E. General experiment settings

TPCONF_test_id specifies the default test ID prefix.
Note that if the test ID prefix is specified on the
command line, the command line overrules this set-
ting.
now = datetime.datetime.today()
TPCONF_test_id = now.strftime("%Y%m%d-%H%M%S")

TPCONF_remote_dir specifies the directory on the re-
mote host where the log files (e.g. tcpdump, SIFTR) are
stored during an experiment. Files are deleted automat-
ically at the end of an experiment, but if an experiment
is interrupted files can remain. Currently, there is no
automatic cleanup of the directory to remove left-over
files.

TPCONF_remote_dir = ’/tmp/’

TEACUP performs a very simple time synchronisation
check at the start (after waiting for more than 30 sec-
onds after the hosts were rebooted). It checks the time
offset between the control host (the host that executes
TEACUP) and each testbed host listed in the config
file. TPCONF_max_time_diff specifies the maximum
tolerable clock offset, i.e. the maximum allowed time
difference in seconds. If the clock offset for one of
the testbed hosts is too large, TEACUP will abort the
experiment or series of experiments.
TPCONF_max_time_diff = 1

TPCONF_debug_level specifies the debug level for ex-
periments. At the default level of 0, no debug information
is generated. If the variable is set to a higher value debug
information is generated, for example at a debug level of
1 .Rout files are generated when plotting graphs.
TPCONF_debug_level = 0

The parameter TPCONF_web10g_poll_interval allows
to specify the poll interval in milliseconds for web10g
loggers on Linux or Windows. The minimum value is
1 ms and the maximum value is 1000 ms. The default
value is 10 ms. Note that the control of the interval length
is not very accurate and with small intervals less then
10 ms, the actual interval will likely be larger than the
specified interval.
TPCONF_web10g_poll_interval = 10

CAIA Technical Report 150414A April 2015 page 12 of 44

F. tcpdump/pcap configuration

The variable TPCONF_pcap_snaplen sets the snap
length (number of bytes captured by tcpdump per Eth-
ernet frame). If not specified the default is 80 bytes.
Setting TPCONF_pcap_snaplen=0 means ‘capture all
bytes’. The following shows an example where we set
the snap length to 128 bytes.
TPCONF_pcap_snaplen = 128

G. Topology configuration

Since version 0.8 TEACUP can automate the assignment
of each host into one of the two subnets. The topol-
ogy configuration is EXPERIMENTAL and based on a
number of assumptions around the network setup.6 For
an experiment or a series of experiment the topology
(re)configuration is (optionally) carried out after the
machines haven been rebooted and before any sanity
checks are done.

Automatic topology configuration is enabled by setting
the variable TPCONF_config_topology to ‘1’. (If this
variable is undefined or set to ‘0’ there is no topology
configuration.)
TPCONF_config_topology = ’1’

When topology configuration is enabled TEACUP ac-
tively (re)configures each host’s test subnet IP ad-
dress to that specified in TPCONF_host_internal_ip,
then changes the VLAN configuration of the testbed
switch’s ports so all hosts are connected to the right
subnets.

Automated VLAN (re)configuration requires SSH ac-
cess to the switch, with the same SSH user name and
password as used on all other hosts. As many switches
limit the number of concurrent SSH sessions allowed,
TEACUP currently performs the configuration of the
ports on switch sequentially (host by host). However,
after the switch has been configured TEACUP carries
out the setup of each host (network interface and routing
configuration) in parallel to reduce the overall time for
topology configuration.

When mapping switch ports to VLANs, TEACUP as-
sumes we are using /24 subnets and that the third octet of
the IP address is identical to the VLAN name configured

6The most critical restriction is that switch reconfiguration has only
been tested with Dell 5324 and Dell N3000 series switches.

on the switch. For example, a host being configured
with address 172.16.10.2 is mapped to a corresponding
VLAN named ‘10’ on the switch..

TEACUP also assumes that all hosts are differentiated by
appending consecutive numbers to their hostnames. The
lowest number, h, can be chosen arbitrarily. For example,
if we have two hosts they could be named ’testhost1’
and ’testhost2’. TEACUP further assumes that hosts are
connected to consecutive ports of the switch in the same
order as their hostname numbering. For example, if we
have testhost1 and testhost2, and testhost1 is connected
to switch port n then testhost2 must be connected to
switch port n+ 1.

The address or host name of the switch can be
configured with the variable TPCONF_topology_switch.
To map a host to the corresponding port the
variables TPCONF_topology_switch_port_prefix
and TPCONF_topology_switch_port_offset (also
called o) can be defined. The name of the
switch port used will be the string specified in
TPCONF_topology_switch_port_prefix concatenated
with the the number h + o. The following shows the
default configuration.
TPCONF_topology_switch = ’switch2’
TPCONF_topology_switch_port_prefix = ’Gi1/0/’
TPCONF_topology_switch_port_offset = 5

The above configuration assumes that testhost1 is con-
nected to switch port ‘Gi1/0/6’ and testhost2 is connected
to switch port ‘Gi1/0/7’ on a switch with the host name
‘switch2’ (which has SSH configuration enabled).

Topology configuration works with all supported OS
(Linux, FreeBSD, Windows/Cygwin and Mac OS X).
However, the switch reconfiguration code has only
been tested with Dell 5324 and Dell N3000 series
switches.

Note that the network interfaces on the hosts are cur-
rently hard-coded inside TEACUP. For example, for
FreeBSD hosts the topology setup method assumes that
em1 is the testbed interface. The interface names can
only be changed by modifying the Python code.

1) Link speed selection: As of version 0.9, TEACUP
can set the link speed of the Ethernet links between
the switch and testbed NICs. There are four settings for
the speed: ‘10’ (10 Mbps, 10baseT), ‘100’ (100 Mpbs,
100baseT), ‘1000’ (1000 Mbps, 1000baseT), and ‘auto’
(default, which should result in 1000baseT). The variable

CAIA Technical Report 150414A April 2015 page 13 of 44

TPCONF_linkspeed allows to configure the link speed
for all hosts. For example, if all hosts should use a link
speed of 100 Mbps (100baseT) we can specify
TPCONF_linkspeed = ’100’

However, we can also configure host-specific link speeds
with the dictionary TPCONF_host_linkspeed. Each entry
must have as index a host name (as defined in TP-
CONF_router or TPCONF_hosts) and as value one of the
possible speed settings explained above. For example, if
testhost1 should be set 100 Mbps and testhost2 to 1000
Mbps we can define
TPCONF_host_linkspeed = {

’testhost1’ : ’100’,
’testhost2’ : ’1000’

}

TPCONF_host_linkspeed entries always overrule TP-
CONF_linkspeed. If neither variable is specified the
default link speed setting is ‘auto’, which should result
in 1000baseT assuming Gigabit Ethernet NICs.

Note that the link speed setting is persistent for Linux,
FreeBSD and Windows. However, for Mac OS X the
speed will reset to 1000baseT after a reboot (normally
this should not be an issue as hosts are only rebooted
before experiments).

H. Rebooting, OS selection and power cycling

With suitable external support, TEACUP enables auto-
mated rebooting of testbed hosts into different operating
systems and forced power cycling of hosts that have
become unresponsive.

1) PXE-based rebooting: TEACUP’s PXE-based re-
booting process is explained in [7].

The IP address and port of the TFTP or HTTP server
that serves the .ipxe configuration files during the
PXE boot process is specified with the parameter TP-
CONF_tftpserver. Both IP address and port number must
be specified separated by a colon. For example:
TPCONF_tftpserver = ’10.1.1.11:8080’

The path to the directory that is served by
the TFTP or HTTP server is specified with
TPCONF_tftpboot_dir.

TPCONF_tftpboot_dir = ’/tftpboot’

Omitting TPCONF_tftpboot_dir, or setting it to an empty
string, disables PXE booting. TPCONF_host_os and TP-
CONF_force_reboot (see below) are then ignored.

2) OS and kernel selection: The TPCONF_host_os dic-
tionary specifies which OS are booted on the different
hosts. The hosts (keys) specified must match the en-
tries in the TPCONF_router and TPCONF_hosts lists
exactly (any host specified in TPCONF_host_os must be
specified in either TPCONF_router or TPCONF_hosts).
The current code does simple string matching, it does
not attempt to resolve host identifiers in some canonical
form.

TEACUP currently supports selecting from four dif-
ferent types of OS: ‘Linux’, ‘FreeBSD’, ‘CYG-
WIN’ (Windows) and ‘Darwin’ (Mac OS X). Se-
lecting the specific Linux kernels to boot is sup-
ported with the TPCONF_linux_kern_router and TP-
CONF_linux_kern_hosts parameters (see below). The
OS selection occurs once during reboot, and cannot
subsequently be varied during a given experiment.
TPCONF_host_os = {
’testhost1’ : ’Linux’,
’testhost2’ : ’FreeBSD’,
’testhost3’ : ’Linux’,
}

TPCONF_linux_kern_router specifies the Linux kernel
booted on the router, and TPCONF_linux_kern_hosts
specifies the Linux kernel booted on all other hosts.
The name is the kernel image name minus the starting
‘vmlinuz-’, so the name starts with the version number.
It is also possible to specify the keywords ‘running’ or
‘current’ to tell TEACUP to use the same kernel that is
currently running on the host (this requires that the host
is already running Linux).
TPCONF_linux_kern_router = ’3.14.18-10000hz’
TPCONF_linux_kern_hosts = ’3.9.8-web10g’

The parameter TPCONF_os_partition allows us to spec-
ify the partitions for the different operating systems on
the hosts (in GRUB4DOS format since our TEACUP-
based testbed uses GRUB4DOS to reboot into the desired
OS). For example, if we have the configuration below
then TEACUP will attempt to boot from the first partition
of the first disk if Windows/Cygwin is selected, boot
from the second partition of the first disk if Linux is
selected, and boot from the third partition of the first
disk if FreeBSD is selected.
TPCONF_os_partition = {
’CYGWIN’ : ’(hd0,0)’,
’Linux’ : ’(hd0,1)’,
’FreeBSD’ : ’(hd0,2)’,
}

CAIA Technical Report 150414A April 2015 page 14 of 44

3) Boot behaviour and timeout: If TP-
CONF_force_reboot is set to ‘1’ all hosts will
be rebooted. If TPCONF_force_reboot is set to
‘0’ only hosts where the currently running OS
(or kernel in case of Linux) is not the desired
OS (or kernel in case of Linux), as specified in
TPCONF_host_os (and TPCONF_linux_kern_router or
TPCONF_linux_kern_hosts), will be rebooted.

TPCONF_force_reboot = ’1’

TPCONF_boot_timeout specifies the maximum time in
seconds (as integer) a reboot can take. If the rebooted
machine is not up and running the chosen OS after
this time, the reboot is deemed a failure and the script
aborts, unless TPCONF_do_power_cycle is set to ‘1’
(see below).

TPCONF_boot_timeout = 100

4) Forced power cycling: If TEACUP-supported power
controllers are installed and TPCONF_do_power_cycle
is set to ‘1’, a host is power cycled if it does not
reboot within TPCONF_boot_timeout seconds. If TP-
CONF_do_power_cycle is omitted or set to ‘0’ there is
no power cycling.

TPCONF_do_power_cycle = ’0’

If TPCONF_do_power_cycle=1 then parameters TP-
CONF_power_ctrl_type, TPCONF_host_power_ctrlport,
TPCONF_power_admin_name and TP-
CONF_power_admin_pw must also be set.

TPCONF_power_ctrl_type must be used to specify the
type of power controller – ‘9258HP’ (for an “IP Power
9258HP”) or ‘SLP-SPP1008’ (for a “Serverlink SLP-
SPP1008-H”). The default is ’9258HP’. A mix of dif-
ferent types of power controllers is currently not sup-
ported.
TPCONF_power_ctrl_type = ’9258HP’

TPCONF_host_power_ctrlport is a dictionary that for
each host specifies the IP (or host name) of the respon-
sible power controller and the number of the controller’s
port the host is connected to (as integer starting from
1).
TPCONF_host_power_ctrlport = {
’testhost1’ : (’192.168.1.178’, ’1’),
’testhost2’ : (’192.168.1.178’, ’2’),
’testhost3’ : (’192.168.1.178’, ’3’),
}

TPCONF_power_admin_name specifies the name of the
power controller’s admin user.

TPCONF_power_admin_name = ’admin’

TPCONF_power_admin_pw specifies the password of
the power controller’s admin user (which in the below
example is identical to the SSH password used by Fabric,
but in general it can be different).

TPCONF_power_admin_pw = env.password

I. Clock offset measurement (broadcast pings)

All the participating machines should have synchro-
nised clocks (for example by running NTP) so we can
accurately compare data measured on different hosts.
However, clocks on consumer-grade PC hardware drift
even while using NTP. TEACUP provides an additional
mechanism to evaluate the quality of the time synchro-
nisation and (optionally) correct for clock offsets in the
post-analysis.

When TPCONF_bc_ping_enable is set to ‘1’, TEACUP
configures the router host to send a broadcast or multicast
ping over the control network. These ping packets will
be multicasted or broadcasted to the control interfaces
of all other hosts (almost) simultaneously.

During experiments there is no other traffic on the
control network and typically network jitter introduced
by the sender (router), the network switch or the receiver
is small. Thus one can estimate the offsets of the clocks
of different hosts with relatively high accuracy by com-
paring the arrival times of the broadcast or multicast ping
packets. Here we explain how to enable and configure
the broadcast pings.

TPCONF_bc_ping_enable must be set to ‘1’ to en-
able the broadcast/multicast ping (default is ‘0’).
TPCONF_bc_ping_rate controls the rate in ping pack-
ets per second (default is one packet per second).
TPCONF_bc_ping_address is the address the ping is
sent to. This must be either a multicast address (e.g.
224.0.1.199) or a broadcast address (e.g. 192.168.0.255
if the control interfaces are in the 192.168.0.0/24 sub-
net). The following shows an example configuration for
enabled multicast pings.

TPCONF_bc_ping_enable = ’1’
TPCONF_bc_ping_rate = 1

TPCONF_bc_ping_address = ’224.0.1.199’

CAIA Technical Report 150414A April 2015 page 15 of 44

In technical report [8] we explain TEACUP’s functions
to analyse the clock offsets and use them for the correc-
tion of timestamps.

J. Custom host init commands

TPCONF_host_init_custom_cmds allows to execute cus-
tom per-host init commands. This allows to change
the host configuration, for example with sysctls. TP-
CONF_host_init_custom_cmds is a dictionary, where
the key specifies the host name and the value is a
list of commands. The commands are executed in
exactly the order specified, after all default build-in
host initialisation has been carried out. This means
TPCONF_host_init_custom_cmds makes it possible to
overrule default initialisation. The commands are spec-
ified as strings and are executed on the host exactly as
specified (with the exception that V_variables, if present,
are substituted with values). V_variables can be used in
commands, but the current limitation is there can only
be one V_variable per command.

The custom commands are executed before the router
configuration. So when using for example a FreeBSD
router we can use TPCONF_host_init_custom_cmds
to increase the maximum allowable Dummynet queue
length (using sysctl) before Dummynet is actually con-
figured.

Note that the commands are executed in the foreground,
which means that for each command TEACUP will wait
until it has been executed on the remote host before
executing the next command for the same host. It is
currently not possible to execute background commands.
However, commands on different hosts are executed in
parallel, i.e. waiting for a command to finish on host
testhost1 does not block executing the next command
on host testhost2. In summary, commands on different
host are executed in parallel, but commands on the same
host are executed sequentially.

The following config file part shows an example where
we simply execute the command ‘echo TEST’ on host
testhost1.
TPCONF_host_init_custom_cmds = {
’testhost1’ : [’echo TEST’,],
}

K. Router queue setup

The variable TPCONF_router_queues specifies the
router pipes (also referred to as queues here). Each entry

is a 2-tuple. The first value specifies a unique integer ID
for each queue. The second value is a comma-separated
string specifying the queue parameters. The queues do
not necessarily need to be defined in the order of queue
ID, but it is recommended to do so. The following queue
parameters exist:

• source: Specifies the source IP/hostname or source
network (<ip>[/<prefix>]) of traffic that is queued
in this queue. If a host name is specified there can
be no prefix. One can specify an internal/testbed or
external/control IP/hostname. If an external IP/host-
name is specified this will be automatically trans-
lated into the first internal IP specified for the host
in TPCONF_host_internal_ip.

• dest: Specifies the destination IP/hostname or
source network (<ip>[/<prefix>]) of traffic that is
queued in this queue. If a host name is speci-
fied there can be no prefix. One can specify an
internal/testbed or external/control IP/hostname. If
an external IP/hostname is specified this will be
automatically translated into the first internal IP
specified for the host in TPCONF_host_internal_ip.

• delay: Specifies the emulated constant delay in
milliseconds. For example, delay=50 sets the delay
to 50 ms.

• loss: Specifies the emulated constant loss rate. For
example, loss=0.01 sets the loss rate to 1%.

• rate: Specifies the rate limit of the queue. On Linux
we can use units such as ‘kbit’ or ‘mbit’. For
example, queue_size=‘1mbit’ sets the rate limit to
1 Mbit/second.

• queue_size: Specifies the size of the queue. On
Linux queue size is defined in packets for most
queuing disciplines, but for some queuing disci-
plines it needs to be specified in bytes. For example,
if we have a Linux queue with size specified in
packets, queue_size=1000 sets the queue size to
1000 packets. On FreeBSD the queue size is also
specified in packets typically, but one can specify
the size in bytes by adding a ‘bytes’ or ‘kbytes’, for
example queue_size=‘100kbytes’ specifies a queue
of size 100 kbytes. If ‘bdp’ is specified the queue
size will be set to the nominal bandwidth-delay-
product (BDP) (this does only work for queuing dis-
ciplines where TEACUP knows whether the queue
size is specified in bytes or packets). The minimum
queue size is one packet (if the size is specified in
packets) or 2048 bytes (if the size is specified in
bytes).

CAIA Technical Report 150414A April 2015 page 16 of 44

• queue_size_mult: The actual queue size is the
queue size multiplied with this factor. This should
only be used if queue_size if set to ‘bdp’. This
allows to vary the queue size in multiples of the
nominal BDP.

• queue_disc: Specifies the queuing discipline. This
can be the name of any of the queuing disciplines
supported by Linux, such as ‘fq_codel’, ‘codel’,
‘red’, ‘choke’, ‘pfifo’, ‘pie’ etc. On FreeBSD the
only queuing disciplines available are ‘fifo’ and
‘red’. For example, queue_disc=‘fq_codel’ sets the
queuing discipline to the fair-queuing+codel model.
For compatibility, with FreeBSD one can specify
‘fifo’ on Linux, which is mapped to ‘pfifo’ (‘pfifo’
is the default for HTB classes, which we use for
rate limiting). The queue_disc parameter must be
specified explicitly.

• queue_disc_params: This parameter allows to
pass parameters to queuing disciplines. For exam-
ple, if we wanted to turn ECN on for fq_codel
we would specify queue_disc_params=‘ecn’ (c.f.
fq_codel man page).

• bidir: This allows to specify whether a queue is
unidirectional (set to ‘0’) or bidirectional (set to
‘1’). A unidirectional queue will only get the traffic
from source to destination, whereas a bidirectional
queue will get the traffic from source to dest and
from destination to source.

• attach_to_queue: This parameter works on Linux
only. It allows to direct matching packets into an
existing queue referenced by the specified queue
ID, but to emulate flow-specific delay/loss (differ-
ent from the delay and loss of other traffic). If
attach_to_queue is specified the matching traffic
will go through the already existing queue, but
the emulated delay or loss is set according to the
current queue specification. This means we can omit
the rate, queue_disc and queue_size parameters,
because they do not have any effect.

• rtt: This parameter allows to explicitly specify the
emulated RTT in milliseconds. This parameter only
needs to be specified if queue_size is set to ‘bdp’
and the RTT is not twice the delay of the current
TEACUP queue (e.g. if we set up asymmetric delay
with attach_to_queue).

All parameters must be assigned with either a con-
stant value or a TEACUP V_variable. V_variable names
must be defined in TPCONF_parameter_list and TP-
CONF_variable_defaults (see below). V_variables are

replaced with either the default value specified in TP-
CONF_variable_defaults or the current value from TP-
CONF_parameter_list if we iterate through multiple val-
ues for the parameter.

Figure 11 shows an example queue setup with the same
delay and loss for every host and the same delay and
loss in both directions (all the parameters are variables
here).

Figure 12 shows an example that illustrates the at-
tach_to_queue parameter. Traffic between 172.16.10.3
and 172.16.11.3 goes through the same queues as traffic
between 172.16.10.2 and 172.16.11.2, but in both direc-
tions it experiences twice the delay.

Since version 0.9 TEACUP supports multiple routers.
If multiple routers are specified in TPCONF_router, but
there is only one TPCONF_router_queues specification
(for example the one shown above), TEACUP will
apply the single TPCONF_router_queues specification
to all routers. However, in many cases with multiple
routers we want to specify router-specific queue setups.
This can be done by making TPCONF_router_queues
a dictionary with the keys being router names (as
specified in TPCONF_router) and the values being TP-
CONF_router_queues specifications.

As an example let us assume there are two routers:
testrouter1 and testrouter2. For each of the routers we
need to specify the queue setup (for brevity we use a
placeholder here instead of showing the actual queue
specifications:
testrouter1_queues = [<queue_spec1>]
testrouter2_queues = [<queue_spec2>]

Then we need to define TPCONF_router_queues as
explained above:
TPCONF_router_queues = {}
TPCONF_router_queues[’testrouter1’] =

testrouter1_queues
TPCONF_router_queues[’testrouter2’] =

testrouter2_queues

L. Traffic generator setup

Traffic generators are defined with the variable
TPCONF_traffic_gens. This is a list of 3-tuples. The first
value of a tuple is the start time relative to the start
time of the experiment. The second value of the tuple
is a unique ID. The third value of the tuple is a list of
strings with the function name of the start function of the

CAIA Technical Report 150414A April 2015 page 17 of 44

TPCONF_router_queues = [
(’1’, "source=’172.16.10.0/24’, dest=’172.16.11.0/24’, delay=V_delay, loss=V_loss, rate=V_urate,

queue_disc=V_aqm, queue_size=V_bsize"),
(’2’, "source=’172.16.11.0/24’, dest=’172.16.10.0/24’, delay=V_delay, loss=V_loss, rate=V_drate,

queue_disc=V_aqm, queue_size=V_bsize"),
]

Figure 11: Router queue definition example

TPCONF_router_queues = [
(’1’, "source=’172.16.10.2’, dest=’172.16.11.2’, delay=V_delay, loss=V_loss, rate=V_up_rate,

queue_disc=V_aqm, queue_size=V_bsize"),
(’2’, "source=’172.16.11.2’, dest=’172.16.10.2’, delay=V_delay, loss=V_loss, rate=V_down_rate,

queue_disc=V_aqm, queue_size=V_bsize"),
(’3’, "source=’172.16.10.3’, dest=’172.16.11.3’, delay=2*V_delay, loss=V_loss, attach_to_queue=’1’"),
(’4’, "source=’172.16.11.3’, dest=’172.16.10.3’, delay=2*V_delay, loss=V_loss, attach_to_queue=’2’"),
]

Figure 12: Router queue definition with attach_to_queue example

traffic generator as first entry followed by the parameters.
The name of the functions and the parameters for each
function are described in Section V-M.

Client and server parameters can be external (control
network) addresses or host names. An external address
or host name is replaced by the first internal address
specified for a host in TPCONF_host_internal_ip. Client
and server parameters can also be internal (testbed net-
work) addresses, which allows to specify any internal
address.

Each parameter is defined as <parame-
ter_name>=<parameter_value>. Parameter names must
be the parameter names of traffic generator functions
(and as such be valid Python variable names). Parameter
values can be either constants (string or numeric)
or TEACUP V_variables that are replaced by the
actual values depending on the current experiment. The
V_variables must be defined in TPCONF_parameter_list
and TPCONF_variable_defaults. Numeric V_variables
can be modified using mathematical operations, such
as addition or multiplication, with constants. For
example, if a variable ‘V_delay’ exists one can specify
‘2·V_delay’ as parameter value.

Figure 13 shows a simple example. At time zero a web
server is started and fake DASH content is created. 0.5
seconds later a httperf DASH-like client is started. The
duration and rate of the DASH-like flow are specified
by variables that can change for each experiment. In
contrast the cycle length and prefetch time are set to
fixed values.

The example config files in the source code distribution
contain more examples of setting up traffic genera-
tors.

M. Available traffic generators

This section describes the traffic generators (listed by
their start function names) that can be used in TP-
CONF_traffic_gens.

1) start_iperf: This starts an iperf client and server.
Note that the client sends data to the server. It has the
following parameters:

• port: port number to use for client and server
(passed to iperf -p option)

• client: IP or name of client (passed to iperf -c
option)

• server: IP or name of server (passed to iperf -B
option)

• duration: time in seconds the client transmits
(passed to iperf -t option)

• congestion_algo: TCP congestion algorithm to use
(works only on Linux)

• kill: By default this is ‘0’ and the iperf client will
terminate after duration seconds. If this is set to
‘1’, the iperf client will be killed approximately
1 second after duration. This is a work-around for
a “feature” in iperf that prevents it from stopping
after the specified duration. (If set to ‘1’, the iperf
server is also killed approximately 2 seconds after
duration.)

• mss: TCP maximum segment size (passed to iperf
-M option)

CAIA Technical Report 150414A April 2015 page 18 of 44

TPCONF_traffic_gens = [
(’0.0’, ’1’, "start_http_server, server=’testhost3’, port=80"),
(’0.0’, ’2’, "create_http_dash_content, server=’testhost3’, duration=2*V_duration,

rates=V_dash_rates, cycles=’5, 10’"),
(’0.5’, ’3’, "start_httperf_dash, client=’testhost2’, server=’testhost3’, port=80,

duration=V_duration, rate=V_dash_rate, cycle=5, prefetch=2"),
]

Figure 13: Traffic generator example

• buf_size: Send and receive buffer size in bytes
(passed to iperf -j and -k, which only exist for iperf
with the CAIA patch [7])

• proto: Protocol to use, ‘tcp’ (default) or ‘udp’ (sets
iperf -u option for ‘udp’)

• rate: The bandwidth used for TCP (passed to iperf
-a option) or UDP (passed to iperf -b option). Can
end in ‘K’ or ‘M’ to indicate kilo bytes or mega
bytes.

• extra_params_client: Command line parameters
passed to iperf client

• extra_params_server: Command line parameters
passed to iperf server

2) start_ping: This starts a ping and has the following
parameters:

• client: IP or name of machine to run ping on
• dest: IP or name of machine to ping
• rate: number of pings per second (Windows ping

only supports 1 ping/second) (default = 1)
• extra_params: Command line parameters passed to

ping

3) start_http_server: This starts an HTTP server
(lighttpd) and has the following parameters:

• port: port to listen on (currently one server can
listen on only one port)

• config_dir: directory where the config file
(lighttpd.conf) should be copied to

• config_in: local template for config file
• docroot: document root on server (FreeBSD

default: /usr/local/www/data, MacOSX default:
/opt/local/www/htdocs, Linux/CYGWIN default:
/srv/www/htdocs)

4) create_http_dash_content: This creates fake content
for the DASH-like client. It has the following parame-
ters:

• server: IP or name of HTTP server

• docroot: document root of HTTP server (FreeBSD
default: /usr/local/www/data, MacOSX default:
/opt/local/www/htdocs, Linux/CYGWIN default: /s-
rv/www/htdocs)

• duration: number of seconds of fake content
• rates: comma-separated list of DASH rates in kB
• cycles: comma-separated list of cycle lengths in

seconds

5) create_http_incast_content: This creates fake content
for incast experiments. It has the following parame-
ters:

• server: IP or name of HTTP server
• docroot: document root of HTTP server (FreeBSD

default: /usr/local/www/data, MacOSX default:
/opt/local/www/htdocs, Linux/CYGWIN default: /s-
rv/www/htdocs)

• sizes: comma-separated list of content file sizes

6) start_httperf: This starts an httperf HTTP client. It
has the following parameters:

• client: IP or name of client
• server: IP or name of HTTP server (passed to

httperf --server)
• port: port server is listening on (passed to httperf

--port)
• conns: total number of connections (passed to

httperf --num-conns)
• rate: rate at which connections are created (passed

to httperf --rate)
• timeout: timeout for each connection; httperf will

give up if a HTTP request does not complete within
the timeout (passed to httperf --timeout)

• calls: number of requests in each connection
(passed to httperf --num-calls, default = 1)

• burst: length of burst (passed to httperf --burst-
length)

• wsesslog: session description file (passed to third
parameter of httperf --wsesslog)

CAIA Technical Report 150414A April 2015 page 19 of 44

• wsesslog_timeout: default timeout for each wsess-
log connection (passed to second parameter of
httperf --wsesslog)

• period: time between creation of connections;
equivalent to 1/rate if period is a number, but period
can also specify inter-arrival time distributions (see
httperf man page)

• sessions: number of sessions (passed to first param-
eter of httperf --wsesslog, default = 1)

• call_stats: number of entries in call statistics array
(passed to httperf --call-stats, default = 1000)

• extra_params: Command line parameters passed to
httperf

7) start_httperf_dash: This starts a DASH-like httperf
client. It has the following parameters:

• client: IP or name of client
• server: IP or name of HTTP server (passed to

httperf --server)
• port: port server is listening on (passed to httperf

--port)
• duration: duration of DASH flow in seconds
• rate: data rate of DASH-like flow in kbps
• cycle: interval between requests in seconds
• prefetch: prefetch time in seconds of content to

prefetch (can be fractional number) (default = 0.0)
• prefetch_timeout: like timeout for start_httperf but

only for the prefetch (by default this is set to cycle)
• extra_params: Command line parameters passed to

httperf

The behaviour is as follows:

1) The client opens a persistent TCP connection to
the server.

2) If prefetch is > 0.0 the client will fetch the speci-
fied number of seconds of content and right after
that send a request for the next block (step 3).

3) The client will request a block of content, wait for
some time (cycle minus download time) and then
request the next block. The size of one block is
cycle·rate·1000/8 bytes.

8) start_httperf_incast: This starts an httperf client
for the incast scenario. It has the following parame-
ters:

• client: IP or name of client
• servers: comma-separated list where each entry

specifies one server in the form of ‘[IP|name]:port’.
IP or name is a server’s IP address or name and

port is the port the server is listening on (a separate
session for each server is created via httperf’s
session log).

• duration: duration of incast session in seconds
• period: period between requests in seconds (float-

ing point number)
• burst_size: number of queries sent at each period

start (this is to increase the number of queries in
a testbed that only has a few physical responder
machines)

• response_size: size of response from each respon-
der in kB

• extra_params: Command line parameters passed to
httperf

9) start_nttcp: This starts an nttcp client and an nttcp
server for some simple unidirectional UDP VoIP flow
emulation. It has the following parameters:

• client: IP or name of client
• server: IP or name of HTTP server
• port: control port server is listening on (passed to

nttcp -p)
• duration: duration of the flow (based on this and

the interval TEACUP computes the number of
buffers to send, passed to nttcp -n)

• interval: interval between UDP packets in millisec-
onds (passed to nttcp -g)

• psize: UDP payload size (excluding UDP/IP header)
(passed to nttcp -l)

• buf_size: send buffer size (passed to nttcp -w)
• extra_params_client: Command line parameters

passed to nttcp client
• extra_params_server: Command line parameters

passed to nttcp server

Note that nttcp also opens a TCP control connection
between client and server. However, on this connection
only a few packets are exchanged before and after the
data flow.

10) start_httperf_incast_n: This starts an httperf client
(querier) and n HTTP servers (responders) for an in-
cast scenario. It also generates the fake content for
all n servers. Basically this generator is a shortcut
to setting up n servers with n start_http_server and
create_http_incast_content. It has the following parame-
ters:

• client: IP or name of client
• servers: comma-separated list of servers, where

each entry is either the IP or the host name of an

CAIA Technical Report 150414A April 2015 page 20 of 44

HTTP server (a separate session for each server is
created via httperf’s session log)

• server_port_start: the port the first server is lis-
tening on. All further servers will be started on
consecutive port numbers in the order they are
specified in servers

• duration: duration of incast session in seconds
• period: period between requests in seconds (float-

ing point number)
• burst_size: number of queries sent at each period

start (this is to increase the number of queries in
a testbed that only has a few physical responder
machines)

• response_size: size of response from each respon-
der in kB

• config_dir: directory where the config file
(lighttpd.conf) should be copied to

• config_in: local template for config file
• docroot: document root on server (FreeBSD

default: /usr/local/www/data, MacOSX default:
/opt/local/www/htdocs, Linux/CYGWIN default:
/srv/www/htdocs)

• sizes: comma-separated list of content file sizes on
the servers

• num_responders: The querier will only send
queries to the first num_responders servers. This
can be used to vary the number of responders in
a series of experiments

• extra_params: Command line parameters passed to
httperf

N. Mandatory experiment variables

We now describe the mandatory experiment variables
that must be in every config file. There are two
types: singulars and lists. Singulars are fixed param-
eters while lists specify the different values used in
subsequent experiments based on the definitions of TP-
CONF_parameter_list and TPCONF_vary_parameters
(see below).

1) Traffic duration: The duration of the traffic in
seconds (must be an integer) is specified with TP-
CONF_duration. Note that currently the actual dura-
tion of an experiment is the number of seconds spec-
ified by TPCONF_duration plus the number of sec-
onds until the last traffic generator is started (based
on TPCONF_traffic_gens) plus some warmup time. TP-
CONF_duration is specified as follows:

TPCONF_duration = 30

2) Number of repeats (runs): The number of repetitions
(runs) carried out for each unique parameter combination
is specified with TPCONF_runs:

TPCONF_runs = 1

3) Enabling ECN on hosts: TPCONF_ECN specifies
whether ECN is used on the hosts that are the traffic
sources/sinks. If set to ‘1’ ECN is enabled for all hosts.
If set to ‘0’ ECN is disabled for all hosts. Currently
per-host configuration is only possible with custom com-
mands.

TPCONF_ECN = [’0’, ’1’]

(Note that TPCONF_ECN only enables ECN on the
hosts. For full ECN support, the AQM mechanism on
the router must also be configured to use ECN.)

4) Congestion control algorithms: TP-
CONF_TCP_algos specifies the TCP congestion
algorithms used. The following algorithms can be
selected: ‘newreno’, ‘cubic’, ‘hd’, ‘htcp’, ‘cdg’,
‘compound’.

TPCONF_TCP_algos = [’newreno’, ’cubic’,]

However, only some of these are supported depending
on the OS a host is running:

• Windows: newreno (default), compound;
• FreeBSD: newreno (default), cubic, hd, htcp, cdg;
• Linux: cubic (default), newreno, htcp;
• Mac OS X: newreno (default)

Instead of specifying a particular TCP algorithm one
can specify ‘default’. This will set the algorithm to
the default algorithm depending on the OS the host is
running.

Using only TPCONF_TCP_algos one is limited to either
using the same algorithm on all hosts or the defaults.
To run different algorithms on different hosts, one can
specify ‘host<N>’ where <N> is an integer number
starting from 0. The <N> refers to the Nth entry for
each host in TPCONF_host_TCP_algos.

TPCONF_host_TCP_algos defines the TCP congestion
control algorithms used for each host if the ‘host<N>’
definitions are used in TPCONF_TCP_algos. In the fol-
lowing example a ‘host0’ entry in TPCONF_TCP_algos
will lead to each host using its default. A ‘host1’ entry
will configure testhost2 to use ‘newreno’ and testhost3
to use ‘cdg’.
TPCONF_host_TCP_algos = {

CAIA Technical Report 150414A April 2015 page 21 of 44

’testhost2’ : [’default’, ’newreno’,],
’testhost3’ : [’default’, ’cdg’,],
}

With TPCONF_host_TCP_algo_params we can specify
parameter settings for each host and TCP congestion
control algorithm. The settings are passed directly to
sysctl on the remote host. We can use V_variables to
iterate over different settings (similar as for pipes and
traffic generators) and these are replaced with the actual
current value before passing the string to sysctl. For
example, we can specify settings for CDG for host
testhost2:
TPCONF_host_TCP_algo_params = {
’testhost2’ : { ’cdg’ : [
’net.inet.tcp.cc.cdg.beta_delay = V_cdgbdel’,
’net.inet.tcp.cc.cdg.beta_loss = V_cdgbloss’,
’net.inet.tcp.cc.cdg.exp_backoff_scale = 3’,
’net.inet.tcp.cc.cdg.smoothing_factor = 8’]
}}

5) Emulated delays, loss rates and bottleneck band-
widths: TPCONF_delays specifies the emulated network
delays in milliseconds. The numbers must be chosen
from [0, max_delay). For most practical purposes the
maximum delay max_delay is 10 seconds, although it
could be more (if supported by the emulator). The
following shows an example:

TPCONF_delays = [0, 25, 50, 100]

TPCONF_loss_rates specifies the emulated network loss
rates. The numbers must be between 0.0 and 1.0. The
following shows an example:

TPCONF_loss_rates = [0, 0.001, 0.01]

TPCONF_bandwidths specifies the emulated bandwidths
as 2-tuples. The first value in each tuple is the down-
stream rate and the second value in each tuple is the
upstream rate. Note that the values are passed through to
the router queues and are not checked by TEACUP. Units
can be used if the queue setup allows this, e.g. in the
following example we use ‘mbit’ to specify Mbit/second
which Linux tc understands:
TPCONF_bandwidths = [
(’8mbit’, ’1mbit’),
(’20mbit’, ’1.4mbit’),
]

6) Selection of bottleneck AQM and buffer sizes: TP-
CONF_aqms specifies the list of AQM/queuing tech-
niques. This is completely dependent on the router OS.
Linux supports ‘fifo’ (mapped to ‘pfifo’), ‘pfifo’, ‘bfifo’,

‘fq_codel’, ‘codel’, ‘pie’, ‘red’ etc. (refer to the tc man
page for the full list). FreeBSD support only ‘fifo’ and
‘red’. Default on Linux and FreeBSD are FIFOs (with
size in packets). The following shows an example:

TPCONF_aqms = [’pfifo’, ’fq_codel’, ’pie’]

Note that all underscores in parameter values used in log
file names are changed to hyphens to allow for easier
parsing of log file names. For example, ‘fq_codel’ will
become ‘fq-codel’ in the file name.

TPCONF_buffer_sizes specifies the bottleneck buffer
sizes. If the router is Linux this is mostly in packets/slots,
but it depends on the AQM technique (e.g. for bfifo
it is bytes). If the router is FreeBSD this would be
in slots by default, but we can specify byte sizes (e.g.
we can specify 4Kbytes). The following example for a
Linux router would result in buffers of 100, 200 and 600
packets long:

TPCONF_buffer_sizes = [100, 200, 600]

7) Specifying which parameters to vary:
TPCONF_vary_parameters specifies a list of parameters
to vary over a series of experiments, i.e. parameters
that will take on multiple values. The listed parameters
must be defined in TPCONF_parameter_list (see
Section V-P). The total number of experiments carried
out is the number of unique parameter combinations
(multiplied by the number of TPCONF_runs if ‘runs’ is
also specified in TPCONF_vary_parameters).

The TPCONF_vary_parameters specification also de-
fines the order of the parameters in the log file names.
While not strictly necessary, if used ‘runs’ should
be last in the list. If ‘runs’ is not specified, there
is a single experiment for each parameter combina-
tion. TPCONF_vary_parameters is only used for mul-
tiple experiments. When we run a single experiment
(run_experiment_single) all the variables are set to fixed
values based on TPCONF_variable_defaults. The follow-
ing shows an example for parameters included in TP-
CONF_parameter_list in the example config files:
TPCONF_vary_parameters = [

’tcpalgos’, ’delays’, ’loss’,
’bandwidths’, ’aqms’, ’bsizes’,
’runs’,

]

O. Experiment-specific variables

Some variables defined in the example config file(s) are
only used with certain traffic generators.

CAIA Technical Report 150414A April 2015 page 22 of 44

TPCONF_dash_rates specifies the DASH content rates
in kbit/second and TPCONF_dash_rates_str is a string
with a comma-separated list of rates (the latter is used by
the content creation function create_http_dash_content).
DASH rates must be integers. The following shows an
example:
TPCONF_dash_rates = [500, 1000, 2000]
TPCONF_dash_rates_str = ’,’.join(map(str,

TPCONF_dash_rates))

TPCONF_inc_content_sizes specifies the content sizes
in kB (as integer) for the replies sent in an incast
scenario. TPCONF_inc_periods specifies the length of
a period between requests by the querier in seconds (as
floating point). The following shows an example:
TPCONF_inc_content_sizes= ’64, 512, 1024’
TPCONF_inc_periods = [10]

P. Defining parameters to vary

TEACUP provides a flexible mechanism for defining
what parameters are varied during experiments, what
values (or ranges of values) those parameters may
take, and how those parameters are then used to drive
host, traffic generator and bottleneck configuration. TP-
CONF_parameter_list is a Python dictionary at the core
of this mechanism.

The keys are names that can be used in TP-
CONF_vary_parameters. The values are 4-tuples. The
first parameter of each tuple is a list of V_variables
that can be used, for example in the queue configuration
or traffic generator configuration. The second parameter
of each tuple is a list of ‘short names’ used in the file
names of created log files. The third parameter of each
tuple is the list of parameter values, these are usually
references to the lists defined in the previous section. The
last parameter is a dictionary of extra V_variables to set
(this can be empty), where the keys are variable names
and the values are the variable values. The length of the
first three tuple parameters (V_variable identifiers, short
names and V_variable values) must be equal.

When a series of experiments is started with ‘fab
run_experiment_multiple’ the following happens: For
each parameter combination of the parameters defined in
TPCONF_vary_parameters one experiment is run where
the parameter settings are logged in the file name using
the short names, and the V_ variables are set to the
parameter combination given by the value lists.

TPCONF_parameter_list can handle grouped
V_variables, where in each experiment a specific
combination of the grouped V_variables is used. An
example of this is the parameter bandwidths which uses
TPCONF_bandwidths as values.

TPCONF_variable_defaults is a dictionary that specifies
the defaults for V_ variables. The keys are V_ variable
names and the values are the default values (often the
first value of the parameter lists). For each parameter
that is not varied, the default value specified in TP-
CONF_variable_defaults is used.

We now discuss a simple example where we focus on
the variables to vary delay and TCP algorithms. Assume
we want to experiment with two delay settings and two
different TCP CC algorithms. So we have:
TPCONF_delays = [0, 50]
TPCONF_TCP_algos = [’newreno’, ’cubic’]

We also need to specify the two parameters to be varied
and the default parameters for the variables as shown in
Figure 14.

V_delay can then be used in the router queue settings.
V_tcp_cc_algo is passed to the host setup function.
When we run ‘fab run_experiment_multiple’ this will
run the following experiments, here represented by the
start of the log file names (we assume the test ID prefix
is the default from Section V-E):
20131206-170846_del_0_tcp_newreno
20131206-170846_del_0_tcp_cubic
20131206-170846_del_50_tcp_newreno
20131206-170846_del_50_tcp_cubic

Q. Adding new V_ variables

New V_variables are easy to add. Say we want to create
a new V_variable called V_varx. We need to do the
following:

1) Add a new list with parameter values, let’s say
TPCONF_varx = [x, y]

2) Add one line in TPCONF_parameters_list: the
key is the identifier that can be used in TP-
CONF_vary_parameters (let’s call it varx_vals),
and the value is a 4-tuple: variable name as string
‘V_varx’, variable name used in file name (say
‘varx’), pointer to value list (here TPCONF_varx),
and optionally a dictionary with related variables
(here empty).

CAIA Technical Report 150414A April 2015 page 23 of 44

TPCONF_parameter_list = {
’delays’ : ([’V_delay’], [’del’], TPCONF_delays, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’], [’tcp’], TPCONF_TCP_algos, {}),
}
TPCONF_variable_defaults {
’V_delay’ : TPCONF_delays[0]’,
’V_tcp_algo’ : TPCONF_TCP_algos[0],
}
TPCONF_vary_parameters = [’delays’, ’tcpalgos’]

Figure 14: Specifying the parameters to be varied

3) Add one line in TPCONF_variable_defaults spec-
ifying the default value used (when not iterat-
ing over the variable): the key is the V_variable
name as string (here ‘V_varx’) and the value
is the default value from TPCONF_varx (say
TPCONF_varx[0]).

Technically, step 1 is not necessary as the list of val-
ues can be put directly in TPCONF_parameters_list
and the default value can be put directly in TP-
CONF_variable_defaults. However, defining a separate
list improves the readability.

VI. RUNNING EXPERIMENTS

This section describes how to run experiments. First,
we describe the initial steps needed. Then we outline
a simple example config file. Finally, we describe how
to run the experiments.

A. Initial steps

First you should create a new directory for the experi-
ment or series of experiments. Copy the files fabfile.py
and run.sh (and run_resume.sh) from the TEACUP dis-
tribution into that new directory. Then create a config.py
file in the directory. An easy way to get a config.py file
is to start with one of the provided example config files
as basis and modify it as necessary.

B. Example config

Listing 1 shows a minimal but complete config.py
file. The testbed consists of three machines, two
hosts (192.168.1.2, 192.168.1.3) connected by a router
(192.168.1.4). The two hosts will run FreeBSD for the
experiment, while the router will run Linux. On the
router we configure two pipes, one in each direction, with
different rates but the same AQM mechanism, buffer
size, and emulated delay and loss. The test traffic consists

of two parallel TCP sessions generated with iperf, both
start at the start of the experiment (time 0.0). With iperf
the client sends data to the server, so the data is sent
from 192.168.1.2 to 192.168.1.3. Each experiment lasts
30 seconds and we run a series of experiments varying
the TCP congestion control algorithm, network delay
and loss, upstream and downstream bandwidths, AQM
technique, and buffer size. There is one experiment for
each combination of parameters (one run).

C. Running experiments

There are two Fabric tasks to start
experiments: run_experiment_single and
run_experiment_multiple.

To run a single experiment with the default test ID prefix
TPCONF_test_id, type:

> fab run_experiment_single

To run a series of experiment based on the TP-
CONF_vary_parameters settings with the default test ID
prefix TPCONF_test_id, type:

> fab run_experiment_multiple

In both cases the Fabric log output will be printed out
on the current terminal (stdout) and can be redirected
with the usual means. The default test ID prefix (TP-
CONF_test_id) is specified in the config file. However,
the test ID prefix can also be specified on the command
line (overruling the config setting):

> fab run_experiment_multiple:test_id=‘date

+"%Y%m%d-%H%M%S"‘

The last command will run a series of experiments
where the test ID prefix is YYYYMMDD-HHMMSS,
using the actual date when the fab command is run. For
convenience TEACUP provides a shell script (run.sh)
that logs the Fabric output in a <test_ID_prefix>.log file
inside the <test_ID_prefix> sub directory, and is started
with:

CAIA Technical Report 150414A April 2015 page 24 of 44

import sys
import datetime
from fabric.api import env

env.user = ’root’
env.password = ’password’
env.shell = ’/bin/sh -c’
env.timeout = 5
env.pool_size = 10

TPCONF_script_path = ’/home/test/src/teacup’
sys.path.append(TPCONF_script_path)
TPCONF_tftpboot_dir = ’/tftpboot’
TPCONF_router = [’192.168.1.4’,]
TPCONF_hosts = [’192.168.1.2’, ’192.168.1.3’,]
TPCONF_host_internal_ip = {
’192.168.1.4’ : [’172.16.10.1’, ’172.16.11.1’],
’192.168.1.2’ : [’172.16.10.2’],
’192.168.1.3’ : [’172.16.11.2’], }

now = datetime.datetime.today()
TPCONF_test_id = now.strftime("%Y%m%d-%H%M%S") + ’_experiment’
TPCONF_remote_dir = ’/tmp/’
TPCONF_host_os = {
’192.168.1.4’ : ’Linux’,
’192.168.1.2’ : ’FreeBSD’,
’192.168.1.3’ : ’FreeBSD’, }
TPCONF_linux_kern_router = ’3.14.18-10000hz’
TPCONF_force_reboot = ’1’
TPCONF_boot_timeout = 100
TPCONF_do_power_cycle = ’0’
TPCONF_host_power_ctrlport = {}
TPCONF_power_admin_name = ’’
TPCONF_power_admin_pw = ’’
TPCONF_max_time_diff = 1

TPCONF_router_queues = [
(’1’, "source=’172.16.10.0/24’, dest=’172.16.11.0/24’, delay=V_delay, loss=V_loss, rate=V_urate, queue_disc=V_aqm, queue_size=V_bsize"),
(’2’, "source=’172.16.11.0/24’, dest=’172.16.10.0/24’, delay=V_delay, loss=V_loss, rate=V_drate, queue_disc=V_aqm, queue_size=V_bsize"),]

traffic_iperf = [
(’0.0’, ’1’, "start_iperf, client=’192.168.1.2’, server=’192.168.1.3’, port=5000, duration=V_duration"),
(’0.0’, ’2’, "start_iperf, client=’192.168.1.2’, server=’192.168.1.3’, port=5001, duration=V_duration"),]
TPCONF_traffic_gens = traffic_iperf;

TPCONF_duration = 30
TPCONF_runs = 1
TPCONF_ECN = [’0’, ’1’]
TPCONF_TCP_algos = [’newreno’, ’cubic’, ’htcp’,]
TPCONF_host_TCP_algos = { }
TPCONF_host_TCP_algo_params = { }
TPCONF_host_init_custom_cmds = { }
TPCONF_delays = [0, 25, 50, 100]
TPCONF_loss_rates = [0, 0.001, 0.01]
TPCONF_bandwidths = [(’8mbit’, ’1mbit’), (’20mbit’, ’1.4mbit’),]
TPCONF_aqms = [’pfifo’, ’codel’, ’pie’]
TPCONF_buffer_sizes = [1000, 1]

TPCONF_parameter_list = {
’delays’ : ([’V_delay’], [’del’], TPCONF_delays, {}),
’loss’ : ([’V_loss’], [’loss’], TPCONF_loss_rates, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’], [’tcp’], TPCONF_TCP_algos, {}),
’aqms’ : ([’V_aqm’], [’aqm’], TPCONF_aqms, {}),
’bsizes’ : ([’V_bsize’], [’bs’], TPCONF_buffer_sizes, {}),
’runs’ : ([’V_runs’], [’run’], range(TPCONF_runs), {}),
’bandwidths’ : ([’V_drate’, ’V_urate’], [’down’, ’up’], TPCONF_bandwidths, {}), }
TPCONF_variable_defaults = {
’V_ecn’ : TPCONF_ECN[0],
’V_duration’ : TPCONF_duration,
’V_delay’ : TPCONF_delays[0],
’V_loss’ : TPCONF_loss_rates[0],
’V_tcp_cc_algo’ : TPCONF_TCP_algos[0],
’V_drate’ : TPCONF_bandwidths[0][0],
’V_urate’ : TPCONF_bandwidths[0][1],
’V_aqm’ : TPCONF_aqms[0],
’V_bsize’ : TPCONF_buffer_sizes[0], }

TPCONF_variable_defaults TPCONF_vary_parameters = [’tcpalgos’, ’delays’, ’loss’, ’bandwidths’, ’aqms’, ’bsizes’, ’runs’,]

Listing 1: Example config.py file

CAIA Technical Report 150414A April 2015 page 25 of 44

> run.sh

The shell script generates a test ID prefix and then
executes the command:

> fab run_experiment_multiple:test_id=

<test_ID_pfx> > <test_ID_pfx>.log 2>&1

The test ID prefix is set to ‘date

+"%Y%m%d-%H%M%S"‘_experiment. The output
is unbuffered, so one can use tail -f on the log file
and get timely output. The fabfile to be used can be
specified, i.e. to use the fabfile myfabfile.py instead
of fabfile.py run:

> run.sh myfabfile.py

TEACUP keeps track of experiments using two files in
the current directory:

• The file experiment_started.txt logs the test
IDs of all experiments started.

• The file experiment_completed.txt logs the
test IDs of all experiments successfully completed.

Note that TEACUP never resets either of these files –
new test IDs are simply appended to the files (which are
created if they don’t already exist).7

A run_experiment_multiple task that was interrupted
part-way through may be restarted with the resume

parameter. TEACUP will perform all experiments of the
series that were not previously completed (not logged in
experiments_completed.txt).

For example, the following command resumes
a series of experiments with test ID prefix
20131218-113431_windows (and appends the
log output to the existing log file):

> fab run_experiment_multiple:

test_id=20131218-113431_windows,resume=1

>> 20131218-113431_windows.log 2>&1

The resume parameter also enables redoing of previ-
ously completed experiments, by first editing them out
of experiments_completed.txt.

If a series of experiments is interrupted by non-
deterministic errors, i.e. each experiment may fail with
some small probability, the run_resume.sh shell script
can be used to ensure the whole series of experiments
is completed. The script runs the experiments using

7The user must manually delete or edit these files if actual
experiment results are later deleted.

the run_experiment_multiple task and uses the resume

option to automatically restart and continue each time an
experiment was not successfully completed. The script
is used by executing:

> run_resume.sh

D. TEACUP variable information logged

TEACUP logs configuration information for conducted
experiments in two files. In the following <test_id>
is a test ID and <test_id_pfx> is the corresponding
test ID prefix. For each experiment, TEACUP logs all
V_ variables and their values (in alphabetical order of
variable names) in a file <test_id>_config_vars.log.gz.
The following is an example (with header and legend
lines omitted for brevity):
U V_aqm: pfifo
U V_bsize: 1000
U V_delay: 100

Each line starts with an ‘U’ or an ‘N’ indicating whether
a variable is Used or Not used. After the use indicator
follows the variable name and the value the variable was
set to in the particular experiment.

TEACUP also logs all varying parameters
for a series of experiments in a file named
<test_id_pfx>_varying_params.log.gz. The following
shows a file as example (excluding the header
line):
V_aqm aqm aqms
V_bsize bs bsizes
V_delay del delays

In each line, the first column is the V_ variable name,
the second column is the short name used in the test ID
(in the file names), and the last column is the identifier
that is used in TPCONF_vary_parameters (and links to
an entry in TPCONF_parameter_list).

VII. HOST CONTROL UTILITY FUNCTIONS

This section describes a number of utility functions
available as Fabric tasks. As mentioned previously, the
fab utility has an option to list all available tasks:

> fab -l

CAIA Technical Report 150414A April 2015 page 26 of 44

A. Remote command execution

The exec_cmd task can be used to execute one command
on one or more testbed hosts. For example, the following
command executes the command uname -s on a number
of hosts:

> fab -H testhost1,testhost2,testhost3

exec_cmd:cmd="uname -s"

If no hosts are specified on the command line, the
exec_cmd command is executed on all hosts listed in
the config file (the union set of TPCONF_router and
TPCONF_hosts). For example, the following command
is executed on all testbed hosts:

> fab exec_cmd:cmd="uname -s"

B. Copying files to testbed hosts

The copy_file task can be used to copy a local file to
one or more testbed hosts. For example, the following
command copies the web10g-logger executable to all
testbed hosts except the router (this assumes all the hosts
run Linux when the command is executed):

> fab -H testhost2,testhost3

copy_file:file_name=/usr/bin/web10g-logger,

remote_path=/usr/bin

If no hosts are specified on the command line, the
command is executed for all hosts listed in the config file
(the union set of TPCONF_router and TPCONF_hosts).
For example, the following command copies the file to
all testbed hosts:

> fab copy_file:file_name=

/usr/bin/web10g-logger,remote_path=/usr/bin

The parameter method controls the method used for
copying. By default (method=’put’) copy_file will use
the Fabric put function to copy the file. However,
the Fabric put function is slow. For large files setting
method=’scp’ provides much better performance using
the scp command. While scp is faster, it may prompt for
the password if public key authentication has not been
configured.

C. Installing ssh keys

The authorize_key task can be used to append the current
user’s public SSH key to the ~./ssh/authorized_keys file
of the remote user. The user can then login via SSH
without having to enter a password. For example, the

following command enables password-less access for the
user on three testbed hosts:

> fab -H testhost1,testhost2,testhost3

authorize_key

Note: the authorize_key task assumes the user has a
~/.ssh/id_rsa.pub key file. This can be created with
ssh-keygen -t rsa. Also note that the task does not
check if the public key is already in the remote user’s
authorized_keys file, so executing this task multiple
times may lead to duplicate entries in the remote user’s
authorized_keys file.

D. Topology configuration

Where the testbed meets the requirements described
in Section V-G, the init_topology task can be used
to “move” hosts from one test subnet to the other
by configuring the VLAN membership of the switch
ports in conjunction with IP addresses and static
routes on each host. The task uses the config.py
file to get the testbed IP addresses of the hosts to
be configured (from TPCONF_host_internal_ip). It
also uses the values of TPCONF_topology_switch,
TPCONF_topology_switch_port_prefix, and
TPCONF_topology_switch_port_offset specified in
config.py to reconfigure the switch. The last three
parameters can also be overridden by the task’s
parameters switch, port_prefix, and port_offset.
Limitations of the current implementation are described
in Section V-G.

The following shows an example where we configure the
hosts testhost1 and testhost2 using the task’s parameters
to specify the switch-relevant settings:

> fab -H testhost1,testhost2

init_topology:switch="switch2",

port_prefix="Gi1/0/",port_offset="5"

E. Initialise hosts to a specific operating system

The init_os task can be used to reboot hosts into specific
operating systems (OSs). For example, the following
command reboots the hosts testhost1 and testhost2 into
the OSs Linux and FreeBSD respectively:

> fab -H testhost1,testhost2

init_os:os_list="Linux\,FreeBSD",

force_reboot=1

Note that the commas in os_list need to be escaped
with backslashes (\), since otherwise Fabric interprets

CAIA Technical Report 150414A April 2015 page 27 of 44

the commas as parameter delimiters. Note that os_list
can be shorter than the number of specified hosts, in
which case it will be padded to the length of the number
of hosts by duplicating the last entry. This allows to
reboot a large number of hosts into the same OS while
specifying an os_list with only a single entry (the
desired OS).

For Linux the kernel to boot can be chosen
with the parameters linux_kern_hosts and
linux_kern_router. linux_kern_hosts specifies
the kernel for normal hosts (not routers) and
linux_kern_router specifies the kernel for routers.
Please refer to the description in Section V-H2 on how
to specify the kernel name.

By default force_reboot is 0, which means hosts that
are already running the desired OS are not rebooted.
Setting force_reboot to 1 enforces a reboot. By
default the script waits 100 seconds for a host to reboot.
If the host is not responsive after this time, the script will
give up unless the do_power_cycle parameter is set to
1. This timeout can be changed with the boot_timeout
parameter, which specifies the timeout in seconds (as
integer). A minimum boot timeout of 60 seconds will be
enforced.

The do_power_cycle parameter can be set to 1 to
force a power cycle if a host does not respond after
the boot timeout (assuming TEACUP-compatible power
controller(s) are configured). The script will then wait
for boot_timeout seconds again for the host to come
up. If the host is still unresponsive after the timeout the
script will give up (there are no further automatic power
cycles). The following command shows an example with
do_power_cycle set to 1:

> fab -H testhost1,testhost2

init_os:os_list="Linux\,FreeBSD",

force_reboot=1,do_power_cycle=1

F. Power cycling

The power_cycle task can be used to power cycle hosts,
i.e. if hosts become unresponsive (assuming TEACUP-
compatible power controller are configured). After the
power cycle the hosts will boot the last selected OS. For
example, the following command power cycles the hosts
testhost1 and testhost2:

> fab -H testhost1,testhost2 power_cycle

G. Check software installations on testbed hosts

The check_host command can be used to check if the
required software is installed on the hosts. The task only
checks for the presence of necessary tools, but it does
not check if the tools actually work. For example, the
following command checks all testbed hosts:

> fab -H testhost1,testhost2,testhost3

check_host

H. Check testbed host connectivity

The check_connectivity task can be used to check con-
nectivity between testbed hosts with ping. This task
only checks the connectivity of the internal testbed
network, not the reachability of hosts on their control
interface. For example, the following command checks
whether each host can reach each other host across the
testbed network:

> fab -H testhost1,testhost2,testhost3

check_connectivity

I. Check TEACUP config file

The check_config task can be used to check the
TEACUP config file. This task will perform a number
of checks and abort with an error message if it finds
any errors in the config file. (This task is automatically
run at the start of each experiment or series of experi-
ments.)

> fab check_config

1) Print version information: The get_version task
prints out the TEACUP version number, revision number
and data, and the copyright:

> fab get_version

The output will look like:

TEACUP Version 0.9
Revision: 1175
Date: 2015-04-01 11:00:50 +1100 (Wed, 01
Apr 2015)
Copyright (c) 2013-2015 Centre for
Advanced Internet Architectures

Swinburne University of Technology. All

rights reserved.

CAIA Technical Report 150414A April 2015 page 28 of 44

VIII. EXPERIMENT EXAMPLES

A. Overview

Here we provide a few example scenarios of how
TEACUP can be used. Each scenario involves traffic
senders and receivers distributed across two subnets
(subnet A and subnet B) connected by a bottleneck
router. All hosts and the router are time synchronised
using NTP. We have the following scenarios.

• Scenario 1: We have two TCP flows with data
flowing from a source in subnet A to a destination
in subnet B. We emulate different delays on the
router. In this scenario the rebooting functionality
of TEACUP is not used, which means the exper-
imenter has to boot all three machines into the
desired OS before the experiment is started.

• Scenario 2: As with scenario 1, with TEACUP also
automatically booting the desired OS.

• Scenario 3: As with scenario 2, with TEACUP using
a power controller to power cycle hosts if they don’t
respond after the reboot.

• Scenario 4: As with scenario 1, with each TCP
flow between a different sender/receiver pair and
different network path delay emulated for each flow
(both flows still go through the same bottleneck).

• Scenario 5: We have three staggered bulk-transfer
flows going through the router, each between a
different sender/receiver pair. We use different em-
ulated delay for each sender/receiver pair and also
vary the bandwidths. We now also vary the TCP
congestion control algorithm.

• Scenario 6: We have three hosts plus the router.
One host in subnet A acts as web server. The two
other hosts in subnet B act as clients that both use
DASH-like video streaming over HTTP. We emulate
different network delays and AQM mechanisms.

• Scenario 7: Investigating the incast problem. On
host in subnet A queries 10 responders in subnet B.
Again, we emulate different network delays, AQM
mechanisms and TCP algorithms. We also vary the
size of the responses.

B. Scenario 1: Two TCP flows from data sender to
receiver

1) Topology: In this scenario we have two hosts:
newtcp20 connected to the 172.16.10.0/24 network and
newtcp27 connected to the 172.16.11.0/24 network. The
machine newtcprt3 connects the two experiment subnets.

All three machines also have a second network interface
that is used to control the experiment via TEACUP.
newtcp20 and newtcp27 must run Linux, FreeBSD, Win-
dows 7 or Mac OS X and newtcprt3 must run FreeBSD
or Linux. newtcp20 and newtcp27 must have the traffic
generator and logging tools installed as described in [7].
However, PXE booting or a multi-OS installation is not
needed for this scenario.

2) Test Traffic: Two TCP bulk transfer flows are created
using iperf.

3) Variable Parameters: We emulate three different de-
lays and two different bandwidth settings – six different
experiments in total. We do also define a variable param-
eter for AQM, but define only one AQM (default pfifo).
This causes the used AQM to be logged as part of the
experiment ID.

4) TEACUP Config File: You can download the config-
uration file from [24]. To use the configuration rename
it to config.py. In the following we explain the configu-
ration file.

Note that TEACUP configuration files can be split across
multiple files (using Python’s execfile()). This allows
to split a large config file into multiple files for better
readability. It also allows to include part of configuration
files into multiple different config files, which makes it
possible to reuse parts of the config that is not changed
across multiple experiments. An example of a this is
this config file, which is functionally identical to the
above config file. Only here the main config file includes
separate files to specify the testbed machines, the router
setup and the traffic generated.

At the top of the configuration file we need to import
the Fabric env structure and we also need to import any
other Python functionality used (see Listing 2). First
we need to configure the user and password used by
Fabric via Fabrics env parameters. A password is not
required if public key authentication is set up. We also
need to tell Fabric how to execute commands on the
remote machines. TEACUP uses Bourne shell (/bin/sh)
by default.

The next part of the config file defines the path to
the TEACUP scripts and the testbed hosts (see Listing
3). TPCONF_router is used to define the router and
TPCONF_hosts is used to define the list of hosts. For
each host and the router the testbed network interfaces
need to be defined with TPCONF_host_internal_ip. The

CAIA Technical Report 150414A April 2015 page 29 of 44

User and password
env.user = ’root’
env.password = ’rootpw’
Set shell used to execute commands
env.shell = ’/bin/sh -c’

Listing 2: Scenario 1, Fabric configuration

router obviously has two testbed network interfaces,
whereas the hosts have only one.

In the next part of the configuration file we need to
define some general experiment settings (see Listing 4).
TEACUP_max_time_diff specifies the maximum clock
offset in seconds allowed. This is a very coarse threshold
as the offset estimation performed by TEACUP is not
very accurate. Currently, TEACUP simply attempts to
find out if the synchronisation is very bad and if yes
it will abort; it does try to enforce high accuracy for
the time synchronisation. TPCONF_test_id defines the
name prefix for the output files for an experiment or
a series of experiments. TPCONF_remote_dir specifies
where on the hosts the log files are stored until they are
moved to the control host running TEACUP after each
experiment.

Then we define the router queues/pipes using TP-
CONF_router_queues (see Listing 5). Each entry of this
list is a tuple. The first value is the queue number
and the second value is a comma separated list of
parameters. The queue numbers must be unique. Note
that variable parameters must be either constants or
variable names defined by the experimenter. Variables
are evaluated during run-time. Variable names must
start with a ‘V_’. Parameter names can only contain
numbers, letter (upper and lower case), underscores (_),
and hyphen/minus (-). All V_variables must be defined
in TPCONF_variable_list (see below).

Next we need to define the traffic generated during
the experiments (see Listing 6). TEACUP implements
a number of traffic generators. In this example we
use iperf to generate TCP bulk transfer flows. TP-
CONF_traffic_gens defines the traffic generator, but here
we use a temporary variable as well, which allows to
have multiple traffic generator definitions and switch
between them by changing the variable assigned to
TPCONF_traffic_gens.

Each entry in is a 3-tuple. The first value of the tuple
must be a float and is the time relative to the start of

the experiment when tasks are executed. If two tasks
have the same start time their start order is arbitrary.
The second entry of the tuple is the task number and
must be a unique integer (used as ID for the process).
The last value of the tuple is a comma separated list of
parameters. The first parameter of this list must be the
task name. The TEACUP manual lists the task name and
possible parameters. Client and server can be specified
using the external/control IP addresses or host names.
In this case the actual interface used is the first internal
address (according to TPCONF_host_internal_ip). Alter-
natively, client and server can be specified as internal
addresses, which allows to use any internal interfaces
configured.

Next, we define all the parameter values used in the
experiments (see Listing 7). TPCONF_duration defines
the duration of the traffic. TPCONF_runs specifies the
number of runs carried out for each unique com-
bination of parameters. TPCONF_TCP_algos specifies
the congestion control algorithms. Here we only use
Newreno.

In this simple case all hosts use the same TCP conges-
tion control algorithm, but TEACUP allows to specify
per-host algorithms with TPCONF_host_TCP_algos. Pa-
rameter settings for TCP congestion control algorithms
can be specified with TPCONF_host_TCP_algo_params
(assuming parameters can be controlled with sysctl), but
here we do not make use of that and simply use the
default settings.

TPCONF_delays specifies the delay values (delay in
each direction), TPCONF_loss_rates specifies the pos-
sible packet loss rates and TPCONF_bandwidths spec-
ifies the emulated bandwidths (in downstream and up-
stream directions). TPCONF_aqms specifies the AQM
mechanism to use (here pfifo which is the default).
TPCONF_buffer_sizes specifies the size of the queue.
This is normally specified in packets, but it depends on
the type of AQM. For example, if bfifo was used the
size would need to be specified in bytes.

CAIA Technical Report 150414A April 2015 page 30 of 44

Path to teacup scripts
TPCONF_script_path = ’/home/teacup/teacup-0.8’
DO NOT remove the following line
sys.path.append(TPCONF_script_path)
Set debugging level (0 = no debugging info output)
TPCONF_debug_level = 0
Host lists
TPCONF_router = [’newtcprt3’,]
TPCONF_hosts = [’newtcp20’, ’newtcp27’,]
Map external IPs to internal IPs
TPCONF_host_internal_ip = {

’newtcprt3’: [’172.16.10.1’, ’172.16.11.1’],
’newtcp20’: [’172.16.10.60’],
’newtcp27’: [’172.16.11.67’],

}

Listing 3: Scenario 1, general settings and host configuration

Maximum allowed time difference between machines in seconds
otherwise experiment will abort cause synchronisation problems
TPCONF_max_time_diff = 1
Experiment name prefix used if not set on the command line
The command line setting will overrule this config setting
now = datetime.datetime.today()
TPCONF_test_id = now.strftime("%Y%m%d-%H%M%S") + ’experiment’
Directory to store log files on remote host
TPCONF_remote_dir = ’/tmp/’

Listing 4: Scenario 1, test ID prefix and directory configuration

TPCONF_router_queues = [
Set same delay for every host
(’1’, " source=’172.16.10.0/24’, dest=’172.16.11.0/24’, delay=V_delay, "
" loss=V_loss, rate=V_up_rate, queue_disc=V_aqm, queue_size=V_bsize "),

(’2’, " source=’172.16.11.0/24’, dest=’172.16.10.0/24’, delay=V_delay, "
" loss=V_loss, rate=V_down_rate, queue_disc=V_aqm, queue_size=V_bsize "),

]

Listing 5: Scenario 1, router queue configuration

Finally, we need to specify which parameters will be
varied and which parameters will be fixed for a series
of experiments, and we also need to define how our
parameter ranges above map to V_variables used for the
queue setup and traffic generators and the log file names
generated by TEACUP (see Listing 8).

TPCONF_parameter_list is a map of the parameters we
potentially want to vary. The key of each item is the
identifier that can be used in TPCONF_vary_parameters
(see below). The value of each item is a 4-tuple contain-
ing the following things. First, a list of variable names.
Second, a list of short names uses for the file names. For
each parameter varied a string ‘_<short_name>_<value>’
is appended to the log file names (appended to chosen

prefix). Note, short names should only be letters from
a–z or A–Z, do not use underscores or hyphens. Third,
the list of parameters values. If there is more than one
variable this must be a list of tuples, each tuple having
the same number of items as the number of variables.
Fourth, an optional dictionary with additional variables,
where the keys are the variable names and the values are
the variable values.

The parameters that are actually varied are specified
with TPCONF_vary_parameters. Only parameters listed
in TPCONF_vary_parameters will appear in the name
of TEACUP output files. So it can make sense to add a
parameter in TPCONF_vary_parameters that only has a

CAIA Technical Report 150414A April 2015 page 31 of 44

traffic_iperf = [
(’0.0’, ’1’, " start_iperf, client=’newtcp27’, server=’newtcp20’, port=5000, "

" duration=V_duration "),
(’0.0’, ’2’, " start_iperf, client=’newtcp27’, server=’newtcp20’, port=5001, "

" duration=V_duration "),
Or using internal addresses
#(’0.0’, ’1’, " start_iperf, client=’172.16.11.2’, server=’172.16.10.2’, "
" port=5000, duration=V_duration "),
#(’0.0’, ’2’, " start_iperf, client=’172.16.11.2’, server=’172.16.10.2’, "
" port=5001, duration=V_duration "),

]
THIS is the traffic generator setup we will use
TPCONF_traffic_gens = traffic_iperf

Listing 6: Scenario 1, traffic configuration

Duration in seconds of traffic
TPCONF_duration = 30
Number of runs for each setting
TPCONF_runs = 1
TCP congestion control algorithm used
TPCONF_TCP_algos = [’newreno’,]
Emulated delays in ms
TPCONF_delays = [0, 25, 50]
Emulated loss rates
TPCONF_loss_rates = [0]
Emulated bandwidths (downstream, upstream)
TPCONF_bandwidths = [(’8mbit’, ’1mbit’), (’20mbit’, ’1.4mbit’),]
AQM
TPCONF_aqms = [’pfifo’,]
Buffer size
TPCONF_buffer_sizes = [100]

Listing 7: Scenario 1, experiment parameter value configuration

single value, because only then will the parameter short
name and value be part of the file names.

TPCONF_variable_defaults specifies the default value
for each variable, which is used for variables that are
not varied. The key of each item is the parameter name.
The value of each item is the default parameter value
used if the variable is not varied.

5) Running Experiment: Create a directory with the
above config.py and copy fabfile.py and run.sh from the
TEACUP code distribution into this directory. To run the
series of experiments with all parameter combinations
go into the experiment directory (that contains fabfile.py
and run.sh) and execute:

> ./run.sh

This will create a sub directory with the name of the
test ID prefix and store all output files in this sub
directory.

6) Analysing Results: TEACUP provides a range of
tasks for analysing the results of a given experiment, de-
scribed in an accompanying technical report [8]. Here we
briefly summarise how to extract some key results.

TEACUP will create a file names <test_id_prefix>.log
file in the experiment data sub directory. It will
also create a file experiments_started.txt and experi-
ments_completed.txt in the parent directory. The file
experiments_started.txt contains the names of all ex-
periments started and the file experiments_completed.txt
contains the names of all experiments successfully com-
pleted. If some experiments were not completed, check
the log file for errors.

Assuming all experiments of a series completed success-
fully, we can now start to analyse the data. To create
time series of CWND, RTT as estimated by TCP, RTT
as estimated using SPP and the throughput over time
for each experiment of the series, use the following

CAIA Technical Report 150414A April 2015 page 32 of 44

TPCONF_parameter_list = {
Vary name V_ variable file name values extra vars
’delays’ : ([’V_delay’], [’del’], TPCONF_delays, {}),
’loss’ : ([’V_loss’], [’loss’], TPCONF_loss_rates, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’],[’tcp’], TPCONF_TCP_algos, {}),
’aqms’ : ([’V_aqm’], [’aqm’], TPCONF_aqms, {}),
’bsizes’ : ([’V_bsize’], [’bs’], TPCONF_buffer_sizes, {}),
’runs’ : ([’V_runs’], [’run’], range(TPCONF_runs), {}),
’bandwidths’ : ([’V_down_rate’, ’V_up_rate’], [’down’, ’up’], TPCONF_bandwidths, {}),

}
TPCONF_variable_defaults = {

V_ variable value
’V_duration’ : TPCONF_duration,
’V_delay’ : TPCONF_delays[0],
’V_loss’ : TPCONF_loss_rates[0],
’V_tcp_cc_algo’ : TPCONF_TCP_algos[0],
’V_down_rate’ : TPCONF_bandwidths[0][0],
’V_up_rate’ : TPCONF_bandwidths[0][1],
’V_aqm’ : TPCONF_aqms[0],
’V_bsize’ : TPCONF_buffer_sizes[0],

}
Specify the parameters we vary through all values, all others will be fixed
according to TPCONF_variable_defaults
TPCONF_vary_parameters = [’delays’, ’bandwidths’, ’aqms’, ’runs’,]

Listing 8: Scenario 1, variable parameters configuration

command which creates intermediate files and the .pdf
plot files in a sub directory named results inside the test
data directory (the command needs to be executed in the
directory where fabfile.py is).

> fab analyse_all:out_dir="./results"

Figure 15 shows the throughput and TCP’s smoothed
RTT estimates produced by TEACUP for the experiment
with an emulated RTT of 50 ms, a bandwidth of 8 mbit/s
downstream and 1 mbit/s upstream, and a buffer size of
100 packets. The hosts and the router ran Linux kernel
3.17.4. The throughput graph shows that both flows share
the downstream link equally, while the upstream link
carrying only ACKs is not fully utilised. The RTT graph
shows that the total RTT reaches almost 100 ms due to
the buffering (the plotted RTT estimates for the ACK
streams are useless).

C. Scenario 2: Scenario 1 plus automatic booting of
hosts

1) Topology: Like in scenario 1 we have two hosts:
newtcp20 connected to the 172.16.10.0/24 network and
newtcp27 connected to the 172.16.11.0/24 network. The
machine newtcprt3 connects the two experiment subnets.
All three machines also have a second network interface
that is used to control the experiment via TEACUP. In

this scenario we assume that the hosts have been installed
according to [7] including PXE booting and a multi-
OS installation on each host as described in the tech
report.

2) Test Traffic: Like in scenario 1 two TCP bulk transfer
flows are created using iperf.

3) Variable Parameters: Like in scenario 1 we emulate
three different delays and two different bandwidth set-
tings – six different experiments in total. We do also
define a variable parameter for AQM, but define only
one AQM (default pfifo). This causes the used AQM to
be logged as part of the experiment ID.

4) TEACUP Config File: You can download the config-
uration file from [24]. To use the configuration rename
it to config.py. In the following we explain the configu-
ration file.

Most of the configuration is identical to the configuration
used in scenario 1. The only difference is that now
TEACUP will reboot the machines automatically into the
specified OS, which is very useful if machines have a
multi-boot setup, i.e. can run different OS. The automatic
rebooting of multi-OS machines requires that machines
are configured with PXE+GRUB as described in the tech
report. If machines have only a single OS the reboot
function is still useful to put machines into a clean state

CAIA Technical Report 150414A April 2015 page 33 of 44

●●

0 5 10 15 20 25 30

0

1000

2000

3000

4000

20150211−171242_experiment_del_25_down_8mbit_up_1mbit_aqm_pfifo_run_0

Time (s)

T
hr

ou
gh

pu
t (

kb
ps

)

●●

● 172.16.10.2_5000_172.16.11.2_58314
172.16.10.2_5001_172.16.11.2_54807

172.16.11.2_58314_172.16.10.2_5000
172.16.11.2_54807_172.16.10.2_5001

(a) Throughput

●●●

0 5 10 15 20 25 30

0

20

40

60

80

100

20150211−171242_experiment_del_25_down_8mbit_up_1mbit_aqm_pfifo_run_0

Time (s)

S
m

oo
th

ed
 T

C
P

 R
T

T
 (

m
s)

●●●

● 172.16.10.2_5000_172.16.11.2_58314
172.16.10.2_5001_172.16.11.2_54807

172.16.11.2_58314_172.16.10.2_5000
172.16.11.2_54807_172.16.10.2_5001

(b) RTT

Figure 15: Throughput and TCP RTT estimate measured in Scenario 1

before an experiment and in this case PXE booting is
not needed.

Listing 9 shows the additional configuration needed,
compared to scenario 1. TPCONF_tftpboot_dir speci-
fies the directory where TEACUP will put the files
that GRUB will read (after loaded via PXE) which
specify from which hard disk partition to boot from.
TPCONF_host_os specifies the operating for each host
and router. For Linux TEACUP allows to specify
the kernel that is booted. TPCONF_linux_kern_router
specifies the kernel booted on the router and TP-
CONF_linux_kern_hosts specifies the kernel booted on
the other hosts. If TPCONF_force_reboot is not set
to ‘0’, TEACUP will only reboot a host if the cur-
rently running OS is different from the OS specified
in TPCONF_host_os (Linux hosts will also be rebooted
if the currently running kernel is different from the
kernel specified in TPCONF_linux_kern_router or TP-
CONF_linux_kern_hosts). TPCONF_boot_timeout spec-
ifies the amount of time TEACUP will wait for a host
to be rebooted and accessible via SSH again. If a host
is not rebooted and running the desired OS within this
time TEACUP will abort with an error.

Currently, by default TEACUP expects Windows on
partition 1, Linux on partition 2, FreeBSD on partition
3 on the first hard disk. However, the variable TP-
CONF_os_partition can be used to specify the partitions
in GRUB4DOS format. PXE booting of MacOS is not
supported currently.

5) Run and analyse experiment: See scenario 1.

D. Scenario 3: Scenario 1 plus power control

1) Topology: Like in scenario 1 we have two hosts:
newtcp20 connected to the 172.16.10.0/24 network and
newtcp27 connected to the 172.16.11.0/24 network. The
machine newtcprt3 connects the two experiment subnets.
All three machines also have a second network interface
that is used to control the experiment via TEACUP. We
assume that the hosts have been installed according to
[7]. Furthermore, this scenario only works with installed
TEACUP-compatible power controllers that are set up to
control the power of the three hosts.

2) Test Traffic: Like in scenario 1 two TCP bulk transfer
flows are created using iperf.

3) Variable Parameters: Like in scenario 1 we emulate
three different delays and two different bandwidth set-
tings – six different experiments in total. We do also
define a variable parameter for AQM, but define only
one AQM (default pfifo). This causes the used AQM to
be logged as part of the experiment ID.

4) TEACUP Config File: You can download the config-
uration file from [24]. To use the configuration rename
it to config.py. In the following we explain the configu-
ration file.

Most of the configuration is identical to the configuration
used in scenario 2. The only different is that now
TEACUP will automatically power cycle machines that
to not come up within the reboot timeout. TEACUP
will only power cycle machines once. If after a power
cycle and reboot the machines are still unresponsive

CAIA Technical Report 150414A April 2015 page 34 of 44

Path to tftp server handling the pxe boot
Setting this to an empty string ’’ means no PXE booting, and TPCONF_host_os
and TPCONF_force_reboot are simply ignored
TPCONF_tftpboot_dir = ’/tftpboot’
Operating system config, machines that are not explicitly listed are
left as they are (OS can be ’Linux’, ’FreeBSD’, ’CYGWIN’, ’Darwin’)
TPCONF_host_os = {

’newtcprt3’: ’Linux’,
’newtcp20’: ’Linux’,
’newtcp27’: ’Linux’,

}
Specify the Linux kernel to use, only used for machines running Linux
(basically the full name without the vmlinuz-)
TPCONF_linux_kern_router = ’3.17.4-vanilla-10000hz’
TPCONF_linux_kern_hosts = ’3.17.4-vanilla-web10g’
Force reboot
If set to ’1’ will force a reboot of all hosts
If set to ’0’ only hosts where OS is not the desired OS will be rebooted
TPCONF_force_reboot = ’0’
Time to wait for reboot in seconds (integer)
Minimum timeout is 60 seconds
TPCONF_boot_timeout = 120
Map OS to partition on hard disk (note the partition must be specified
in the GRUB4DOS format, _not_ GRUB2 format)
TPCONF_os_partition = {

’CYGWIN’: ’(hd0,0)’,
’Linux’: ’(hd0,1)’,
’FreeBSD’: ’(hd0,2)’,

}

Listing 9: Scenario 2, OS and reboot configuration

TEACUP will give up. Power cycling can only used
if the machines are connected via a power controller
supported by TEACUP. Currently, TEACUP supports
two power controllers: IP Power 9258HP (9258HP) and
Serverlink SLP-SPP1008-H (SLP-SPP1008).

Listing 10 shows the additional configuration needed,
compared to scenario 1. TPCONF_do_power_cycle must
be set to ‘1’ to perform power cycling. If power cycling
is used TPCONF_host_power_ctrlport must define the
IP address of the responsible power controller for each
machine as well as the power controller’s port the
machine is connected to. TPCONF_power_admin_name
and TPCONF_power_admin_pw must specify the admin
user’s name and password required to login to the power
controller’s web interface. TPCONF_power_ctrl_type
specifies the type of power controller.

5) Run and analyse experiment: See scenario 1.

E. Scenario 4: TCP flows with same bottleneck queue
but different delay

1) Topology: We now have two hosts in each subnet:
newtcp20 and newtcp21 connected to the 172.16.10.0/24
network, newtcp27 and newtcp28 connected to the
172.16.11.0/24 network. The machine newtcprt3 con-
nects the two experiment subnets. All three machines
also have a second network interface that is used to
control the experiment via TEACUP. Like scenario 1
this scenario requires that hosts have the traffic generator
and logging tools installed as described in [7], but PXE
booting or a multi-OS installation is not needed.

2) Test Traffic: Two TCP bulk transfer flows are cre-
ated using iperf. One flow is between newtcp20 and
newtcp27 and the second flow is between newtcp21 and
newtcp28.

3) Variable Parameters: Like in scenario 1 we emulate
two different bandwidth settings. However, we setup
different delays for each flow. Since each flow can have
two different values, we have eight different experiments
in total. We do also define a variable parameter for AQM,

CAIA Technical Report 150414A April 2015 page 35 of 44

If host does not come up within timeout force power cycle
If set to ’1’ force power cycle if host not up within timeout
If set to ’0’ never force power cycle
TPCONF_do_power_cycle = ’1’
Maps host to power controller IP (or name) and power controller port number
TPCONF_host_power_ctrlport = {

’newtcprt3’: (’10.0.0.100’, ’1’),
’newtcp20’: (’10.0.0.100’, ’2’),
’newtcp27’: (’10.0.0.100’, ’3’),

}
Power controller admin user name
TPCONF_power_admin_name = ’admin’
Power controller admin user password
TPCONF_power_admin_pw = env.password
Type of power controller. Currently supported are only:
IP Power 9258HP (9258HP) and Serverlink SLP-SPP1008-H (SLP-SPP1008)
TPCONF_power_ctrl_type = ’SLP-SPP1008’

Listing 10: Scenario 3, power controller configuration

but define only one AQM (default pfifo). This causes
the used AQM to be logged as part of the experiment
ID.

4) TEACUP Config File: You can download the config-
uration file from [24]. To use the configuration rename
it to config.py. In the following we explain the parts
of the configuration file that have changed compared to
scenario 1.

Our host configuration now looks as in Listing 11.

To configure different delays for each flow we also need
to change the router setup (see Listing 12).

We also need to define both of the V_ variables and
make sure we iterate over both in the experiments (see
Listing 13).

Finally, we need to define the traffic generators to create
one TCP bulk transfer flow for each host pair as shown
in Listing 14.

5) Run and analyse experiment: See scenario 1.

F. Scenario 5: Partially overlapping TCP flows with
different TCP CC

1) Topology: We now have three hosts in each subnet:
newtcp20, newtcp21 and newtcp22 connected to the
172.16.10.0/24 network, and newtcp27, newtcp28 and
newtcp29 connected to the 172.16.11.0/24 network. The
machine newtcprt3 connects the two experiment subnets.
All three machines also have a second network interface
that is used to control the experiment via TEACUP.

Like scenario 1 this scenario requires that hosts have the
traffic generator and logging tools installed as described
in [7], but PXE booting or a multi-OS installation is not
needed.

2) Test Traffic: Three TCP bulk transfer flows are cre-
ated using iperf. One flow is between newtcp20 and
newtcp27, the second flow is between newtcp21 and
newtcp28, and the third flow is between newtcp22 and
newtcp29. The flows do not longer start at the same time.
Flow one start at the start of the experiment, while flow
2 starts 10 seconds after the first flow and flow 3 starts
10 seconds after flow 2. All flows have a duration of 30
seconds as in scenario 1.

3) Variable Parameters: Like in scenario 1 we emulate
three different delays (same delays for all flows) and
two different bandwidth settings. However, we now also
vary the used TCP congestion control algorithm between
Newreno and Cubic. This means we have 12 different
experiments in total. We do also define a variable pa-
rameter for AQM, but define only one AQM (default
pfifo). This causes the used AQM to be logged as part
of the experiment ID.

4) TEACUP Config File: You can download the config-
uration file from [24]. To use the configuration rename
it to config.py. In the following we explain the parts
of the configuration file that have changed compared to
scenario 1.

Our host configuration now looks as shown in Listing
15.

CAIA Technical Report 150414A April 2015 page 36 of 44

TPCONF_router = [’newtcprt3’,]
TPCONF_hosts = [’newtcp20’, ’newtcp21’, ’newtcp27’, ’newtcp28’,]
TPCONF_host_internal_ip = {

’newtcprt3’: [’172.16.10.1’, ’172.16.11.1’],
’newtcp20’: [’172.16.10.60’],
’newtcp21’: [’172.16.10.61’],
’newtcp27’: [’172.16.11.67’],
’newtcp28’: [’172.16.11.68’],

}

Listing 11: Scenario 4, host configuration

TPCONF_router_queues = [
(’1’, " source=’172.16.10.60’, dest=’172.16.11.67’, delay=V_delay, "
" loss=V_loss, rate=V_up_rate, queue_disc=V_aqm, queue_size=V_bsize "),

(’2’, " source=’172.16.11.67’, dest=’172.16.10.60’, delay=V_delay, "
" loss=V_loss, rate=V_down_rate, queue_disc=V_aqm, queue_size=V_bsize "),

(’3’, " source=’172.16.10.61’, dest=’172.16.11.68’, delay=V_delay2, "
" loss=V_loss, rate=V_up_rate, queue_disc=V_aqm, queue_size=V_bsize, "
" attach_to_queue=’1’ "),

(’4’, " source=’172.16.11.68’, dest=’172.16.10.61’, delay=V_delay2, "
" loss=V_loss, rate=V_down_rate, queue_disc=V_aqm, queue_size=V_bsize, "
" attach_to_queue=’2’ "),

]

Listing 12: Scenario 4, router queue configuration

The traffic generator setup now creates three staggered
flows as shown in Listing 16.

We also need to configure the different TCP congestion
control algorithms and instruct TEACUP to vary this
parameter (see Listing 17).

5) Run and analyse experiment: See scenario 1.

G. Scenario 6: Two HTTP-based video streaming
clients

1) Topology: We now have hosts newtcp20, newtcp21
connected to the 172.16.10.0/24 network and host
newtcp27 connected to the 172.16.11.0/24 network. The
machine newtcprt3 connects the two experiment subnets.
All three machines also have a second network interface
that is used to control the experiment via TEACUP.
Like scenario 1 this scenario requires that hosts have the
traffic generator and logging tools installed as described
in [7], but PXE booting or a multi-OS installation is not
needed.

2) Test Traffic: In this scenario we simulate DASH-
like HTTP video streaming. Host newtcp27 runs a web
server. Host newtcp20 and newtcp21 are clients and use
httperf to emulate DASH-like streaming – there is one

DASH-like flow between each client and the server. In
this scenario we have fixed the video rates and on/off
cycle times, but the rate and cycle time differs for both
streams.

3) Variable Parameters: Like in scenario 1 we emulate
three different delays (same delays for all flows) and two
different bandwidth settings. We now also vary the AQM
mechanism used on the router between FIFO, CoDel
and FQ CoDel. This means we have 18 experiments in
total.

4) TEACUP Config File: You can download the config-
uration file from [24]. To use the configuration rename
it to config.py. In the following we explain the parts
of the configuration file that have changed compared to
scenario 1.

Our host configuration now looks as in Listing 18.

The traffic generator setup now starts a web server
and generates fake streaming content on newtcp27 be-
fore starting the DASH-like flows as shown in Listing
19.

Finally, we need to configure the different
AQM mechanisms used (see Listing 20).
TPCONF_vary_parameters already included the ‘aqms’

CAIA Technical Report 150414A April 2015 page 37 of 44

TPCONF_delays = [5, 50]
TPCONF_delays2 = [5, 50]
TPCONF_parameter_list = {

Vary name V_ variable file name values extra vars
’delays’ : ([’V_delay’], [’del1’], TPCONF_delays, {}),
’delays2’ : ([’V_delay2’], [’del2’], TPCONF_delays2, {}),
’loss’ : ([’V_loss’], [’loss’], TPCONF_loss_rates, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’],[’tcp’], TPCONF_TCP_algos, {}),
’aqms’ : ([’V_aqm’], [’aqm’], TPCONF_aqms, {}),
’bsizes’ : ([’V_bsize’], [’bs’], TPCONF_buffer_sizes, {}),
’runs’ : ([’V_runs’], [’run’], range(TPCONF_runs), {}),
’bandwidths’ : ([’V_down_rate’, ’V_up_rate’], [’down’, ’up’], TPCONF_bandwidths, {}),

}
TPCONF_variable_defaults = {

V_ variable value
’V_duration’ : TPCONF_duration,
’V_delay’ : TPCONF_delays[0],
’V_delay2’ : TPCONF_delays2[0],
’V_loss’ : TPCONF_loss_rates[0],
’V_tcp_cc_algo’ : TPCONF_TCP_algos[0],
’V_down_rate’ : TPCONF_bandwidths[0][0],
’V_up_rate’ : TPCONF_bandwidths[0][1],
’V_aqm’ : TPCONF_aqms[0],
’V_bsize’ : TPCONF_buffer_sizes[0],

}
TPCONF_vary_parameters = [’delays’, ’delays2’, ’bandwidths’, ’aqms’, ’runs’,]

Listing 13: Scenario 4, experiment parameter configuration

traffic_iperf = [
(’0.0’, ’1’, " start_iperf, client=’newtcp27’, server=’newtcp20’, port=5000, "

" duration=V_duration "),
(’0.0’, ’2’, " start_iperf, client=’newtcp28’, server=’newtcp21’, port=5001, "

" duration=V_duration "),
]
TPCONF_traffic_gens = traffic_iperf

Listing 14: Scenario 4, traffic configuration

parameters in scenario 1, so TPCONF_parameter_list
and TPCONF_variable_defaults look like in scenario 1.
We only have to change TPCONF_aqms.

5) Run and analyse experiment: See scenario 1.

H. Scenario 7: Incast problem scenario

1) Topology: We now have the host newtcp20 connected
to the 172.16.10.0/24 network and hosts newtcp22–30
connected to the 172.16.11.0/24 network. The machine
newtcprt3 connects the two experiment subnets. All three
machines also have a second network interface that
is used to control the experiment via TEACUP. Like
scenario 1 this scenario requires that hosts have the
traffic generator and logging tools installed as described

in [7], but PXE booting or a multi-OS installation is not
needed.

2) Test Traffic: In this scenario we emulate traffic to
investigate the incast problem. The host newtcp20 is
the querier and in regular intervals sends simultane-
ous queries to hosts newtcp21, newtcp22, newtcp23,
newtcp24, newtcp25, newtcp26, newtcp27, newtcp28,
newtcp29 and newtcp30 which then respond simultane-
ously. The querier uses httperf to send the queries to web
servers running on all of the responders.

3) Variable Parameters: Like in scenario 6 we emulate
three different delays (same delays for all flows), two
different bandwidth settings, and three different AQM
mechanism (FIFO, CoDel and FQ CoDel). We now also

CAIA Technical Report 150414A April 2015 page 38 of 44

TPCONF_router = [’newtcprt3’,]
TPCONF_hosts = [’newtcp20’, ’newtcp21’, ’newtcp22’, ’newtcp27’, ’newtcp28’, ’newtcp29’,]
TPCONF_host_internal_ip = {

’newtcprt3’: [’172.16.10.1’, ’172.16.11.1’],
’newtcp20’: [’172.16.10.60’],
’newtcp21’: [’172.16.10.61’],
’newtcp22’: [’172.16.10.62’],
’newtcp27’: [’172.16.11.67’],
’newtcp28’: [’172.16.11.68’],
’newtcp29’: [’172.16.11.69’],

}

Listing 15: Scenario 5, host configuration

traffic_iperf = [
(’0.0’, ’1’, " start_iperf, client=’newtcp27’, server=’newtcp20’, port=5000, "

" duration=V_duration "),
(’10.0’, ’2’, " start_iperf, client=’newtcp28’, server=’newtcp21’, port=5001, "

" duration=V_duration "),
(’20.0’, ’3’, " start_iperf, client=’newtcp29’, server=’newtcp22’, port=5002, "

" duration=V_duration "),
]
TPCONF_traffic_gens = traffic_iperf

Listing 16: Scenario 5, traffic configuration

vary the size of the response between six different values.
This means we have 108 experiments in total.

4) TEACUP Config File: You can download the config-
uration file from [24]. To use the configuration rename
it to config.py. In the following we explain the parts
of the configuration file that have changed compared to
scenario 6.

Our host configuration now looks as in Listing 21.

The traffic generator setup now starts a web server and
generates fake streaming content on each responder.
Then after a delay of one second it starts the querier.
Listing 22 shows the configuration. Setting up each
server individually requires a large number of entries
in the traffic configuration. Since version 0.9 TEACUP
supports the start_httperf_incast_n traffic generator that
will setup the n servers and the querier with a single
entry.

Next, we need to configure the value ranges for response
sizes and the time period between sending queries (see
Listing 23).

Finally, we need to configure TEACUP to make sure
the V_ variables used in the traffic generator setup are
defined and we vary the response sizes (see Listing
24).

5) Run and analyse experiment: See scenario 1.

IX. EXTENDING TEACUP FUNCTIONALITY

This section contains some notes on extending the
current implementation. We refer to Python functions
(which can be Fabric tasks) using the notation of
<python_file>.py:<function>().

A. Additional host setup

Any general host setup (e.g. sysctl settings for all experi-
ments) should be added in hostsetup.py:init_host().
Note that in this function there are different sections,
one for each OS (FreeBSD, Linux, Windows/Cygwin,
Mac OS X). Commands that shall only be executed
in certain experiments can be set in the config (TP-
CONF_host_init_custom_cmds).

B. New TCP congestion control algorithm

Adding support for a new TCP conges-
tion control algorithm requires modifying
hostsetup.py:init_cc_algo(). The new algorithm
needs to be added to the list of supported algorithms
and in the OS-specific sections code need to be added
to load the corresponding kernel module (if any).

CAIA Technical Report 150414A April 2015 page 39 of 44

TPCONF_TCP_algos = [’newreno’, ’cubic’,]
TPCONF_parameter_list = {

’delays’ : ([’V_delay’], [’del’], TPCONF_delays, {}),
’loss’ : ([’V_loss’], [’loss’], TPCONF_loss_rates, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’],[’tcp’], TPCONF_TCP_algos, {}),
’aqms’ : ([’V_aqm’], [’aqm’], TPCONF_aqms, {}),
’bsizes’ : ([’V_bsize’], [’bs’], TPCONF_buffer_sizes, {}),
’runs’ : ([’V_runs’], [’run’], range(TPCONF_runs), {}),
’bandwidths’ : ([’V_down_rate’, ’V_up_rate’], [’down’, ’up’], TPCONF_bandwidths, {}),

}
TPCONF_variable_defaults = {

’V_duration’ : TPCONF_duration,
’V_delay’ : TPCONF_delays[0],
’V_loss’ : TPCONF_loss_rates[0],
’V_tcp_cc_algo’ : TPCONF_TCP_algos[0],
’V_down_rate’ : TPCONF_bandwidths[0][0],
’V_up_rate’ : TPCONF_bandwidths[0][1],
’V_aqm’ : TPCONF_aqms[0],
’V_bsize’ : TPCONF_buffer_sizes[0],

}
TPCONF_vary_parameters = [’tcpalgos’, ’delays’, ’bandwidths’, ’aqms’, ’runs’,]

Listing 17: Scenario 5, variable parameter configuration

TPCONF_router = [’newtcprt3’,]
TPCONF_hosts = [’newtcp20’, ’newtcp21’, ’newtcp27’,]
TPCONF_host_internal_ip = {

’newtcprt3’: [’172.16.10.1’, ’172.16.11.1’],
’newtcp20’: [’172.16.10.60’],
’newtcp21’: [’172.16.10.61’],
’newtcp27’: [’172.16.11.67’],

}

Listing 18: Scenario 6, host configuration

C. New traffic generator

Adding a new traffic generator requires adding a new
start task in trafficgens.py. The current start tasks
always consist of two methods, the actual start method is
a wrapper around an internal _start method. This allows
having the host on which the generator is started as
explicit parameter (and not as Fabric hosts parameter)
and having multiple traffic generators that actually use
the same underlying tool (for example this is the case
for httperf). The new start method must be added to the
imports in experiment.py.

The traffic generator start function must, after the
traffic generator process has been started, register
the started process with its process ID by calling
bgproc.register_proc(). This ensures that the pro-
cess will be stopped at the end of the experiment
and the traffic generator’s log file is collected when
runbg.py:stop_processes() is called. A current lim-

itation is that there can only be one log file per traffic
generator process.

Some traffic generators also have stop methods. Initially,
the idea was that traffic generators could be started and
stopped from the command line directly, but this is not
supported at the moment, i.e. some stop methods are not
implemented (empty).

D. New data logger

To add a new data logger a start method and
possibly a stop method need to be added in
loggers.py. The new logger’s start method should
be called from loggers.py:start_loggers() via
Fabric’s execute(), but could also be called from
experiment.py:run_experiment() if required (in the
latter case it must be added to the imports in
experiment.py).

CAIA Technical Report 150414A April 2015 page 40 of 44

traffic_dash = [
Start server and create content (server must be started first)
(’0.0’, ’1’, " start_http_server, server=’newtcp27’, port=80 "),
(’0.0’, ’2’, " create_http_dash_content, server=’newtcp27’, duration=2*V_duration, "

" rates=’500, 1000’, cycles=’5, 10’ "),
Create DASH-like flows
(’0.5’, ’3’, " start_httperf_dash, client=’newtcp20’, server=’newtcp27’, port=80, "

" duration=V_duration, rate=500, cycle=5, prefetch=2.0, "
" prefetch_timeout=2.0 "),

(’0.5’, ’4’, " start_httperf_dash, client=’newtcp20’, server=’newtcp27’, port=80, "
" duration=V_duration, rate=1000, cycle=10, prefetch=2.0, "
" prefetch_timeout=2.0 "),

]
TPCONF_traffic_gens = traffic_dash

Listing 19: Scenario 6, traffic configuration

TPCONF_aqms = [’pfifo’, ’codel’, ’fq_codel’,]
TPCONF_vary_parameters = [’delays’, ’bandwidths’, ’aqms’, ’runs’,]

Listing 20: Scenario 6, parameter configuration

TPCONF_router = [’newtcprt3’,]
TPCONF_hosts = [

’newtcp20’, ’newtcp21’, ’newtcp22’, ’newtcp23’, ’newtcp24’,
’newtcp25’, ’newtcp26’, ’newtcp27’, ’newtcp28’, ’newtcp29’, ’newtcp30’,

]
TPCONF_host_internal_ip = {

’newtcprt3’: [’172.16.10.1’, ’172.16.11.1’],
’newtcp20’: [’172.16.10.60’], # querier
’newtcp21’: [’172.16.11.61’], # responders...
’newtcp22’: [’172.16.11.62’],
’newtcp23’: [’172.16.11.63’],
’newtcp24’: [’172.16.11.64’],
’newtcp25’: [’172.16.11.65’],
’newtcp26’: [’172.16.11.66’],
’newtcp27’: [’172.16.11.67’],
’newtcp28’: [’172.16.11.68’],
’newtcp29’: [’172.16.11.69’],
’newtcp30’: [’172.16.11.70’],

}

Listing 21: Scenario 7, host configuration

If the logger is a userspace process, such as
tcpdump, at the end of the start function it should
register itself (including its process ID) using
bgproc.register_proc_later(). Then it is ensured
that the logging process will be stopped at the end
of the experiment and the log file is collected when
runbg.py:stop_processes() is called. In this case no
stop method needs to be implemented.

If the logger is not a userspace process, for exam-
ple SIFTR on FreeBSD, start and stop methods need
to be implemented. The start method must still call

bgproc.register_proc_later(), but the process ID
must be set to zero. The stop method must be called
from runbg.py:stop_processes() if the process ID is
zero and the internal TEACUP name of the process is
the name of the new logger.

E. New analysis method

To add a new analysis method add an analysis task
in analysis.py. If the new analysis should be carried
out as part of the analyse_all task, the new task must

CAIA Technical Report 150414A April 2015 page 41 of 44

traffic_incast = [
Start servers and create contents (server must be started first)
(’0.0’, ’1’, " start_http_server, server=’newtcp21’, port=80 "),
(’0.0’, ’2’, " start_http_server, server=’newtcp22’, port=80 "),
(’0.0’, ’3’, " start_http_server, server=’newtcp23’, port=80 "),
(’0.0’, ’4’, " start_http_server, server=’newtcp24’, port=80 "),
(’0.0’, ’5’, " start_http_server, server=’newtcp25’, port=80 "),
(’0.0’, ’6’, " start_http_server, server=’newtcp26’, port=80 "),
(’0.0’, ’7’, " start_http_server, server=’newtcp27’, port=80 "),
(’0.0’, ’8’, " start_http_server, server=’newtcp28’, port=80 "),
(’0.0’, ’9’, " start_http_server, server=’newtcp29’, port=80 "),
(’0.0’, ’10’, " start_http_server, server=’newtcp30’, port=80 "),
(’0.0’, ’11’, " create_http_incast_content, server=’newtcp21’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’12’, " create_http_incast_content, server=’newtcp22’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’13’, " create_http_incast_content, server=’newtcp23’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’14’, " create_http_incast_content, server=’newtcp24’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’15’, " create_http_incast_content, server=’newtcp25’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’16’, " create_http_incast_content, server=’newtcp26’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’17’, " create_http_incast_content, server=’newtcp27’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’18’, " create_http_incast_content, server=’newtcp28’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’19’, " create_http_incast_content, server=’newtcp29’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
(’0.0’, ’20’, " create_http_incast_content, server=’newtcp30’, duration=2*V_duration, "

" sizes=V_inc_content_sizes_str "),
Start querier
(’1.0’, ’30’, " start_httperf_incast, client=’newtcp20’, "

" servers=’newtcp21:80,newtcp22:80,newtcp23:80,newtcp24:80,newtcp25:80,newtcp26:80, "
" newtcp27:80,newtcp28:80,newtcp29:80,newtcp30:80’, "
" duration=V_duration, period=V_inc_period, response_size=V_inc_size"),

]
TPCONF_traffic_gens = traffic_incast

Listing 22: Scenario 7, traffic configuration

TPCONF_inc_content_sizes = [8, 16, 32, 64, 128, 256]
TPCONF_inc_content_sizes_str = ’,’.join(str(x) for x in TPCONF_inc_content_sizes)
TPCONF_inc_periods = [10]

Listing 23: Scenario 7, incast content parameter configuration

be called from analysis.py:analyse_all() via Fab-
rics execute() function. The new task should imple-
ment the common parameters test_id, out_dir, pdf_dir,
out_name, replot_only, source_filter, min_values, etime,
stime, ymin, ymax (see existing analyse tasks as exam-
ples). The new task must be added to the imports in
fabfile.py.

X. KNOWN ISSUES

During the host setup phase TEACUP enables and
disables NICs. On Windows the enable and disable
NIC commands have permanent effect. If TEACUP
is interrupted or aborts between a disable and enable

command, the NIC will stay disabled. TEACUP will
automatically enable all testbed NICs on Windows prior
to each experiment, however in the unlikely event that
the previous aborted NIC configuration left the NIC in
an inconsistent state, it may be necessary to reconfigure
the NIC manually.

TEACUP logs all output from traffic generators, such
as iperf or httperf. Some of the tools used only generate
output after they completed. If an experiment ends before
a tool completed its task, the resulting log file may be
empty. Possibly this issue could be mitigated by turning
the stdout and stderr buffering off for these tools in future
versions.

CAIA Technical Report 150414A April 2015 page 42 of 44

TPCONF_parameter_list = {
’delays’ : ([’V_delay’], [’del’], TPCONF_delays, {}),
’loss’ : ([’V_loss’], [’loss’], TPCONF_loss_rates, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’],[’tcp’], TPCONF_TCP_algos, {}),
’aqms’ : ([’V_aqm’], [’aqm’], TPCONF_aqms, {}),
’bsizes’ : ([’V_bsize’], [’bs’], TPCONF_buffer_sizes, {}),
’runs’ : ([’V_runs’], [’run’], range(TPCONF_runs), {}),
’bandwidths’ : ([’V_down_rate’, ’V_up_rate’], [’down’, ’up’], TPCONF_bandwidths, {}),
’incast_periods’: ([’V_inc_period’], [’incper’], TPCONF_inc_periods, {}),
’incast_sizes’ : ([’V_inc_size’], [’incsz’], TPCONF_inc_content_sizes,{}),

}
TPCONF_variable_defaults = {

’V_duration’ : TPCONF_duration,
’V_delay’ : TPCONF_delays[0],
’V_loss’ : TPCONF_loss_rates[0],
’V_tcp_cc_algo’ : TPCONF_TCP_algos[0],
’V_down_rate’ : TPCONF_bandwidths[0][0],
’V_up_rate’ : TPCONF_bandwidths[0][1],
’V_aqm’ : TPCONF_aqms[0],
’V_bsize’ : TPCONF_buffer_sizes[0],
’V_inc_period’ : TPCONF_inc_periods[0],
’V_inc_size’ : TPCONF_inc_content_sizes[0],
’V_inc_content_sizes_str’: TPCONF_inc_content_sizes_str,

}
TPCONF_vary_parameters = [’incast_sizes’, ’delays’, ’bandwidths’, ’aqms’, ’runs’,]

Listing 24: Scenario 7, variable parameter configuration

XI. CONCLUSIONS AND FUTURE WORK

In this report we described TEACUP, a Python-based
software we developed to run automated TCP perfor-
mance tests in a controlled testbed. In the future we will
continue to extend TEACUP with more features.

ACKNOWLEDGEMENTS

TEACUP v0.9 was developed as part of a project funded
by Cisco Systems and titled “Study in TCP Congestion
Control Performance In A Data Centre”. This is a
collaborative effort between CAIA and Fred Baker of
Cisco Systems.

REFERENCES

[1] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G.
Rao, “Youtube everywhere: Impact of device and infrastructure
synergies on user experience,” in Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference,
ser. IMC ’11, 2011, pp. 345–360.

[2] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and
W. Dabbous, “Network characteristics of video streaming traf-
fic,” in Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’11,
2011, pp. 25:1–25:12.

[3] “Dynamic adaptive streaming over HTTP (DASH) – Part 1: Me-
dia presentation description and segment formats,” ISO, 2012,
iSO/IEC 23009-1:2012. http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=57623.

[4] S. Zander, G. Armitage, “TEACUP v0.8 – A System for
Automated TCP Testbed Experiments,” Centre for Advanced
Internet Architectures, Swinburne University of Technology,
Tech. Rep. 150210A, 2015. [Online]. Available: http://caia.
swin.edu.au/reports/150210A/CAIA-TR-150210A.pdf

[5] L. Stewart, “SIFTR – Statistical Information For TCP
Research.” [Online]. Available: http://caia.swin.edu.au/urp/
newtcp/tools.html

[6] “The Web10G Project.” [Online]. Available: http://web10g.org/

[7] S. Zander, G. Armitage, “CAIA Testbed for TCP
Experiments Version 2,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Tech. Rep.
150210C, 2015. [Online]. Available: http://caia.swin.edu.au/
reports/150210C/CAIA-TR-150210C.pdf

[8] ——, “TEACUP v0.9 – Data Analysis Functions,”
Centre for Advanced Internet Architectures, Swinburne
University of Technology, Tech. Rep. 150414B, 2015.
[Online]. Available: http://caia.swin.edu.au/reports/150414B/
CAIA-TR-150414B.pdf

[9] “Fabric 1.8 documentation.” [Online]. Available: http://docs.
fabfile.org/en/1.8/

[10] “Fabric 1.8 documentation – Installation.” [Online]. Available:
http://docs.fabfile.org/en/1.8/installation.html

[11] “iperf Web Page.” [Online]. Available: http://iperf.fr/

CAIA Technical Report 150414A April 2015 page 43 of 44

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://caia.swin.edu.au/reports/150210A/CAIA-TR-150210A.pdf
http://caia.swin.edu.au/reports/150210A/CAIA-TR-150210A.pdf
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html
http://web10g.org/
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf
http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf
http://caia.swin.edu.au/reports/150414B/CAIA-TR-150414B.pdf
http://caia.swin.edu.au/reports/150414B/CAIA-TR-150414B.pdf
http://docs.fabfile.org/en/1.8/
http://docs.fabfile.org/en/1.8/
http://docs.fabfile.org/en/1.8/installation.html
http://iperf.fr/

[12] “LIGHTTPD Web Server.” [Online]. Available: http://www.
lighttpd.net/

[13] HP Labs, “httperf homepage.” [Online]. Available: http:
//www.hpl.hp.com/research/linux/httperf/

[14] J. Summers, T. Brecht, D. Eager, B. Wong, “Modified version
of httperf,” 2012. [Online]. Available: https://cs.uwaterloo.ca/
~brecht/papers/nossdav-2012/httperf.tgz

[15] “nttcp-1.47 – An improved version of the popular ttcp
program.” [Online]. Available: http://hpux.connect.org.uk/hppd/
hpux/Networking/Admin/nttcp-1.47/

[16] M. Mathis, J. Heffner, and R. Raghunarayan, “TCP Extended
Statistics MIB,” RFC 4898 (Proposed Standard), Internet
Engineering Task Force, May 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4898.txt

[17] Wikipedia, “DTrace,” http://en.wikipedia.org/w/index.php?
title=DTrace&oldid=637195163.

[18] L. Stewart, “SIFTR v1.2.3 README,” July 2010.
[Online]. Available: http://caia.swin.edu.au/urp/newtcp/tools/
siftr-readme-1.2.3.txt

[19] M. Mathis, J. Semke, R. Reddy, J. Heffner, “Documentation
of variables for the Web100 TCP Kernel Instrumentation Set
(KIS) project.” [Online]. Available: http://www.web100.org/
download/kernel/tcp-kis.txt

[20] “netfilter – firewalling, NAT, and packet mangling for Linux.”
[Online]. Available: http://www.netfilter.org/

[21] J. Gettys, “Best practices for benchmarking bufferbloat.” [On-
line]. Available: http://www.bufferbloat.net/projects/codel/wiki/
Best_practices_for_benc%hmarking_Codel_and_FQ_Codel

[22] Linux Foundation, “netem – Network Emula-
tion Functionality,” November 2009. [Online]. Avail-
able: http://www.linuxfoundation.org/collaborate/workgroups/
networking/netem%

[23] ——, “IFB – Intermediate Functional Block device,” November
2009. [Online]. Available: http://www.linuxfoundation.org/
collaborate/workgroups/networking/ifb

[24] S. Zander, “TCP Experiment Automation Controlled Using
Python (TEACUP) – Usage Examples,” 2014. [Online].
Available: http://caia.swin.edu.au/tools/teacup/usageexamples.
html

CAIA Technical Report 150414A April 2015 page 44 of 44

http://www.lighttpd.net/
http://www.lighttpd.net/
http://www.hpl.hp.com/research/linux/httperf/
http://www.hpl.hp.com/research/linux/httperf/
https://cs.uwaterloo.ca/~brecht/papers/nossdav-2012/httperf.tgz
https://cs.uwaterloo.ca/~brecht/papers/nossdav-2012/httperf.tgz
http://hpux.connect.org.uk/hppd/hpux/Networking/Admin/nttcp-1.47/
http://hpux.connect.org.uk/hppd/hpux/Networking/Admin/nttcp-1.47/
http://www.ietf.org/rfc/rfc4898.txt
http://en.wikipedia.org/w/index.php?title=DTrace&oldid=637195163
http://en.wikipedia.org/w/index.php?title=DTrace&oldid=637195163
http://caia.swin.edu.au/urp/newtcp/tools/siftr-readme-1.2.3.txt
http://caia.swin.edu.au/urp/newtcp/tools/siftr-readme-1.2.3.txt
http://www.web100.org/download/kernel/tcp-kis.txt
http://www.web100.org/download/kernel/tcp-kis.txt
http://www.netfilter.org/
http://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benc% hmarking_Codel_and_FQ_Codel
http://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benc% hmarking_Codel_and_FQ_Codel
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem%
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem%
http://www.linuxfoundation.org/collaborate/workgroups/networking/ifb
http://www.linuxfoundation.org/collaborate/workgroups/networking/ifb
http://caia.swin.edu.au/tools/teacup/usageexamples.html
http://caia.swin.edu.au/tools/teacup/usageexamples.html

	Contents
	Introduction
	TEACUP Requirements and Design
	Requirements
	Overall design
	Experiment process flow
	Fabric -- overview and installation

	Traffic Generation and Logging
	Traffic sources and sinks
	Loggers
	Host information logged
	Experiment config information logged
	Log file naming

	Host and Router Configuration
	Host setup
	Linux router setup
	FreeBSD router setup

	Config File
	Config file location
	V_variables
	Fabric configuration
	Testbed configuration
	General experiment settings
	tcpdump/pcap configuration
	Topology configuration
	Rebooting, OS selection and power cycling
	Clock offset measurement (broadcast pings)
	Custom host init commands
	Router queue setup
	Traffic generator setup
	Available traffic generators
	Mandatory experiment variables
	Experiment-specific variables
	Defining parameters to vary
	Adding new V_ variables

	Running Experiments
	Initial steps
	Example config
	Running experiments
	TEACUP variable information logged

	Host Control Utility Functions
	Remote command execution
	Copying files to testbed hosts
	Installing ssh keys
	Topology configuration
	Initialise hosts to a specific operating system
	Power cycling
	Check software installations on testbed hosts
	Check testbed host connectivity
	Check TEACUP config file

	Experiment Examples
	Overview
	Scenario 1: Two TCP flows from data sender to receiver
	Scenario 2: Scenario 1 plus automatic booting of hosts
	Scenario 3: Scenario 1 plus power control
	Scenario 4: TCP flows with same bottleneck queue but different delay
	Scenario 5: Partially overlapping TCP flows with different TCP CC
	Scenario 6: Two HTTP-based video streaming clients
	Scenario 7: Incast problem scenario

	Extending TEACUP Functionality
	Additional host setup
	New TCP congestion control algorithm
	New traffic generator
	New data logger
	New analysis method

	Known Issues
	Conclusions and Future Work
	References

