
TEACUP v0.6 – A System for Automated TCP
Testbed Experiments

Sebastian Zander, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 140918A

Swinburne University of Technology
Melbourne, Australia

szander@swin.edu.au, garmitage@swin.edu.au

Abstract—Over the last few decades several TCP conges-
tion control algorithms were developed in order to optimise
TCP’s behaviour in certain situations. While TCP was
traditionally used mainly for file transfers, more recently
it is also becoming the protocol of choice for streaming
applications, for example YouTube or Netflix [1], [2]. Now
there is even an ISO standard called Dynamic Adaptive
Streaming over HTTP (DASH) [3]. However, the impact
of different TCP congestion control algorithms on TCP-
based streaming flows (within a mix of other typical
traffic) is not well understood. Experiments in a controlled
testbed allow us to shed more light on this issue. This
report describes TEACUP (TCP Experiment Automation
Controlled Using Python) version 0.6 – a software tool for
running automated TCP experiments in a testbed. Based
on a configuration file TEACUP can perform a series of ex-
periments with different traffic mixes, different bottleneck
configurations (such as bandwidths, queue mechanisms),
different emulated network delay or loss, and different host
settings (e.g. used TCP congestion control algorithm). For
each experiment TEACUP automatically collects relevant
information that allows analysing TCP behaviour, such as
tcpdump files, SIFTR [4] and Web10G [5] logs.

Index Terms—TCP, experiments, automated control

I. INTRODUCTION

Over the last few decades several TCP congestion control
algorithms were developed in order to optimise TCP’s
behaviour in certain situations. While TCP was tradi-
tionally used mainly for file transfers, more recently it
is also becoming the protocol of choice for streaming
applications, for example YouTube or Netflix [1], [2].
Now there is even an ISO standard called Dynamic
Adaptive Streaming over HTTP (DASH) [3]. However,
the impact of different TCP congestion control algo-
rithms on TCP-based streaming flows (within a mix of
other typical traffic) is not well understood. Experiments

in a controlled testbed allow to shed more light on this
issue.

This report describes TEACUP (TCP Experiment Au-
tomation Controlled Using Python) version 0.6 – a
software tool for running automated TCP experiments
in a testbed. It updates the previous report that describes
TEACUP version 0.4 [6]. Based on a configuration file
TEACUP can perform a series of experiments with
different traffic mixes, different bottlenecks (such as
bandwidths, queue mechanisms), different emulated net-
work delay or loss, and different host settings (e.g.
TCP congestion control algorithm). For each experiment
TEACUP automatically collects relevant information that
allows analysing TCP behaviour, such as tcpdump files,
SIFTR [4] and Web10G [5] logs. The related technical
report [7] describes the design and implementation of
the testbed.

This report is organised as follows. Section II provides
some background information on Fabric. Section III
describes the overall design of TEACUP. Section IV
describes the configuration of TEACUP. Section V de-
scribes how to run experiments. Section VI describes
how to analyse the data collected during experiments.
Section VII describes utility functions that can be used
for host maintenance. Section VIII outlines how to
extend TEACUP. Section IX lists known issues. Section
X concludes and outlines future work.

II. FABRIC BACKGROUND

TEACUP is build on the Python Fabric toolkit [8]. Here
we provide a brief overview of Fabric and describe how
to install it.

CAIA Technical Report 140918A September 2014 page 1 of 29

mailto:szander@swin.edu.au
mailto:garmitage@swin.edu.au

A. Overview

Fabric is a Python (2.5 or higher) library and command-
line tool for streamlining the remote application deploy-
ment or system administration tasks using SSH [8]. Fab-
ric provides several basic operations for executing local
or remote shell commands and uploading/downloading
files, as well as auxiliary functions, such as prompting
the user for input, or aborting execution of the current
task. Typically, with Fabric one creates a Python module
where some functions are marked as Fabric tasks (using
a Python function decorator).

These tasks can then be executed directly from the
command line using the Fabric tool fab. The entry point
of the module is a file commonly named fabfile.py,
which is typically located in a directory from which
we execute Fabric tasks (if the file is named differently
we must use fab -f <name>.py). The complete list
of tasks available in fabfile.py can be viewed with
the command fab -l. Parameters can be passed to
Fabric tasks, however a limitation is that all parameter
values are passed as strings. Note that a Fabric task
can execute another Fabric task with Fabric’s execute()
function.

Sections V, VI and VII contain a number of examples
of how to run various TEACUP tasks.

B. Installation

TEACUP was developed with Fabric version 1.8, but it
should run with newer versions of Fabric. The easiest
way to install the latest version of Fabric is using the
tool pip. Under FreeBSD pip can be installed with
portmaster:

> portmaster devel/py-pip

On Linux pip can be installed with the package man-
ager, for example on openSUSE it can be installed as
follows:

> zypper install python-pip

Then to install Fabric execute:

> pip install fabric

You can test that Fabric is correctly installed:

> fab --version
Fabric 1.8.0
Paramiko 1.12.0

The Fabric manual provides more information about
installing Fabric [9].

III. DESIGN

This section describes the design of TEACUP. We first
list the requirements. Then we describe the overall
functional block design and the process flow. Next
we describe the implemented traffic sources/sinks and
loggers. Then we describe the host information logged.
Then we describe the general host/router setup. Finally,
we describe the naming scheme for log files.

A. Requirements

The following paragraphs describe the requirements for
TEACUP.

1) General: Create a system to automate performing
a series of TCP experiments with varying parame-
ters.

2) Topology: The topology is one router with two
testbed network interfaces (NICs) connected to two
testbed subnets, with hosts on either side that act as
traffic sources and sinks. Hosts could be moved between
both test subnets if required, but this requires to re-cable
the testbed.

3) TCP algorithms: The following TCP congestion con-
trol algorithms must be supported: NewReno and CU-
BIC (representing classic loss-based algorithms), Com-
poundTCP (Microsoft’s hybrid), CDG (CAIA’s hybrid),
and HD (Hamilton Institutes’ delay-based TCP. Option-
ally other TCPs may be supported. All the noted TCP
algorithms are sender-side variants, so the destination
can be any standard TCP implementation.

4) Path characteristics: Create bottleneck bandwidth
limits to represent likely consumer experience (e.g.
ADSL), and some data centre scenarios. Emulation of
constant path delay and loss in either direction is re-
quired to simulate different conditions between traffic
sources and sinks. The emulation is implemented by the
bottleneck node (router).

5) Bottleneck AQM: The following Active Queuing
Management (AQM) mechanisms are required: Tail-
Drop/FIFO, CoDel, PIE, RED (somewhat deprecated, so
less important given the wide range of potential RED
parameter space). Optionally other AQM mechanisms
may be supported. Since FreeBSD does not support
some of the required AQMs the router must run Linux

CAIA Technical Report 140918A September 2014 page 2 of 29

(but to allow comparison TEACUP also has some basic
support for a FreeBSD router). The buffer size must be
configurable.

6) ECN Support: It must be possible to enable/disable
Explicit Congestion Notification (ECN) on hosts and/or
router.

7) Host OS: We are OS-agnostic. However, to cover the
various TCP algorithms and their common implementa-
tions we will run scenarios where sources and/or des-
tinations are Windows (Compound), Linux (NewReno,
CUBIC) and FreeBSD (NewReno, CUBIC, CDG, HD).
To instrument Windows we use Cygwin [7].

8) Traffic loads: The following traffic loads must be
supported: Streaming media over HTTP/TCP (DASH-
like), TCP bulk transfer, UDP flows (VoIP-like), and
data centre query/response patterns (one query to N
responders, correlated return traffic causing incast con-
gestion).

B. Overall design

The implementation of TEACUP is based on Fabric. It
is designed based on multiple small tasks that are (1)
combined to run an experiment or a series of experi-
ments but (2) some may also be executed directly from
the command line. Functions which are not tasks are
ordinary Python functions. Currently, we do not make
use of the object-oriented capabilities of Python.

Figure 1 shows the main functional building blocks. All
the blocks in the diagram have corresponding Python
files. However, we have summarised a number of Python
files in the helper_functions block. The fabfile block
is the entry point for the user. It implements tasks for
running a single experiment or running a series of similar
experiments with different parameters. The fabfile block
also provides access to all other tasks via imports.

The experiment block implements the main function
that controls a single experiment and uses a number
of functions of other blocks. The sanity_checks block
implements functions to check the config file, the pres-
ence of tools on the hosts, the connectivity between
hosts, and a function to kill old processes that are still
running. The host_setup block implements all functions
to setup networking on the testbed hosts (this includes
basic setup of the testbed router). The router_setup block
implements the functions that set up the queues on
the router and the delay/loss emulation. The loggers

block implements the start and stop functions of the
loggers, such as tcpdump and SIFTR/web10g loggers.
The traffic_gens block implements the start and stop
functions of all traffic generators.

The util block contains utility tasks that can be executed
from the command line, such as executing a command on
a number of testbed hosts or copying a file to a number of
testbed hosts. The analysis block contains all the post-
processing functions that extract measurement metrics
from log files and plot graphs.

C. Experiment process flow

The following list explains the main steps that are
executed during an experiment or a series of experi-
ments.

I) Initialise and check config file
II) Get parameter combination for next experiment

III) Start experiment based on config and parameter
configuration

1) Log experiment test ID in file
experiments_started.txt

2) Get host information: OS, NIC names, NIC
MAC addresses

3) Reboot hosts: reboot hosts as required given
the configuration

4) Get host information again: OS, NIC names,
NIC MAC addresses

5) Run sanity checks
• Check that tools to be used exist
• Check connectivity between hosts
• Kill any leftover processes on hosts

6) Initialise hosts
• Configure NICs (e.g. disable TSO)
• Configure ECN use
• Configure TCP congestion control
• Initialise router queues

7) Configure router queues: set router queues
based on config

8) Log host state: log host information (see
Section III-F)

9) Start all logging processes: tcpdump,
SIFTR/Web10G etc.

10) Start all traffic generators: start traffic gener-
ators based on config

11) Wait for experiment to finish
12) Stop all running processes on hosts
13) Collect all log files from logging and traffic

generating processes

CAIA Technical Report 140918A September 2014 page 3 of 29

�������

����	�
���

�����������

	����	�
���� �����	

����

�	���������

�����	���������

�����
�

��
��
����

Figure 1. TEACUP main functional blocks

14) Log experiment test ID in file
experiments_completed.txt

IV) If we have another parameter combination to run
go to III, otherwise finish

D. Traffic sources and sinks

We now describe the available traffic generator functions.
How these can be used is described in more detail in
Section IV-H.

1) iperf: The tool iperf [10] can be used to generate
TCP bulk transfer flows. Note that the iperf client pushes
data to the iperf server, so the data flows in the opposite
direction compared to httperf. iperf can also be used
to generate unidirectional UDP flows with a specified
bandwidth and two iperfs can be combined to generate
bidirectional UDP flows.

2) ping: This starts a ping from one host to another
(ICMP Echo). The rate of pings is configurable for
FreeBSD and Linux but limited to one ping per second
for Windows.

3) lighttpd: A lighttpd [11] web server is started. This
can be used as traffic source for httperf-based sinks.
There are also scripts to setup fake content for DASH-
like streaming and incast scenario traffic. However, for
specific experiments one may need to setup web server
content manually or create new scripts to do this. We
choose lighttpd as web server because it is leaner than
some other popular web servers and hence it is easier
to configure and provides higher performance. Packages
exist for FreeBSD, Linux and Cygwin.

4) httperf: The tool httperf [12] can be used to simulate
an HTTP client. It can generate simple request patterns,
such as accessing some .html file n times per second.

����

�����	

���
���

���������

�������

��
���

�
������
�
����
�

Figure 2. TCP video streaming (DASH) behaviour

It can also generate complex workloads based on work
session log files (c.f. httperf man page at [12]).

5) httperf_dash: This starts a TCP video streaming
httperf client [13] that emulates the behaviour of DASH
or other similar TCP streaming algorithms [1], [2]. In the
initial buffering phase the client will download the first
part of the content as fast as possible. Then the client will
fetch another block of content every t seconds. Figure 2
shows an illustration of this behaviour. The video rate
and the cycle length are configurable (and the size of
the data blocks depends on these).

6) httperf_incast: This starts an httperf client for the
incast scenario. The client will request a block of content
from n servers every t seconds. The requests are sent
as close together as possible to make sure the servers
respond simultaneously. The size of the data blocks is
configurable. Note that emulating the incast problem in
a physical testbed is difficult, if the number of hosts
(number of responders) is relatively small.

CAIA Technical Report 140918A September 2014 page 4 of 29

7) nttcp: This starts an nttcp [14] client and an nttcp
server for simple unidirectional UDP VoIP flow emu-
lation. The fixed packet size and inter-packet time can
be configured. Note, nttcp also opens a TCP control
connection between client and server. However, on this
connection packets are only exchanged before and after
the data flow, and the number of control packets is
relatively small.

E. Loggers

Currently, there are two types of loggers that log infor-
mation on all hosts. All traffic is logged with tcpdump
and TCP state information is logged with different
tools.

1) Traffic logger: tcpdump is used to capture the traffic
on all testbed NICs on all hosts. All traffic is captured,
but the snap size is limited to 68 bytes by default.

2) TCP statistics logger: Different tools are used to log
TCP state information on all hosts except the router.
On FreeBSD we use SIFTR [4]. On Linux we use
Web10G [5], which implements the TCP EStats MIB
[15] inside the Linux kernel, and have implemented our
own logging tool based on the Web10G library. On
Windows 7 we implemented our own logging tool, which
can access the TCP EStats MIB inside the Windows 7
kernel. The statistics collected by SIFTR are described
in the SIFTR README [16]. The statistics collected by
our Web10G client and the Windows 7 EStats logger
are identical (based on the Web10G statistics) and are
described as part of the web100 (the predecessor of
Web10G) documentation [17].

F. Host information logged

TEACUP does not only log the output of traffic gen-
erators and loggers, but also collects per-host informa-
tion. This section describes the information collected for
each host participating in an experiment. The following
information is gathered before an experiment is started
(<test_id> is some test ID):

• <test_id>_ifconfig.log.gz: This file contains the out-
put of ifconfig (FreeBSD/Linux) or ipconfig

(Windows).
• <test_id>_uname.log.gz: This file contains the out-

put of uname -a.
• <test_id>_netstat.log.gz: This file contains informa-

tion about routing obtained with netstat -r.

• <test_id>_ntp.log.gz: This file contains information
about the NTP status based on ntpq -p (FreeBSD
or Linux) or w32tm (Windows).

• <test_id>_procs.log.gz: This file contains the list of
all running processes (output of ps).

• <test_id>_sysctl.log.gz: This file contains the output
of sysctl -a (FreeBSD or Linux) and various
information for Windows.

• <test_id>_config_vars.log.gz: This file contains in-
formation about all the V_ parameters in config.py
(see Section IV). It logs the actual parameter values
for each experiment. It also provides an indication
of whether a variable was actually used or not
(caveat: this does not work properly with variables
used for TCP parameter configuration, they are
always shown as used).

• <test_id>_host_tcp.log.gz: This file contains infor-
mation of the TCP congestion control algorithm
used on each host, and also any TCP parameter
settings specified.

• <test_id>_tcpmod.log.gz: This file contains the TCP
congestion control kernel module parameter settings
(Linux only).

• <test_id>_ethtool.log.gz: This file contains the net-
work interface configuration information provided
by ethtool (Linux only).

The following information is gathered after an experi-
ment:

• <test_id>_queue_stats.log.gz: Information about the
router queue setup (including all queue discipline
parameters) and router queue and filtering statis-
tics based on the output of tc (Linux) or ipfw

(FreeBSD). Of course this information is collected
only for the router.

G. Host setup

The setup of hosts other than the router is relatively
straight-forward. First each host is booted into the
selected OS. Then hardware offloading, such as TCP
segmentation offloading (TSO), is disabled on testbed
interfaces (all OS), the TCP host cache is disabled
(Linux) or configured with a very short timeout and
purged (FreeBSD), and TCP receive and send buffers
are set to 2 MB or more (FreeBSD, Linux).

Next ECN is enabled or disabled depending on the con-
figuration. Then the TCP congestion control algorithm
is configured for FreeBSD and Linux (including loading

CAIA Technical Report 140918A September 2014 page 5 of 29

any necessary kernel modules). Then the parameters
for the current TCP congestion control algorithm are
configured if specified by the user (FreeBSD, Linux).
Finally, custom user-specified commands are executed on
hosts as specified in the configuration (these can overrule
the general setup).

H. Linux router setup

The router setup differs between FreeBSD (where ipfw
and Dummynet is used) and Linux (where tc and netem
is used). Our main focus is Linux, because Linux sup-
ports more AQM mechanisms than FreeBSD and some
of the required AQM mechanisms are only implemented
on Linux.

First, hardware offloading, such as TCP segmentation of-
floading (TSO) is disabled on the two testbed interfaces.
Then the queuing is configured. Firstly, we describe
our overall approach to setup rate limiting, AQM and
delay/loss emulation for the Linux router. Secondly, we
describe an example setup to illustrate the approach in
practice.

1) Approach: We use the following approach. Shaping,
AQM and delay/loss emulation is done on the egress NIC
(as usual). The hierarchical token bucket (HTB) queuing
discipline is used for rate limiting with the desired AQM
queuing discipline (e.g. pfifo, codel) as leave node (this is
similar to a setup mentioned at [18]). After rate shaping
and AQM constant loss and delay is emulated with netem
[19]. For each pipe we set up a new tc class on the two
testbed NICs of the router. If pipes are unidirectional a
class is only used on one of the two interfaces. Otherwise
it is used on both interfaces. In future work we could
optimise the unidirectional case and omit the creation of
unused classes.

The traffic flow is as follows (also see Figure 8):

1) Arriving packets are marked at the netfilter mangle
table’s POSTROUTING hook depending on source
and destination IP address with a unique mark for
each pipe.1

2) Marked packets are classified into the appropriate
class based on the mark (a one-to-one mapping
between marks and classes) and redirected to a

1There also is a dummy rule "MARK and 0x0" inserted first, which
is used to count all packets going through the POSTROUTING hook.
Note that since this dummy rule has ‘anywhere’ specified for source
and destination, it also counts packets going through the router’s
control interface.

pseudo interface. With pseudo device we refer to
the so-called intermediate function block (IFB)
device [20].

3) The traffic control rules on the pseudo interface do
the shaping with HTB (bandwidth as per config)
and the chosen AQM (as a leaf queuing discipline).

4) Packets go back to actual outgoing interface.
5) The traffic control rules on the actual interface

do network delay/loss emulation with netem. We
still need classes here to allow for pipe specific
delay/loss settings. Hence we use a HTB again, but
with the bandwidth set to the maximum possible
rate (so there is effectively no rate shaping or AQM
here) and netem plus pfifo are used as leaf queuing
discipline.2

6) Packets leave the router via stack / network card
driver.

The main reason for this setup with pseudo interfaces is
to cleanly separate the rate limiting and AQM from the
netem delay/loss emulation. One could combine both on
one interface, but then there are certain limitation, such
as netem must be before the AQM and [18] reported
that in such a setup netem causes problems. Also, a big
advantage is that with our setup it is possible to emulate
different delay or loss for different flows that share the
same bottleneck/AQM.

2) Example: We now show an example of the setup
based on partial (and for convenience reordered) output
of a queue_stats.log.gz file for a scenario with two
unidirectional pipes: 8 Mbps downstream and 1 Mbps
upstream, both with 30 ms delay and 0% loss.

First, Figure 3 shows the netfilter marking rules. Our
upstream direction is 172.16.10.0/24 to 172.16.11.0/24
and all packets are given the mark 0x1. Our downstream
direction is 172.16.11.0/24 to 172.16.10.0/24 and all
packets are given the mark 0x2.

In the upstream direction our outgoing interface is eth3
and we have the tc filters shown in Figure 4, which put
each packet with mark 0x1 in class 1:1 and redirect it
to pseudo interface ifb1.

Note that the class setting is effective for eth3, but it will
not “stick” across interfaces. Hence we need to set the
class again on ifb1 as shown in Figure 5 (again class 1:1
is set if the mark is 0x1).

2The netem queue has a hard-coded size of 1000 packets, which
should be large enough for our targeted experimental parameter space.

CAIA Technical Report 140918A September 2014 page 6 of 29

> iptables -t mangle -vL
Chain POSTROUTING (policy ACCEPT 52829 packets, 69M bytes) pkts bytes target prot opt in out
source destination
52988 69M MARK all -- any any anywhere anywhere MARK and 0x0
22774 1202K MARK all -- any any 172.16.10.0/24 172.16.11.0/24 MARK set 0x1
28936 66M MARK all -- any any 172.16.11.0/24 172.16.10.0/24 MARK set 0x2

Figure 3. Netfilter marking rules

> tc -s filter show dev eth3
filter parent 1: protocol ip pref 49152 fw
filter parent 1: protocol ip pref 49152 fw handle 0x1 classid 1:1
action order 33: mirred (Egress Redirect to device ifb1) stolen
index 3266 ref 1 bind 1 installed 99 sec used 12 sec
Action statistics:
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0

Figure 4. tc filter on outgoing network interface

> tc -d -s filter show dev ifb1
filter parent 1: protocol ip pref 49152 fw
filter parent 1: protocol ip pref 49152 fw handle 0x1 classid 1:1

Figure 5. tc filter on pseudo interface

On ifb1 we use the queuing discipline setup as shown
in Figure 6. The HTB does the rate limiting to 1 Mbps.
Here he leaf queuing discipline is a bfifo (byte FIFO)
with a buffer size of 18.75 kB.

After packets are through the bfifo, they are passed back
to eth3 where we have an HTB with maximum rate and
netem as leaf queuing discipline (here netem emulates
30 ms constant delay) as shown in Figure 7.

After leaving netem the packets are passed to the stack
which then passes them to the NIC driver. For the sake of
brevity we are not describing the downstream direction
here, but the principle is exactly the same. The only
differences are the interfaces used (eth2 and ifb0 instead
of eth3 and ifb1) and the different HTB, AQM and netem
parameters.

Figure 8 shows the flow of packets with the different
steps carried out in the order of the numbers in paren-
thesis. The marking/classifying is not explicit, it takes
place between step 1 and 2 (netfilter and class on actual
interface) and between step 2 and 3 (class on pseudo
interface).

We can see that with our setup it is possible to emulate
different delay or loss for different flows that share
the same bottleneck/AQM. Multiple tc filters on the ifb
interface can classify different flows as the same class
so they share the same bottleneck. However, on the eth
interface we can have one class and one netem queue per

flow and the tc filters classify each flow into a different
class.

3) Notes: Note that in addition to the buffers mentioned
earlier, according to [18] the HTB queuing discipline has
a build-in buffer of one packet (cannot be changed) and
the device drivers also have separate buffers.

I. FreeBSD router setup

While a Linux router is our main focus, we also imple-
mented a basic router queue setup for FreeBSD.

On FreeBSD each pipe is realised as one Dummynet
pipe, which does the rate shaping, loss/delay emulation
and queuing (FIFO or RED only). ipfw rules are used to
redirect packets to the pipes based on the specified source
and destination IP parameters. If a pipe is unidirectional
then there is a single "pipe <num> ip from <source>
to <dest> out" rule. If a pipe is bidirectional there is
an additional "pipe <num> ip from <dest> to <source>
out" rule. The pipe number <num> is automatically
determined by TEACUP. A more sophisticated setup for
FreeBSD remains future work.

J. Log file naming

The log file names of TEACUP follow a naming scheme
that has the following format:

CAIA Technical Report 140918A September 2014 page 7 of 29

> tc -d -s class show dev ifb1
class htb 1:1 root leaf 1001: prio 0 quantum 12500 rate 1000Kbit ceil 1000Kbit burst 1600b/1
mpu 0b overhead 0b cburst 1600b/1 mpu 0b overhead 0b level 0
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
rate 62112bit 117pps backlog 0b 0p requeues 0
lended: 22774 borrowed: 0 giants: 0
tokens: 191750 ctokens: 191750
> tc -d -s qdisc show ifb1
qdisc htb 1: dev ifb1 root refcnt 2 r2q 10 default 0 direct_packets_stat 0 ver 3.17
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
qdisc bfifo 1001: dev ifb1 parent 1:1 limit 18750b
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0

Figure 6. Queuing discipline setup on pseudo interface

> tc -d -s class show dev eth3
class htb 1:1 root leaf 1001: prio 0 rate 1000Mbit ceil 1000Mbit burst 1375b cburst 1375b
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
rate 62184bit 117pps backlog 0b 0p requeues 0
lended: 22774 borrowed: 0 giants: 0
tokens: 178 ctokens: 178
> tc -d -s qdisc show eth3
qdisc htb 1: dev eth3 root refcnt 9 r2q 10 default 0 direct_packets_stat 3 ver 3.17
Sent 1520991 bytes 22777 pkt (dropped 0, overlimits 66602 requeues 0)
backlog 0b 0p requeues 0
qdisc netem 1001: dev eth3 parent 1:1 limit 1000 delay 30.0ms
Sent 1520865 bytes 22774 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0

Figure 7. Queuing discipline setup on outgoing interface (netem)

����

����� ��	

��

�����������	

���
���������	 �����������	

����������������	����������
�����
	

 !"#$%��

����

����� ��	

��&

�����������	

�����������	 ���
���������	

����������
�����
	����������������	

'()*"#$%��

Figure 8. Flow of packets through our queue setup

<test_ID_pfx>_[<par_name>_<par_val>_]*_<host>_

[<traffgen_ID>_]_<file_name>.<extension>.gz

The test ID prefix <test_ID_pfx> is the start of
the file name and either specified in the config file
(TPCONF_test_id) or on the command line (as described
in Section V).

The [<par_name>_<par_val>_]* is the zero to n
parameter names and parameter values (separated by an
underscore). Parameter names (<par_name>) should not
contain underscores by definition and all underscores
in parameter values (<par_val>) are changed to hy-
phens (this allows later parsing of the names and values
using the underscores as separators). If an experiment
was started with run_experiment_single there are
zero parameter names and values. If an experiment was
started with run_experiment_multiple there are as
many parameters names and values as specified in
TPCONF_vary_parameters. We also refer to the part
<test_ID_pfx>_[<par_name>_<par_val>_]* (the
part before the <host>) as test ID.

The <host> part specifies the IP or name of the testbed
host a log file was collected from. This corresponds to
an entry in TPCONF_router or TPCONF_hosts.

CAIA Technical Report 140918A September 2014 page 8 of 29

If the log file is from a traffic generator specified
in TPCONF_traffic_gens, the traffic generator number
follows the host identifier ([<traffgen_ID>]). Other-
wise, <traffgen_ID> does not exist.

The <file_name> depends on the process which
logged the data, for example it set to ‘uname’ for the un-
ame information collected, it is set to ‘httperf_dash’ for
an httperf client emulating DASH, or it set to ‘web10g’
for a Web10G log file. tcpdump files are special in that
they have an empty file name for tcpdumps collected on
hosts (assuming they only have one testbed NIC), or the
file name is <int_name>_router for tcpdumps collected
on the router (where <int_name> is the name of the NIC,
e.g. eth1).

The <extension> is either ‘dmp’ indicating a tcpdump
file or ‘log’ for all other log files. All log files are usually
gzip’d, hence their file names end with ‘.gz’.

Figure 9 shows an example name for a tcpdump file
collected on host testhost2 for an experiment where two
parameters (dash, tcp) where varied, and an example
name for the output of one httperf traffic generator
(traffic generator number 3) executed on host testhost2
for the same experiment.

Prior to version 0.4.7 TEACUP stored all log files in
the directory where fabfile.py was located. Starting with
version 0.4.7 all log files for one experiment (e.g. fab
run_experiment_single) or a series of experiments (e.g.
fab run_experiments_multiple) are stored under a sub
directory named <test_ID_pfx> created inside the
directory where fabfile.py is located.

IV. CONFIG FILE

This section describes the TEACUP config.py file that
controls the experiments.

A. V_variables

To iterate over parameter settings for each experiment
TEACUP uses so-called V_variables. These are identi-
fiers of the form V_<name>, where <name> must consist
of only letters, numbers, hyphens (-) or underscores
(_). V_variables can be used in router queue settings
(see Section IV-F), traffic generator settings (see Section
IV-H), TCP algorithm settings (see Section IV-I) or
host setup commands (see Section IV-E). Section IV-K
describes how to define V_variables.

B. Fabric configuration

The following settings in the config file are Fabric
settings. For a more in-depth description refer to the
Fabric documentation [8]. All Fabric settings are part
of the Fabric env dictionary and hence Python variables
(and must adhere to the Python syntax).

The user used for the SSH login is specified with
env.user. For example:

env.user = ’root’

The password used for the SSH login is specified with
env.password. The password can be empty if public-key
authorisation is set up properly, e.g. the public SSH key
of the control PC running TEACUP has been added to
all hosts <user>/.ssh/authorized_keys files (and the cor-
responding private key on the control host is ~/.ssh/id_rsa
or a file <key_file> specified with fab -i <key_file> or the
env.key_filename configuration parameter [8]).

env.password = ’testroot’

The shell used to execute commands is specified with
env.shell. By default Fabric uses Bash, but Bash is not
standard on FreeBSD. So TEACUP’s default setting
is:

env.shell = ’/bin/sh -c’

The timeout for an SSH connection is specified with
env.timeout.

env.timeout = 5

The number of concurrent processes used for parallel
execution is specified with env.pool_size. The number
should be at least as high as the number of hosts, unless
the number of hosts is large in which case we may want
to limit the number of concurrent processes.

env.pool_size = 10

C. Testbed configuration

All TEACUP settings start with the TPCONF_ prefix and
are Python variables (and must adhere to the Python
syntax).

The path were the TEACUP scripts are located is speci-
fied with TPCONF_script_path. This is appended to the
Python path.

TPCONF_script_path = ’/home/test/src/teacup’

CAIA Technical Report 140918A September 2014 page 9 of 29

tcpdump file collected on testhost2 for an experiment where two parameters where varied
20131206-170846_windows_dash_1000_tcp_compound_testhost2.dmp.gz
output of httperf traffic generator (traffic generator 3) executed on testhost2
20131206-170846_windows_dash_1000_tcp_compound_testhost2_3_httperf_dash.log.gz

Figure 9. Example file names

The path to the directory that is served by the TFTP
server during the PXE boot process [7] is specified with
TPCONF_tftpboot_dir. Setting this to an empty string
means no PXE booting, and TPCONF_host_os and TP-
CONF_force_reboot (see below) are ignored.

TPCONF_tftpboot_dir = ’/tftpboot’

Two lists specify the testbed hosts. TPCONF_router
specifies the list of routers. Note that currently the
TPCONF_router list is limited to only one router. TP-
CONF_hosts specifies the list of hosts. The hosts can
be specified as IP addresses or host names (typically
for convenience just the name without the domain
part).
TPCONF_router = [’testhost1’,]
TPCONF_hosts = [’testhost2’, ’testhost3’]

The dictionary TPCONF_host_internal_ip specifies the
testbed IP addresses for each host. The hosts (keys)
specified must match the entries in the TPCONF_router
and TPCONF_hosts lists exactly. The current code does
simple string matching, it does not attempt to resolve
host identifiers into some canonical form.

TPCONF_host_internal_ip = {
’testhost1’ : [’172.16.10.1’,’172.16.11.1’],
’testhost2’ : [’172.16.10.2’],
’testhost3’ : [’172.16.10.3’],
}

D. General experiment settings

TPCONF_test_id specifies the default test ID prefix.
Note that if the test ID prefix is specified on the
command line, the command line overrules this set-
ting.
now = datetime.datetime.today()
TPCONF_test_id = now.strftime("%Y%m%d-%H%M%S")

TPCONF_remote_dir specifies the directory on the re-
mote host where the log files (e.g. tcpdump, SIFTR) are
stored during an experiment. Files are deleted automat-
ically at the end of an experiment, but if an experiment
is interrupted files can remain. Currently, there is no

automatic cleanup of the directory to remove left-over
files.

TPCONF_remote_dir = ’/tmp/’

The TPCONF_host_os dictionary specifies which OS are
booted on the different hosts. The hosts (keys) specified
must match the entries in the TPCONF_router and TP-
CONF_hosts lists exactly. The current code does simple
string matching, it does not attempt to resolve host iden-
tifiers in some canonical form. The three different types
of OS supported are: ‘Linux’, ‘FreeBSD’ and ‘CYG-
WIN’ (Windows). Selecting the specific Linux kernels to
boot is supported with the TPCONF_linux_kern_router
and TPCONF_linux_kern_hosts parameters (see below).
The OS setting is valid for a whole series of experiments,
or in other words the OS of hosts cannot be changed
during a series of experiments.
TPCONF_host_os = {
’testhost1’ : ’Linux’,
’testhost2’ : ’FreeBSD’,
’testhost3’ : ’Linux’,
}

TPCONF_linux_kern_router specifies the Linux kernel
booted on the router, and TPCONF_linux_kern_hosts
specifies the Linux kernel booted on all other hosts.
The name is the kernel image name minus the starting
‘vmlinuz-’, so the name starts with the version num-
ber.
TPCONF_linux_kern_router = ’3.14.18-10000hz’
TPCONF_linux_kern_hosts = ’3.9.8-web10g’

If TPCONF_force_reboot is set to ‘1’ all hosts will be
rebooted. If TPCONF_force_reboot is set to ‘0’ only
hosts where the currently running OS (or kernel in case
of Linux) is not the desired OS (or kernel in case
of Linux), as specified in TPCONF_host_os, will be
rebooted.

TPCONF_force_reboot = ’1’

TPCONF_boot_timeout specifies the maximum time in
seconds (as integer) a reboot can take. If the rebooted
machine is not up and running the chosen OS after
this time, the reboot is deemed a failure and the script

CAIA Technical Report 140918A September 2014 page 10 of 29

aborts, unless TPCONF_do_power_cycle is set to ‘1’
(see below).

TPCONF_boot_timeout = 100

If TPCONF_do_power_cycle is set to ‘1’ a host is power
cycled if it does not reboot with TPCONF_boot_timeout
seconds (this only works if power controllers are
installed). If set to ‘0’ there is no power cycling. If set
to ‘1’ the parameters TPCONF_host_power_ctrlport,
TPCONF_power_admin_name and TP-
CONF_power_admin_pw must be set.

TPCONF_do_power_cycle = ’0’

TPCONF_host_power_ctrlport is a dictionary that for
each host specifies the IP (or host name) of the re-
sponsible power controller and the number of the power
port the host is connected to (as integer starting from
1).
TPCONF_host_power_ctrlport = {
’testhost1’ : (’192.168.1.178’, ’1’),
’testhost2’ : (’192.168.1.178’, ’2’),
’testhost3’ : (’192.168.1.178’, ’3’),
}

TPCONF_power_admin_name specifies the name of the
power controller’s admin user.

TPCONF_power_admin_name = ’admin’

TPCONF_power_admin_pw specifies the password of
the power controller’s admin user (which in the below
example is identical to the SSH password used by Fabric,
but in general it can be different).

TPCONF_power_admin_pw = env.password

It is possible to run custom per-host initialisation com-
mands (see Section IV-E).

TEACUP performs a very simple time synchronisation
check at the start (after waiting for more than 30 sec-
onds after the hosts were rebooted). It checks the time
offset between the control host (the host that executes
TEACUP) and each testbed host listed in the config
file. TPCONF_max_time_diff specifies the maximum
tolerable clock offset, i.e. the maximum allowed time
difference in seconds. If the clock offset for one of
the testbed hosts is too large, TEACUP will abort the
experiment or series of experiments.
TPCONF_max_time_diff = 1

E. Custom host init commands

TPCONF_host_init_custom_cmds allows to execute cus-
tom per-host init commands. This allows to change
the host configuration, for example with sysctls. TP-
CONF_host_init_custom_cmds is a dictionary, where
the key specifies the host name and the value is a
list of commands. The commands are executed in
exactly the order specified, after all default build-in
host initialisation has been carried out. This means
TPCONF_host_init_custom_cmds makes it possible to
overrule default initialisation. The commands are spec-
ified as strings and are executed on the host exactly as
specified (with the exception that V_variables, if present,
are substituted with values). V_variables can be used in
commands, but the current limitation is there can only
be one V_variable per command.

The custom commands are executed before the router
configuration. So when using for example a FreeBSD
router we can use TPCONF_host_init_custom_cmds
to increase the maximum allowable Dummynet queue
length (using sysctl) before Dummynet is actually con-
figured.

Note that the commands are executed in the foreground,
which means that for each command TEACUP will wait
until it has been executed on the remote host before
executing the next command for the same host. It is
currently not possible to execute background commands.
However, commands on different hosts are executed in
parallel, i.e. waiting for a command to finish on host
testhost1 does not block executing the next command
on host testhost2. In summary, commands on different
host are executed in parallel, but commands on the same
host are executed sequentially.

The following config file part shows an example where
we simply execute the command ‘echo TEST’ on host
testhost1.
TPCONF_host_init_custom_cmds = {
’testhost1’ : [’echo TEST’,],
}

F. Router queue setup

The variable TPCONF_router_queues specifies the
router queues (Linux or FreeBSD). Each entry is a 2-
tuple. The first value specifies a unique integer ID for
each queue. The second value is a comma-separated
string specifying the queue parameters. The queues do

CAIA Technical Report 140918A September 2014 page 11 of 29

not necessarily need to be defined in the order of queue
ID, but it is recommended to do so. The following queue
parameters exist:

• source: Specifies the source IP/hostname or source
network (<ip>[/<prefix>]) of traffic that is queued
in this queue. If a host name is specified there can
be no prefix. One can specify an internal/testbed or
external/control IP/hostname. If an external IP/host-
name is specified this will be automatically trans-
lated into the first internal IP specified for the host
in TPCONF_host_internal_ip.

• dest: Specifies the destination IP/hostname or
source network (<ip>[/<prefix>]) of traffic that is
queued in this queue. If a host name is speci-
fied there can be no prefix. One can specify an
internal/testbed or external/control IP/hostname. If
an external IP/hostname is specified this will be
automatically translated into the first internal IP
specified for the host in TPCONF_host_internal_ip.

• delay: Specifies the emulated constant delay in
milliseconds. For example, delay=50 sets the delay
to 50 ms.

• loss: Specifies the emulated constant loss rate. For
example, loss=0.01 sets the loss rate to 1%.

• rate: Specifies the rate limit of the queue. On Linux
we can use units such as ‘kbit’ or ‘mbit’. For
example, queue_size=‘1mbit’ sets the rate limit to
1 Mbit/second.

• queue_size: Specifies the size of the queue. On
Linux queue size is defined in packets for most
queuing disciplines, but for some queuing disci-
plines it needs to be specified in bytes. For example,
if we have a Linux queue with size specified in
packets, queue_size=1000 sets the queue size to
1000 packets. On FreeBSD the queue size is also
specified in packets typically, but one can specify
the size in bytes by adding a ‘bytes’ or ‘kbytes’, for
example queue_size=‘100kbytes’ specifies a queue
of size 100 kbytes. If ‘bdp’ is specified the queue
size will be set to the nominal bandwidth-delay-
product (BDP) (this does only work for queuing dis-
ciplines where TEACUP knows whether the queue
limit is in bytes or packets). The minimum queue
size is one packet (if the size is specified in packets)
or 2048 bytes (if the size is specified in bytes).

• queue_size_mult: The actual queue size is the
queue size multiplied with this factor. This should
only be used if queue_size if set to ‘bdp’. This

allows to vary the queue size in multiples of the
nominal BDP.

• queue_disc: Specifies the queuing discipline. This
can be the name of any of the queuing disciplines
supported by Linux, such as ‘fq_codel’, ‘codel’,
‘red’, ‘choke’, ‘pfifo’, ‘pie’ etc. On FreeBSD the
only queuing disciplines available are ‘fifo’ and
‘red’. For example, queue_disc=‘fq_codel’ sets the
queuing discipline to the fair-queuing+codel model.
For compatibility, with FreeBSD one can specify
‘fifo’ on Linux, which is mapped to ‘pfifo’ (‘pfifo’
is the default for HTB classes, which we use for
rate limiting). The queue_disc parameter must be
specified explicitly.

• queue_disc_params: This parameter allows to
pass parameters to queuing disciplines. For exam-
ple, if we wanted to turn ECN on for fq_codel
we would specify queue_disc_params=‘ecn’ (c.f.
fq_codel man page).

• bidir: This allows to specify whether a queue is
unidirectional (set to ‘0’) or bidirectional (set to
‘1’). A unidirectional queue will only get the traffic
from source to destination, whereas a bidirectional
queue will get the traffic from source to dest and
from destination to source.

• attach_to_queue: This parameter works on Linux
only. It allows to direct matching packets into an
existing queue referenced by the specified queue
ID, but to emulate flow-specific delay/loss (differ-
ent from the delay and loss of other traffic). If
attach_to_queue is specified the matching traffic
will go through the already existing queue, but
the emulated delay or loss is set according to the
current queue specification. This means we can omit
the rate, queue_disc and queue_size parameters,
because they do not have any effect.

• rtt: This parameter allows to explicitly specify the
emulated RTT in milliseconds. This parameter only
needs to be specified if queue_size is set to ‘bdp’
and the RTT is not 2·delay of the current TEACUP
queue (e.g. if we set up asymmetric delay with
attach_to_queue).

All parameters must be assigned with either a con-
stant value or a TEACUP V_variable. V_variable names
must be defined in TPCONF_parameter_list and TP-
CONF_variable_defaults (see below). V_variables are
replaced with either the default value specified in TP-
CONF_variable_defaults or the current value from TP-

CAIA Technical Report 140918A September 2014 page 12 of 29

CONF_parameter_list if we iterate through multiple val-
ues for the parameter.

Figure 10 shows an example queue setup with the same
delay and loss for every host and the same delay and
loss in both directions (all the parameters are variables
here).

Figure 11 shows an example that illustrates the at-
tach_to_queue parameter. Traffic between 172.16.10.3
and 172.16.11.3 goes through the same queues as traffic
between 172.16.10.2 and 172.16.11.2, but in both direc-
tions it experiences twice the delay.

G. Traffic generator setup

Traffic generators are defined with the variable
TPCONF_traffic_gens. This is a list of 3-tuples. The first
value of a tuple is the start time relative to the start
of the experiment. The second value of the tuple is a
unique ID. The third value of the tuple is a list of string
containing the function name of the start function of the
traffic generator as first entry followed by the parameters.
The name of the functions and the parameters for each
function are described in Section IV-H.

Client and server parameters can be external (control
network) addresses or host names. An external address
or host name is replaced by the first internal address
specified for a host in TPCONF_host_internal_ip. Client
and server parameters can also be internal (testbed net-
work) addresses, which allows to specify any internal
address.

Each parameter is defined as <parame-
ter_name>=<parameter_value>. Parameter names must
be the parameter names of traffic generator functions
(and as such be valid Python variable names). Parameter
values can be either constants (string or numeric)
or TEACUP V_variables that are replaced by the
actual values depending on the current experiment. The
V_variables must be defined in TPCONF_parameter_list
and TPCONF_variable_defaults. Numeric V_variables
can be modified using the normal mathematical
operations, such as addition or multiplication. For
example, if a variable ‘V_delay’ exists one can specify
‘2·V_delay’ as parameter value.

Figure 12 shows a simple example. At time zero a web
server is started and fake DASH content is created. 0.5
seconds later a httperf DASH-like client is started. The
duration and rate of the DASH-like flow are specified

by variables that can change for each experiment. In
contrast the cycle length and prefetch time are set to
fixed values.

The example config.py file in the source code distribution
contains more examples of setting up traffic genera-
tors.

H. Available traffic generators

This section describes the traffic generators (listed by
their start function names) that can be used in TP-
CONF_traffic_gens.

1) start_iperf: This starts an iperf client and server.
Note that the client sends data to the server. It has the
following parameters:

• port: port number to use for client and server
(passed to iperf -p option)

• client: IP or name of client (passed to iperf -c
option)

• server: IP or name of server (passed to iperf -B
option)

• duration: time in seconds the client transmits
(passed to iperf -t option)

• congestion_algo: TCP congestion algorithm to use
(works only on Linux)

• kill: By default this is ’0’ and the iperf client will
terminate after duration seconds. If this is set to
’1’, the iperf client will be killed approximately
1 second after duration. This is a work-around for
a “feature” in iperf that prevents it from stopping
after the specified duration. (If set to ’1’, the iperf
server is also killed approximately 2 seconds after
duration.)

• mss: TCP maximum segment size (passed to iperf
-M option)

• buf_size: Send and receive buffer size in bytes
(passed to iperf -j and -k, iperf with CAIA patch
[7])

• proto: Protocol to use, ‘tcp’ (default) or ‘udp’ (sets
iperf -u option for ‘udp’)

• rate: The bandwidth used for TCP (passed to iperf
-a option) or UDP (passed to iperf -b option). Can
end in ‘K’ or ‘M’ to indicate kilo bytes or mega
bytes.

• extra_params_client: Command line parameters
passed to iperf client

• extra_params_server: Command line parameters
passed to iperf server

CAIA Technical Report 140918A September 2014 page 13 of 29

TPCONF_router_queues = [
(’1’, "source=’172.16.10.0/24’, dest=’172.16.11.0/24’, delay=V_delay, loss=V_loss, rate=V_urate,

queue_disc=V_aqm, queue_size=V_bsize"),
(’2’, "source=’172.16.11.0/24’, dest=’172.16.10.0/24’, delay=V_delay, loss=V_loss, rate=V_drate,

queue_disc=V_aqm, queue_size=V_bsize"),
]

Figure 10. Router queue definition example

TPCONF_router_queues = [
(’1’, "source=’172.16.10.2’, dest=’172.16.11.2’, delay=V_delay, loss=V_loss, rate=V_up_rate,

queue_disc=V_aqm, queue_size=V_bsize"),
(’2’, "source=’172.16.11.2’, dest=’172.16.10.2’, delay=V_delay, loss=V_loss, rate=V_down_rate,

queue_disc=V_aqm, queue_size=V_bsize"),
(’3’, "source=’172.16.10.3’, dest=’172.16.11.3’, delay=2*V_delay, loss=V_loss, attach_to_queue=’1’"),
(’4’, "source=’172.16.11.3’, dest=’172.16.10.3’, delay=2*V_delay, loss=V_loss, attach_to_queue=’2’"),
]

Figure 11. Router queue definition with attach_to_queue example

TPCONF_traffic_gens = [
(’0.0’, ’1’, "start_http_server, server=’testhost3’, port=80"),
(’0.0’, ’2’, "create_http_dash_content, server=’testhost3’, duration=2*V_duration,

rates=V_dash_rates, cycles=’5, 10’"),
(’0.5’, ’3’, "start_httperf_dash, client=’testhost2’, server=’testhost3’, port=80,

duration=V_duration, rate=V_dash_rate, cycle=5, prefetch=2"),
]

Figure 12. Traffic generator example

2) start_ping: This starts a ping and has the following
parameters:

• client: IP or name of machine to run ping on
• dest: IP or name of machine to ping
• rate: number of pings per second (Windows ping

only supports 1 ping/second) (default = 1)
• extra_params: Command line parameters passed to

ping

3) start_http_server: This starts an HTTP server
(lighttpd) and has the following parameters:

• port: port to listen on (currently one server can
listen on only one port)

• config_dir: directory where the config file
(lighttpd.conf) should be copied to

• config_in: local template for config file
• docroot: document root on server (FreeBSD de-

fault: /usr/local/www/data, Linux/CYGWIN de-
fault: /srv/www/htdocs)

4) create_http_dash_content: This creates fake content
for the DASH-like client. It has the following parame-
ters:

• server: IP or name of HTTP server

• docroot: document root of HTTP server (FreeBSD
default: /usr/local/www/data, Linux/CYGWIN de-
fault: /srv/www/htdocs)

• duration: number of seconds of fake content
• rates: comma-separated list of DASH rates in kB
• cycles: comma-separated list of cycle lengths in

seconds

5) create_http_incast_content: This creates fake content
for incast experiments. It has the following parame-
ters:

• server: IP or name of HTTP server
• docroot: document root of HTTP server (FreeBSD

default: /usr/local/www/data, Linux/CYGWIN de-
fault: /srv/www/htdocs)

• sizes: comma-separated list of content file sizes

6) start_httperf: This starts an httperf HTTP client. It
has the following parameters:

• client: IP or name of client
• server: IP or name of HTTP server (passed to

httperf --server)
• port: port server is listening on (passed to httperf

--port)

CAIA Technical Report 140918A September 2014 page 14 of 29

• conns: total number of connections (passed to
httperf --num-conns)

• rate: rate at which connections are created (passed
to httperf --rate)

• timeout: timeout for each connection; httperf will
give up if a HTTP request does not complete within
the timeout (passed to httperf --timeout)

• calls: number of requests in each connection
(passed to httperf --num-calls, default = 1)

• burst: length of burst (passed to httperf --burst-
length)

• wsesslog: session description file (passed to third
parameter of httperf --wsesslog)

• wsesslog_timeout: default timeout for each wsess-
log connection (passed to second parameter of
httperf --wsesslog)

• period: time between creation of connections;
equivalent to 1/rate if period is a number, but period
can also specify inter-arrival time distributions (see
httperf man page)

• sessions: number of sessions (passed to first param-
eter of httperf --wsesslog, default = 1)

• call_stats: number of entries in call statistics array
(passed to httperf --call-stats, default = 1000)

• extra_params: Command line parameters passed to
httperf

7) start_httperf_dash: This starts a DASH-like httperf
client. It has the following parameters:

• client: IP or name of client
• server: IP or name of HTTP server (passed to

httperf --server)
• port: port server is listening on (passed to httperf

--port)
• duration: duration of DASH flow in seconds
• rate: data rate of DASH-like flow in kbps
• cycle: interval between requests in seconds
• prefetch: prefetch time in seconds of content to

prefetch (can be fractional number) (default = 0.0)
• prefetch_timeout: like timeout for start_httperf but

only for the prefetch (by default this is set to cycle)
• extra_params: Command line parameters passed to

httperf

The behaviour is as follows:

1) The client opens a persistent TCP connection to
the server.

2) If prefetch is > 0.0 the client will fetch the speci-
fied number of seconds of content and right after
that send a request for the next block (step 3).

3) The client will request a block of content, wait for
some time (cycle minus download time) and then
request the next block. The size of one block is
cycle·rate·1000/8 bytes.

8) start_httperf_incast: This starts an httperf client
for the incast scenario. It has the following parame-
ters:

• client: IP or name of client
• server: IP or name of HTTP server (passed to

httperf --server)
• port: port server is listening on (passed to httperf

--port)
• period: period between requests in seconds (float-

ing point number)
• burst_size: number of queries sent at each period

start (this is to increase the number of queries in
a testbed, which only has a few physical responder
machines)

• response_size: size of response from each respon-
der in kB

• extra_params: Command line parameters passed to
httperf

9) start_nttcp: This starts an nttcp client and an nttcp
server for some simple unidirectional UDP VoIP flow
emulation. It has the following parameters:

• client: IP or name of client
• server: IP or name of HTTP server
• port: control port server is listening on (passed to

nttcp -p)
• duration: duration of the flow (based on this and

the interval TEACUP computes the number of
buffers to send, passed to nttcp -n)

• interval: interval between UDP packets in millisec-
onds (passed to nttcp -g)

• psize: UDP payload size (excluding UDP/IP header)
(passed to nttcp -l)

• buf_size: send buffer size (passed to nttcp -w)
• extra_params_client: Command line parameters

passed to nttcp client
• extra_params_server: Command line parameters

passed to nttcp server

Note that nttcp also opens a TCP control connection
between client and server. However, on this connection
packets are only exchanged before and after the data

CAIA Technical Report 140918A September 2014 page 15 of 29

flow, and the number of exchanged control packets is
small.

I. Mandatory experiment variables

We now describe the mandatory experiment variables.
These must be in every config file. There are two types
of variables: singulars and lists. Singulars are fixed
parameters while lists specify the different values used in
subsequent experiments based on the definitions of TP-
CONF_parameter_list and TPCONF_vary_parameters
(see below).

The duration of the experiment in seconds (must be
an integer) is specified with TPCONF_duration. Note
that currently the actual duration of an experiment is
the number of seconds specified by TPCONF_duration
plus the number of seconds until the last traffic gen-
erator is started (based on TPCONF_traffic_gens). TP-
CONF_duration is specified as follows:

TPCONF_duration = 30

The number of runs carried out for each unique parame-
ter combination is specified with TPCONF_runs:

TPCONF_runs = 1

TPCONF_ECN specifies whether ECN is used. If set to
‘1’ ECN is enabled for all hosts. If set to ‘0’ ECN is
disabled for all hosts. Currently per-host configuration
is not possible. Note that this only turns on ECN on the
hosts. For full ECN support, the AQM mechanism on
the router must also be configured to use ECN.

TPCONF_ECN = [’0’, ’1’]

TPCONF_TCP_algos specifies the TCP congestion algo-
rithms used. The following algorithms can be selected:
‘newreno’, ‘cubic’, ‘hd’, ‘htcp’, ‘cdg’, ‘compound’.
However, only some of these are supported depending
on the OS a host is running:

• Windows: newreno (default), compound;
• FreeBSD: newreno (default), cubic, hd, htcp, cdg;
• Linux: cubic (default), newreno, htcp.

TPCONF_TCP_algos = [’newreno’, ’cubic’,]

Instead of specifying a particular TCP algorithm one
can specify ‘default’. This will set the algorithm to
the default algorithm depending on the OS the host is
running. Using only TPCONF_TCP_algos one is limited
to either using the same algorithm on all hosts or the
defaults. To run different algorithms on different hosts,

one can specify ‘host<N>’ where <N> is an integer
number starting from 0. The <N> refers to the Nth entry
for each host in TPCONF_host_TCP_algos.

TPCONF_host_TCP_algos defines the TCP congestion
control algorithms used for each host if the ‘host<N>’
definitions are used in TPCONF_TCP_algos. In the fol-
lowing example a ‘host0’ entry in TPCONF_TCP_algos
will lead to each host using its default. A ‘host1’ entry
will configure testhost2 to use ‘newreno’ and testhost3
to use ‘cdg’.
TPCONF_host_TCP_algos = {
’testhost2’ : [’default’, ’newreno’,],
’testhost3’ : [’default’, ’cdg’,],
}

With TPCONF_host_TCP_algo_params we can specify
parameter settings for each host and TCP congestion
control algorithm. The settings are passed directly to
sysctl on the remote host. We can use V_variables to
iterate over different settings (similar as for pipes and
traffic generators) and these are replaced with the actual
current value before passing the string to sysctl. For
example, we can specify settings for CDG for host
testhost2:
TPCONF_host_TCP_algo_params = {
’testhost2’ : { ’cdg’ : [
’net.inet.tcp.cc.cdg.beta_delay = V_cdgbdel’,
’net.inet.tcp.cc.cdg.beta_loss = V_cdgbloss’,
’net.inet.tcp.cc.cdg.exp_backoff_scale = 3’,
’net.inet.tcp.cc.cdg.smoothing_factor = 8’]
}}

TPCONF_delays specifies the emulated network delays
in milliseconds. The numbers must be chosen from [0,
max_delay). For most practical purposes the maximum
delay max_delay is 10 seconds, although it could be
more (if supported by the emulator). The following
shows an example:

TPCONF_delays = [0, 25, 50, 100]

TPCONF_loss_rates specifies the emulated network loss
rates. The numbers must be between 0.0 and 1.0. The
following shows an example:

TPCONF_loss_rates = [0, 0.001, 0.01]

TPCONF_bandwidths specifies the emulated bandwidths
as 2-tuples. The first value in each tuple is the down-
stream rate and the second value in each tuple is the
upstream rate. Note that the values are passed through to
the router queues and are not checked by TEACUP. Units
can be used if the queue setup allows this, e.g. in the

CAIA Technical Report 140918A September 2014 page 16 of 29

following example we use mbit to specify Mbit/second
which Linux tc understands:
TPCONF_bandwidths = [
(’8mbit’, ’1mbit’),
(’20mbit’, ’1.4mbit’),
]

TPCONF_aqms specifies the list of AQM/queuing tech-
niques. This is completely dependent on the router OS.
Linux supports ‘fifo’ (mapped to ‘pfifo’), ‘pfifo’, ‘bfifo’,
‘fq_codel’, ‘codel’, ‘pie’, ‘red’ etc. (refer to the tc man
page for the full list). FreeBSD support only ‘fifo’ and
‘red’. Default on Linux and FreeBSD are FIFOs (with
size in packets). The following shows an example:

TPCONF_aqms = [’pfifo’, ’fq_codel’, ’pie’]

Note that all underscores in parameter values used in log
file names are changed to hyphens to allow for easier
parsing of log file names. For example, ‘fq_codel’ will
become ‘fq-codel’ in the file name.

TPCONF_buffer_sizes specifies the bottleneck buffer
sizes. If the router is Linux this is mostly in packets/slots,
but it depends on the AQM technique (e.g. for bfifo it is
bytes). If the router is FreeBSD this would be in slots by
default, but we can specify byte sizes (e.g. we can specify
4Kbytes). The following shows an example:

TPCONF_buffer_sizes = [1000, 1]

TPCONF_vary_parameters specifies this list of pa-
rameters to vary, i.e. parameters that have multiple
values. These parameters must be defined in TP-
CONF_parameter_list (see below). The total number
of experiments carried out is the number of unique
parameter combinations multiplied by the number of
TPCONF_runs if ‘runs’ is specified here. The TP-
CONF_vary_parameters specification also defines the
order of the parameters in the log file names. While
not strictly necessary ‘runs’ should be last in the
list (if used). If ‘runs’ is not specified, there is
a single experiment for each parameter combina-
tion. TPCONF_vary_parameters is only used for mul-
tiple experiments. When we run a single experiment
(run_experiment_single) all the variables are set to fixed
values based on TPCONF_variable_defaults. The follow-
ing shows an example for the parameters included in TP-
CONF_parameter_list in the example config.py:
TPCONF_vary_parameters = [

’tcpalgos’, ’delays’, ’loss’,
’bandwidths’, ’aqms’, ’bsizes’,
’runs’,

]

J. Experiment-specific variables

Some variables defined in the example config.py file are
only used with certain traffic generators.

TPCONF_dash_rates specifies the DASH content rates
in kbit/second and TPCONF_dash_rates_str is a string
with a comma-separated list of rates (the latter is used by
the content creation function create_http_dash_content).
DASH rates must be integers. The following shows an
example:
TPCONF_dash_rates = [500, 1000, 2000]
TPCONF_dash_rates_str = ’,’.join(map(str,

TPCONF_dash_rates))

TPCONF_inc_content_sizes specifies the content sizes
in kB for the replies send in an incast scenario (as
integer) and TPCONF_inc_periods specifies the length of
a period between requests by the querier in seconds (as
floating point). The following shows an example:
TPCONF_inc_content_sizes= ’64, 512, 1024’
TPCONF_inc_periods = [10]

K. Defining parameters to vary

TPCONF_parameter_list specifies the variable parame-
ters. Note that despite its name TPCONF_parameter_list
is a Python dictionary. The keys are names that can
be used in TPCONF_vary_parameters. The values are
4-tuples. The first parameter of each tuple is a list
of V_variables that can be used, for example in the
queue configuration or traffic generator configuration.
The second parameter of each tuple is a list of names
used in the file names of created log files. The third
parameter of each tuple is the list of parameter values,
these are usually references to the lists defined in the
previous section. The last parameter is a dictionary of
extra V_variables to set (this can be an empty dictio-
nary), where the keys are variable names and the values
are the variable values.

The length of the first three tuple parameters (V_variable
identifiers, short names and V_variable values) must be
equal. When a series of experiments is started with
‘fab run_experiment_multiple’ the following happens.
For each parameter combination of the vary parameter
defined in TPCONF_vary_parameters one experiment is
run where the parameter settings are logged in the file
name using the short names, and the V_ variables are
set to the parameter combination given by the value
lists.

CAIA Technical Report 140918A September 2014 page 17 of 29

TPCONF_parameter_list can handle grouped
V_variables, such as TPCONF_bandwidths, where
in each experiment a specific combination of the
grouped V_variables is used.

TPCONF_variable_defaults is a dictionary that specifies
the defaults for V_ variables. The keys are V_ variable
names and the values are the default values (often the
first value of the parameter lists). For each parameter
that is not varied, the default value specified in TP-
CONF_variable_defaults is used.

We now discuss a simple example where we focus on
the variables to vary delay and TCP algorithms. Assume
we want to experiment with two delay settings and two
different TCP CC algorithms. So we have:
TPCONF_delays = [0, 50]
TPCONF_TCP_algos = [’newreno’, ’cubic’]

We also need to specify the two parameters to be varied
and the default parameters for the variables as shown in
Figure 13.

V_delay can be used in the router queue settings.
V_tcp_cc_algo is passed to the host setup function.
When we run ‘fab run_experiment_multiple’ this will
run the following experiments, here represented by the
start of the log file names (we assume the test ID prefix
is the default from Section IV-D):
20131206-170846_del_0_tcp_newreno
20131206-170846_del_0_tcp_cubic
20131206-170846_del_50_tcp_newreno
20131206-170846_del_50_tcp_cubic

L. Adding new V_ variables

New V_variables are easy to add. Say we want to create
a new V_variable called V_varx. We need to do the
following:

1) Add a new list with parameter values, let’s say
TPCONF_varx = [x, y]

2) Add one line in TPCONF_parameters_list: the
key is the identifier that can be used in TP-
CONF_vary_parameters (let’s call it varx_vals),
and the value is a 4-tuple: variable name as string
‘V_varx’, variable name used in file name (say
‘varx’), pointer to value list (here TPCONF_varx),
and optionally a dictionary with related variables
(here empty).

3) Add one line in TPCONF_variable_defaults spec-
ifying the default value used (when not iterat-
ing over the variable): the key is the V_variable
name as string (here ‘V_varx’) and the value
is the default value from TPCONF_varx (say
TPCONF_varx[0]).

Technically, step 1 is not necessary as the list of val-
ues can be put directly in TPCONF_parameters_list
and the default value can be put directly in TP-
CONF_variable_defaults. However, defining a separate
list improves the readability.

V. RUNNING EXPERIMENTS

This section describes how to run experiments. First,
we describe the initial steps needed. Then we outline
a simple example config file. Finally, we describe how
to run the experiments.

A. Initial steps

First you should create a new directory for the experi-
ment or series of experiments. Copy the files fabfile.py
and run.sh (and run_resume.sh) from the TEACUP dis-
tribution into that new directory. Then create a config.py
file in the directory. An easy way to get a config.py file
is to start with the provided example config.py as basis
and modify it as necessary.

B. Example config

Figure 14 shows a minimal but complete config.py
file. The testbed consists of three machines, two
hosts (192.168.1.2, 192.168.1.3) connected by a router
(192.168.1.4). The two hosts will run FreeBSD for the
experiment, while the router will run Linux. On the
router we configure two pipes, one in each direction, with
different rates but the same AQM mechanism, buffer
size, and emulated delay and loss. The test traffic consists
of two parallel TCP sessions generated with iperf, both
start at the start of the experiment (time 0.0). With iperf
the client sends data to the server, so the data is send
from 192.168.1.2 to 192.168.1.3. Each experiment lasts
30 seconds and we run a series of experiments varying
the TCP congestion control algorithm, the network delay
and loss, the upstream and downstream bandwidths, the
AQM technique, and the buffer size. There is one exper-
iment for each parameter combinations (one run).

CAIA Technical Report 140918A September 2014 page 18 of 29

TPCONF_parameter_list = {
’delays’ : ([’V_delay’], [’del’], TPCONF_delays, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’], [’tcp’], TPCONF_TCP_algos, {}),
}
TPCONF_variable_defaults {
’V_delay’ : TPCONF_delays[0]’,
’V_tcp_algo’ : TPCONF_TCP_algos[0],
}
TPCONF_vary_parameters = [’delays’, ’tcpalgos’]

Figure 13. Specifying the parameters to be varied

C. Running experiments

There are two tasks to start ex-
periments: run_experiment_single and
run_experiment_multiple.

To run a single experiment with the default test ID prefix
TPCONF_test_id, type:

> fab run_experiment_single

To run a series of experiment based on the TP-
CONF_vary_parameters settings with the default test ID
prefix TPCONF_test_id, type:

> fab run_experiment_multiple

In both cases the Fabric log output will be printed out
on the current terminal and it can be redirected with the
usual means. The default test ID prefix TPCONF_test_id
is specified in the config file. However, the test ID prefix
can also be specified on the command line (overruling
the config setting):

> fab run_experiment_multiple:test_id=‘date

+"%Y%m%d-%H%M%S"‘

The last command will run a series of experiments
where the test ID prefix is YYYYMMDD-HHMMSS,
using the actual date when the fab command is run. For
convenience a shell script run.sh shell exists. The shell
script logs the Fabric output in a <test_ID_prefix>.log
file inside the <test_ID_prefix> sub directory and is
started with:

> run.sh

The shell script generates a test ID prefix and then
executes the command:

> fab run_experiment_multiple:test_id=

<test_ID_pfx> > <test_ID_pfx>.log 2>&1

The test ID prefix is set to ‘date

+"%Y%m%d-%H%M%S"‘_experiment. The output
is unbuffered, so one can use tail -f on the log file

and get timely output. The fabfile to be used can be
specified, i.e. to use the fabfile myfabfile.py instead
of fabfile.py run:

> run.sh myfabfile.py

The run_experiment_single and
run_experiment_multiple tasks keeps track of
experiments using two files in the current
directory:

• The file experiment_started.txt logs the test
IDs of all experiments started.

• The file experiment_completed.txt logs the
test IDs of all experiments successfully completed.

Note that both of these files are never reset by TEACUP.
New test IDs are simply appended to the current files if
they already exist. It is the user’s responsibility to delete
the files in order to reset the list of experiments.

It is possible to resume an interrupted series of
experiments started with run_experiment_multiple
with the resume parameter. All experiments of
the series that were not completed (not logged
in experiments_completed.txt) are done
again. For example, the following command
resumes a series of experiments with test ID prefix
20131218-113431_windows (and appends the log
output to the existing log file):

> fab run_experiment_multiple:

test_id=20131218-113431_windows,resume=1

>> 20131218-113431_windows.log 2>&1

The resume parameter also makes it possible
to redo selected experiments, even if they were
successfully completed, by removing them from
experiments_completed.txt (using a text
editor).

If a series of experiments is interrupted by non-
deterministic errors, i.e. each experiment may fail with

CAIA Technical Report 140918A September 2014 page 19 of 29

some small probability, the run_resume.sh shell script
can be used to ensure the whole series of experiments
is completed. The script runs the experiments using the
run_experiment_multiple task and automatically resumes
each time an experiment was not successfully completed
using the resume option explained above. The script is
used by executing:

> run_resume.sh

VI. ANALYSING EXPERIMENT DATA

This section describes how to analyse the data of an
experiment or a series of experiments. First, we describe
the available functions to extract data and plot graphs.
Then we describe shell scripts that can be used to
combine multiple graphs on the same page to allow easy
comparison of the results of different experiments.

A. Basic analysis functions

Currently analysis functions exist for:

1) Plotting the throughput including all header bytes
(based on tcpdump data);

2) Plotting the Round Trip Time (RTT) using SPP
[21], [22] (based on tcpdump data);

3) Plotting the TCP congestion window size (CWND)
(based on SIFTR and Web10G data);

4) Plotting the TCP RTT estimate (based on SIFTR
and Web10G data). The function can plot both,
the smoothed estimate and an unsmoothed estimate
(also for SIFTR the unsmoothed estimate is the
improved ERTT [23] estimate);

5) Plotting an arbitrary TCP statistics from SIFTR
and Web10G data.

A convenience function exists that plots graphs 1–4 listed
above. The easiest way to generate all graphs for all
experiments is to run the following command in the
directory containing the sub directories with experiment
data:

> fab analyse_all

This command will generate results for all experiments
listed in the file experiments_completed.txt. By de-
fault the TCP RTT graphs generated are for the smoothed
RTT estimates and in case of SIFTR this is not the ERTT
estimates (if the smoothed parameter is set to ‘0’, non-
smoothed estimates are plotted and in the case of SIFTR
this is the ERTT estimates). The analysis can be run for a

single experiment only by specifying a test ID. The fol-
lowing command generates all graphs for the experiment
20131206-102931_dash_2000_tcp_newreno:

> fab analyse_all:test_id=

20131206-102931_dash_2000_tcp_newreno

Since TEACUP version 0.5 one can specify a list of test
IDs with the test_id parameter. The test IDs must be
separated by semicolons. (If only one test ID is specified,
no trailing semicolon is needed.) If multiple IDs are
specified the graphs will be created in the sub directory
of the test ID specified first. If multiple experiments
are plotted on the same graph(s) the file name(s) will
be the first test ID specified followed by the string
"_comparison" to distinguish from graphs where only
one experiment is plotted.

To generate a particular graph for a particular experi-
ment one can use the specific analysis function (anal-
yse_throughput, analyse_spp_rtt, analyse_cwnd, anal-
yse_tcp_rtt) together with a (list of) test ID9s) (specify-
ing the test ID(s) is mandatory in this case). For example,
the following command only generates the TCP RTT
graph for the non-smoothed estimates:

> fab analyse_tcp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

smoothed=0

Note, the smoothed parameter can also be used with
analyse_all. The following command only generates the
throughput graph:

> fab analyse_throughput:test_id=

20131206-102931_dash_2000_tcp_newreno

The analyse_tcp_stat function can be used to plot any
TCP statistic from SIFTR or Web10G logs. For example,
we can plot the number of kilo bytes in the send buffer
at any given time with the command:

> fab analyse_tcp_stat:test_id=

20131206-102931_tcp_newreno,out_dir=./results,

siftr_index=22,web10g_index=116, ylabel="Snd

buf (kbytes)",yscaler=0.001

The siftr_index defines the index of the column
of the statistic to plot for SIFTR log files. The
web10g_index defines the index of the column of the
statistic to plot for Web10G log files. If one has only
SIFTR or only Web10G log files the other index does
not need to be specified. But for experiments with SIFTR
and Web10G log files both indexes must be specified.
By default both indexes are set to plot CWND. The lists

CAIA Technical Report 140918A September 2014 page 20 of 29

of available statistics (including the column numbers)
are in the SIFTR README [16] and the Web10G
documentation [17].

Note currently the underlying plot function for anal-
yse_throughput, analyse_spp_rtt, analyse_cwnd, anal-
yse_tcp_rtt, analyse_tcp_stat can only plot 12 different
time series on a single graph. If the number of data series
to plot is larger than 12, multiple graphs are generated
with a _<graph_number> at the end of each file name to
indicate the number of the graph in the series of graphs
(graph number starting from 1).

B. Analysis functions options

All analysis functions above have a parameter
replot_only. This parameter allows to replot the
graphs without extracting the data again (from tcpdump,
SIFTR, Web10G files). For example, the following
command recreates the graphs without extracting the
data again:

> fab analyse_all:replot_only=1

By default all result files are generated in a sub directory
(with the directory name being the test ID prefix) inside
the directory where fab is executed. To put the output
files into a specific directory the out_dir parameter can
be specified (note that out_dir is relative to the location
of the log files):

> fab analyse_all:out_dir=./results/

This will put all output files into sub-directories named
results inside each test ID prefix sub directory with ex-
periment data (the directories are created automatically if
they do no exist). Of course you can also specify absolute
paths. Assuming we executed the last command in a
fabfile directory <fabfile_dir> with two sub directories,
one for test ID 20131206-102931_exp and one for test
ID 20131206-124510_exp, the output files will be put
in the directories:
<fabfile_dir>/20131206-102931_exp/results/
<fabfile_dir>/20131206-124510_exp/results/

The pdf_dir parameter can be used to specify the direc-
tory in which the PDF files are created. Like out_dir

the specified directory is relative to the location of the
experiment’s log files and is automatically created if it
does not exist. If not specified (by default) the PDF files
will be created in out_dir. The parameter can be used
as follows:

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

out_dir=./results,pdf_dir=./pdfs

In many experiments we may have TCP flows where
data only/mostly flows in one direction and TCP statis-
tics in the other direction are basically constant). The
omit_const parameter can be used to suppress any
completely constant series (i.e. all values are identical).
It can be used as follows:

> fab analyse_all:omit_const=1

Any flows that have only very few data points (less
or equal than min_values) are excluded from the plot
(by default min_values = 3). The min_values parameter
can be changed on the command line, for example the
following command omits any flows with 20 data points
or less from the plots:

> fab analyse_all:min_values=20

If an analysis_all was interrupted (e.g. because a
log file was corrupted) we can resume the analysis
after the experiment with the corrupted files. First,
one needs to look up the next test ID after the
corrupted test ID in experiments_completed.txt.
Then, one can resume at this test ID using the
resume_id parameter. For example, if for a test ID
20131206-102931_dash_2000_tcp_newreno_run_0
we cannot do the analysis because of corrupted
data files and the next test ID is 20131206-
102931_dash_2000_tcp_newreno_run1, we can continue
the analysis with this command:

> fab analyse_all:resume_id=

20131206-102931_dash_2000_tcp_newreno_run_1

For analyse_all the parameter exp_list allows to
change the file used as list of test IDs (by default
experiments_completed.txt), which makes it pos-
sible to adjust the list of experiments we generate results
for. The following shows an example:

> fab analyse_all:exp_list=myexp_list.txt,

out_dir="./results"

All analyse tasks have the parameters ymin and ymax.
These parameter can be used to set the y-axis limits to
specific values, for example to produce multiple plots
with the same scale (by default ymin is 0 and ymax

is determined automatically). The parameters can be
used as follows (here the y-axis range is set to 100–
200 ms):

CAIA Technical Report 140918A September 2014 page 21 of 29

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

ymin=100,ymax=200

All tasks have the parameters stime and etime to control
the x-axis limits of the plots (by default stime is 0.0
and etime is the duration of the experiment). Note
that using these parameters allows to zoom in, but the
data outside the specified interval is not filtered out.
The y-axis maximum is adjusted automatically to the
maximum occurring in the specifies x-axis interval, but
the legend is not adjusted. To remove unwanted entries in
the legend (flows not in the time window), one must use
source_filter (see Section VI-D) to filter out the the
unwanted flows. The parameters can be used as follows
(here the x-axis range is set to 5–10 seconds):

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

stime=5,etime=10

By default the legend entries are simply the flow tuples
(source IP, source port, destination IP, destination port).
The parameter lnames can be used to replace these with
more informative names. One must specify the same
number as names as there are data series. Names spec-
ified must be separated by semicolons. The parameter
can be used as follows:

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

lnames=’TCP reno;TCP Cubic’

The out_name parameter allows to change the name of
the PDF files produced. If out_name is specified, the
prefix for the PDF files is out_name followed by the test
ID (followed by "_comparison" for comparison graphs
based on multiple test IDs). The parameter can be used
as follows:

> fab analyse_spp_rtt:test_id=

20131206-102931_dash_2000_tcp_newreno,

out_name=’ExperimentA’

The analyse_all and analyse_throughput tasks have a
link_len parameter. If set to ’0’ (default) through-
put is based on IP-layer packet length, if set to ’1’
throughput is based on link-layer frame length. Note that
the bandwidth limits specified on the router are link-
layer limits. The following shows an example where we
plot the throughput based on the length of link layer
frames:

> fab analyse_throughput:test_id=

20131206-102931_dash_2000_tcp_newreno,

link_len=1

C. Analysis functions environment variables

The plotting behaviour can be further controlled by a
number of shell environment variables. Here we explain
the parameters that work for all analyse functions. Note
that how to set the variables depends on the Unix shell
used.

The variable YMAX_INC controls the space for the
legend. It assumes the legend is plotted at the top, which
is the default. The actual y-axis maximum for the plot is
ymax (1 + YMAX_INC), where ymax is the maximum
based on the data (or the maximum specified by the
user).

The variables AGGR_WIN_SIZE and
AGGR_INT_FACTOR allow to specify the window
size and interpolation for throughput plots (including
comparison plots for throughput using the task described
in Section VI-F) since throughput always needs to be
computed over some time interval. The window size is
specified in seconds (fractional values allowed). Setting
the interpolation parameter to 1 means no interpolation,
whereas setting it to an integer value n greater than 1
means one will get n times the number of data points
where n − 1 points are interpolated points. If a longer
time interval is selected to accommodate for noise in
the data, interpolated points can be used to fill the
gaps. Effectively the interpolation creates overlapping
time windows, with the gaps between windows
being AGGR_WIN_SIZE/AGGR_INT_FACTOR
seconds. By default AGGR_WIN_SIZE=1 and
AGGR_INT_FACTOR=4.

By default all plot functions will plot every point for
each data series. If the data series’ are very large, the
resulting PDF files will be large and the figures will
take a long time to display when the PDF is opened. To
reduce the size of the plots and the time for opening them
without loosing important information TEACUP imple-
ments “point thinning”, which can be controlled with the
variable PTHIN_DIST. Using PTHIN_DIST one can set
the minimum (Euclidean) distance between plotted data
points. Any data points within the minimum distance
are not plotted. For example, PTHIN_DIST=0.25 means
the minimum (Euclidean) distance between two plotted
points is 0.25 and any data points in-between are not

CAIA Technical Report 140918A September 2014 page 22 of 29

plotted. By default PTHIN_DIST=0, which means point
thinning is disabled.

The following shows an example where we plot the
throughput with a modified aggregation time window and
enabled point thinning (using the BASH shell):

> AGGR_WIN_SIZE=2 AGGR_INT_FACTOR=8

PTHIN_DIST=0.25 fab analyse_throughput:

test_id=20131206-102931_dash_2000_tcp_newreno

D. Data series selection

The analysis functions have a rudimentary filter mech-
anism. Note, that this mechanism filters only what is
plotted, but not what data is extracted from the log files.
The source_filter parameter indicates the flows to be
used to generate data series for plotting. Flows may be
specified using combinations of patterns matching source
and/or destination IP address and port numbers. The filter
string format is:

(S|D)_<ip>_<port>[;(S|D)_<ip>_(<port>|’*’)]*

The following command only plots data for flows from
host 172.16.10.2 port 80:

> fab analyse_all:source_filter=

"S_172.16.10.2_80"

Note, that the notion of flow here is unidirectional. Thus
in the above example flows from 172.16.10.2 port 80 are
shown, but flows to 172.16.10.2 port 80 are not shown.
We can also only select flows to host 172.16.10.2 port
80 by specifying:

> fab analyse_all:source_filter=

"D_172.16.10.2_80"

As a side effect, the specified filter string also determines
the order of the flows in the graph(s). Flows are plotted
in the order of the filters specified. For example, if there
are two flows, one from host 172.16.10.2 port 80 and
another from host 172.16.10.2 port 81 by default the
port 80 flow would be the first data series and the port
81 flow would be the second data series. One can reverse
the two flows in the graphs by specifying:

> fab analyse_all:source_filter=

"S_172.16.10.2_81;S_172.16.10.2_80"

Instead of an actual port number on can specify the wild-
card character (’*’). This allows to filter on a specific
source or destination with any port number. For example,
we can plot data for all flows from host 172.16.10.2
regardless of their port numbers:

> fab analyse_all:source_filter=

"S_172.16.10.2_*"

Note that the filter specified is the flows selected (not
the flows filtered out).

E. Plotting DASH goodput

The analyse_dash_goodput task allows to plot the good-
put for DASH-like traffic over time. The plot is based on
data from the httperf log files of the DASH-like clients
(named <test_id>_httperf_dash.log.gz). The task can be
used as follows:

> fab analyse_dash_goodput:

test_id=20131218-182744,

dash_log_list=dash_logs.txt,out_dir=./results/,

lnames="newreno;cdg;vegas"

The analyse_dash_goodput task has the common
test_id, out_dir, pdf_dir and plot_only pa-
rameters. By default the task extracts data from all
client log files for all test IDs specified. However,
if dash_log_list is specified the task extracts the
data from the log files listed in a text file (the value
of dash_log_list is the file name). This allows to
explicitly list which dash client logs are used, and these
files can also be from experiments with different test IDs.
The format of the log list file is one file name per line.
The paths do not need to be specified, as TEACUP will
automatically find the files assuming they are in a sub
directory below the fabfile.py directory.

By default the legend names are the file names (minus
the ’_httperf_dash.log.gz’ part). The parameter lnames
allows to specify the legend names used. The num-
ber of legend names specified must be equal to the
number of files names specified in the log list file (if
dash_log_list is used) or equal to the number of log
files with the specified test ID (if dash_log_list is
not used).

By default analyse_dash_goodput will also plot the
nominal goodput, i.e. goodput according to the DASH
rate specified in the traffic generation configuration. The
NO_NOMINAL environment variable can be used to tell
plot_dash_goodput to not plot this. If NO_NOMINAL=1
the nominal goodput will not be plotted. Note that the
task can only plot a maximum of 11 data series in a
single graph.

CAIA Technical Report 140918A September 2014 page 23 of 29

F. Comparison of metrics depending on variables

The task analyse_cmpexp allows to plot the metrics
‘throughput’, ‘spprtt’ and ‘tcprtt’ (unsmoothed/ERTT)
depending on the different experiments for different
selected flows. It can show the metric distribution as
boxplots (default), or plot the mean or median. Note that
analyse_cmpexp relies on data extracted by analyse_all.
The following command shows an example, where we
plot tcprtt as boxplots:

> fab analyse_cmpexp:exp_list=

myexp_list.txt,res_dir="./results/",

variables="run\=0", source_filter=

"D_172.16.10.2_5001;D_172.16.10.3_5006",

metric=tcprtt, lnames="CDG;Newreno"

The res_dir parameter is used to specify the results
directory (e.g. out_dir used for analyse_all). If it is not
specified analyse_cmpexp will execute analyse_all first.
The parameter variables can be a semicolon-separated
list of variable names (names as used in the log file
names) with associate values (separated by an equal
sign). This provide a simple filter, as only experiments
are considered where the variable(s) had the value(s)
specified. Note that the equals (=) must be escaped with
backslashes, otherwise Fabric will parse these.

The parameter source_filter works as explained
above. While not mandatory to specify, in most cases it
should be specified to control for which flows the metrics
will be plotted. The metric parameter specifies the met-
ric to plot: ‘throughput’ (default), ‘spprtt’ or ‘tcprtt’. The
ptype parameter specifies the plot type: ‘box’ (default),
‘mean’, or ‘median’. The out_name parameter allows to
specify the file name prefix (as for the other analyse
tasks). The exp_list parameter allows to specify the list
of experiments (as for analyse_all), making it possible to
very precisely select which combinations of parameters
should be considered. For example, we can remove
certain parameter values by removing all test IDs with
these values from the list passed via exp_list.

The out_dir parameter allows to specify the output
directory (same as for the other analyse tasks). The
pdf_dir allows to specify the directory for the PDF
files (same as for the other analyse tasks). The ymin

and ymax parameters allow to specify custom minimum
and maximum values for the y-axis (as for the other
analyse tasks). The lnames parameter allows to specify
the legend names used as list of semicolon-separated
strings (as for the other analyse tasks). Note, the number

of legend strings must the same as the number of source
filters. By default the legend names are the source filters
specified. The stime and etime parameters allow to plot
data for selected time windows only. In contrast to the
other tasks this is not zooming (as there is no time axis),
but all the data series are actually filtered to only contain
values from inside the time window prior to plotting the
data.

Currently it is not possible to reorder the different
parameters for plotting other than by generating a cus-
tom experiment ID list. The default order is the order
specified in the config (which is the same as the order
in the file names). By default the x-axis labels contains
all variable parameters, even the ones that had only one
value (and were de-facto constant). The boolean pa-
rameter omit_const_xlab_vars allows to automatically
exclude constant variables from the x-axis labels. If set
to ’1’ any variables that always had the same value in
all experiments do not appear in the x-axis labels.

By default analyse_cmpexp groups experiments by traf-
fic flow, meaning each group in the plot is for one
traffic flow, identified by a unique flow tuple (source
IP, source port, destination IP, destination port), regard-
less of the series of experiments (test ID prefix) in
which the traffic was produced. The boolean parameter
group-by-experiment allows to group by test ID prefix
instead by setting group-by-experiment=1. With this
each group in the plot relates to a particular series of
experiments (identified by a test ID prefix) and the actual
flow tuples can differ for different test ID prefixes. Of
course in this case the number of (filtered) flows must
be the same for all series of experiments and also the
flows must be comparable across different series, i.e.
the same type of test traffic was used in all series of
experiments.

The plotting can be further controlled by environment
variables. The variable OUTLIER_QUANT removes any
points in the lowest OUTLIER_QUANT and highest
OUTLIER_QUANT quantiles. For example, specifying
OUTLIER_QUANT=0.01 will remove all data points
that fall in the <0.01 quantile and all data points that
fall in the >0.99 quantile. Setting NICER_XLABS=1
will modify the plotting of x-axis labels so that variable
names are plotted once (on the left side) and only the
variable values will be plotted at each tick. The en-
vironment variables YMAX_INC, AGGR_WIN_SIZE,
and AGGR_INT_FACTOR can also be used and work
as explained in Section VI-C.

CAIA Technical Report 140918A September 2014 page 24 of 29

G. Combining graphs

There are two simple shell scripts to combine different
result graphs (different PDF files) on a single page
for easy comparison. The assumption is that the TCP
congestion control algorithm is the innermost parameter
varied, or in other words the last varied parameter in the
file name.

The script tcp_comparison.sh can be used to combine
throughput, RTT, CWND or SPP RTT graphs for up to
four different TCP congestion control algorithms on one
page. For example, the following command creates four
PDFs, each with four graphs for each TCP congestion
control algorithm (assuming the test ID is 20131220-
182929_del_<delay>_tcp_<tcp_algo>):

> tcp_comparison.sh 20131220-182929_del_10_tcp

test

The output files are:
test_cwnd_different_tcps.pdf
test_spprtt_different_tcps.pdf
test_tcprtt_different_tcps.pdf
test_throughput_different_tcps.pdf

The second script tcp_comparison_allinone.sh cre-
ates the same PDFs as above but in addition creates one
single-page PDF with all throughput, RTT, CWND and
SPP RTT graphs for up to four TCP CC algos (up to 16
graphs in total). It can be used as follows:

> tcp_comparison_allinone.sh

20131220-182929_del_10_tcp test

The output files are:
test_cwnd_different_tcps.pdf
test_spprtt_different_tcps.pdf
test_tcprtt_different_tcps.pdf
test_throughput_different_tcps.pdf
test_different_tcps_allinone.pdf

The two scripts are not strictly limited to combining the
results for different TCP congestion control algorithms.
They can be used with any last parameter as long as
there are no more than four values. However, part of the
output file names is hard-coded.

To combine graphs with more flexibility one can use the
script combine_graphs.sh, which is used by the scripts
for TCP comparison. The script allows to combine an
arbitrary number of graphs one one page. For example,
if we want to compare the CWND graphs for two
different delay values and four different TCP congestion

control algorithms we can do this with the following
command:

> combine_graphs.sh -c 4x2 -o test.pdf
‘find . -name

20131220-182929_del_*_tcp_*cwnd*.pdf | sort‘

Here the find command is used with wild-cards to
select the PDF files to combine on one page and the -c

parameter is used to specify that the graphs are organised
in a layout with 2 rows and 4 columns. Instead of using
find one can specify all file names explicitly. This
allows for full control of the location of graphs on the
single page, but is cumbersome if there are many graphs.
Note that combine_graphs.sh puts the graphs on the
page row after row, i.e. for a 4x2 layout the first four
graphs go in the first row, the second four graphs go in
the second row, etc.

Note that the scripts for combining graphs require that
the pdfjam package is installed (on FreeBSD this can be
installed from the ports tree).

VII. HOST CONTROL UTILITY FUNCTIONS

This section describes a number of utility functions
available as Fabric tasks. As mentioned previously, the
fab utility has an option to list all available tasks:

> fab -l

The exec_cmd task can be used to execute one com-
mand on multiple hosts. For example, the following
command executes the command uname -s on a number
of hosts:

> fab -H testhost1,testhost2,testhost3

exec_cmd:cmd="uname -s"

If no hosts are specified on the command line, the
exec_cmd command is executed on all hosts listed in
the config file (the union set of TPCONF_router and
TPCONF_hosts). For example, the following command
is executed on all testbed hosts:

> fab exec_cmd:cmd="uname -s"

The copy_file task can be used to copy a local file to
a number of testbed hosts. For example, the following
command copies the web10g-logger executable to all
testbed hosts except the router (this assumes all the hosts
run Linux when the command is executed):

> fab -H testhost2,testhost3

copy_file:file_name=/usr/bin/web10g-logger,

remote_path=/usr/bin

CAIA Technical Report 140918A September 2014 page 25 of 29

If no hosts are specified on the command line, the
command is executed for all hosts listed in the config file
(the union set of TPCONF_router and TPCONF_hosts).
For example, the following command copies the file to
all testbed hosts:

> fab copy_file:file_name=

/usr/bin/web10g-logger,remote_path=/usr/bin

The parameter method controls the method used for
copying. By default (method=’put’) copy_file will use
the Fabric put function to copy the file. However,
the Fabric put function is slow. For large files setting
method=’scp’ provides much better performance using
the scp command. While scp is faster, it may prompt
for the password if public key authentication is not
configured.

The authorize_key task can be used to append the current
user’s public SSH key to the ~./ssh/authorized_keys file
of the remote user. The user can then login via SSH
without having to enter a password. For example, the
following command enables password-less access for the
user on all testbed hosts:

> fab -H testhost1,testhost2,testhost3

authorize_key

Note: the authorize_key task assumes the user has a
~/.ssh/id_rsa.pub key file. This can be created with
ssh-keygen -t rsa. Also note that the task does not
check if the public key is already in the remote user’s
authorized_keys file, so executing this task multiple
times may lead to duplicate entries in the remote user’s
authorized_keys file.

The init_os task can be used to reboot hosts into specific
operating systems (OSs). For example, the following
command reboots the hosts testhost1 and testhost2 into
the OSs Linux and FreeBSD respectively:

> fab -H testhost1,testhost2

init_os:os_list="Linux\,FreeBSD",

force_reboot=1

Note that the commas in os_list need to be es-
caped with backslashes (\), since otherwise Fabric in-
terprets the commas as parameter delimiters. By default
force_reboot is 0, which means hosts that are al-
ready running the desired OS are not rebooted. Setting
force_reboot to 1 enforces a reboot. By default the
script waits 100 seconds for a host to reboot. If the
host is not responsive after this time, the script will give
up unless the do_power_cycle parameter is set to 1.

This timeout can be changed with the boot_timeout

parameter, which specifies the timeout in seconds (as
integer). A minimum boot timeout of 60 seconds will be
enforced.

The do_power_cycle parameter can be set to 1 to force
a power cycle if a host does not respond after a reboot.
If after the boot timeout the host is not accessible the
script will perform a power cycle. The script will then
wait for boot_timeout seconds again for the host to
come up. If the host is still not up after the timeout the
script will give up (there are no further automatic power
cycles). The following command shows an example with
do_power_cycle set to 1:

> fab -H testhost1,testhost2

init_os:os_list="Linux\,FreeBSD",

force_reboot=1,do_power_cycle=1

The power_cycle task can be used to power cycle hosts,
i.e. if hosts become unresponsive. After the power cycle
the host will boot the last selected OS. For example, the
following command power cycles the hosts testhost1 and
testhost2:

> fab -H testhost1,testhost2 power_cycle

The check_host command can be used to check if the
required software is installed on the hosts. The task only
checks for the presence of necessary tools, but it does
not check if the tools actually work. For example, the
following command checks all testbed hosts:

> fab -H testhost1,testhost2,testhost3

check_host

The check_connectivity task can be used to check con-
nectivity between testbed hosts with ping. This task
only checks the connectivity of the internal testbed
network, not the reachability of hosts on their control
interface. For example, the following command checks
whether each host can reach each other host across the
testbed network:

> fab -H testhost1,testhost2,testhost3

check_connectivity

VIII. EXTENDING THE IMPLEMENTATION

This section contains some notes on extending the
current implementation. We refer to Python functions
(which can be Fabric tasks) using the notation of
<python_file>.py:<function>().

CAIA Technical Report 140918A September 2014 page 26 of 29

A. Additional host setup

Any general host setup (e.g. sysctl settings for all experi-
ments) should be added in hostsetup.py:init_host().
Note that in this function there are three differ-
ent sections, one for each OS (FreeBSD, Linux,
Windows/Cygwin). Commands that shall only be exe-
cuted in certain experiments can be set in the config
(TPCONF_host_init_custom_cmds).

B. New TCP congestion control algorithm

Adding support for a new TCP conges-
tion control algorithm requires to modify
hostsetup.py:init_cc_algo(). The new algorithm
needs to be added to the list of supported algorithms
and in the OS-specific sections code need to be added
to load the corresponding kernel module (if any).

C. New traffic generator

Adding a new traffic generator requires to add a new
start task in trafficgens.py. The current start tasks
always consist of two methods, the actual start method
is a wrapper around an internal _start method. This is
to have the host on which the generator is started as
explicit parameter (and not as Fabric hosts parameter)
and this also allows to have multiple traffic generators
that actually use the same underlying tool (for example
this is the case for httperf). The new start method must
be added to the imports in experiment.py.

The traffic generator start function must, after the
traffic generator process has been started, register
the started process with its process ID by calling
bgproc.register_proc(). Then it is ensured that the
process will be stopped at the end of the experiment
and the traffic generator’s log file is collected when
runbg.py:stop_processes() is called. A current lim-
itation is that there can only be one log file per traffic
generator process. Some traffic generators also have stop
methods. Initially, the idea was that traffic generators
could be started and stopped from the command line
directly, but this is not supported at the moment, i.e.
some stop methods are not implemented (empty).

D. New data logger

To add a new data logger a start method and
possibly a stop method need to be added in
loggers.py. The new logger’s start method should

be called from loggers.py:start_loggers() via
Fabric’s execute(), but could also be called from
experiment.py:run_experiment() if required (in the
latter case it must be added to the imports in
experiment.py).

If the logger is a userspace process, such as
tcpdump, at the end of the start function it should
register itself (including its process ID) using
bgproc.register_proc_later(). Then it is ensured
that the logging process will be stopped at the end
of the experiment and the log file is collected when
runbg.py:stop_processes() is called. In this case no
stop method needs to be implemented.

If the logger is not a userspace process, for exam-
ple SIFTR on FreeBSD, start and stop methods need
to be implemented. The start method must still call
bgproc.register_proc_later(), but the process ID
must be set to zero. The stop method must be called
from runbg.py:stop_processes() if the process ID is
zero and the internal TEACUP name of the process is
the name of the new logger.

E. New analysis method

To add a new analysis method add an analysis task in
analysis.py. If the new analysis should be carried out
as part of the analyse_all task, the new task must be
called from analysis.py:analyse_all() via Fabrics
execute() function. The new task should implement
the parameters test_id, out_dir, pdf_dir, out_name, re-
plot_only, source_filter and min_values (see existing
analyse tasks as examples). The new task must be added
to the imports in fabfile.py.

IX. KNOWN ISSUES

During the host setup phase TEACUP enables and
disables NICs. On Windows the enable and disable
NIC commands have permanent effect. If TEACUP
is interrupted or aborts between a disable and enable
command, the NIC will stay disabled. TEACUP will
automatically enable all testbed NICs on Windows prior
to each experiment, however in the unlikely event that
the previous aborted NIC configuration left the NIC in
an inconsistent state, it may be necessary to reconfigure
the NIC manually.

TEACUP logs all output from the traffic generators, such
as iperf or httperf. However, some of these tools only

CAIA Technical Report 140918A September 2014 page 27 of 29

generate output after they completed. If the experiment
duration is set shorter than the run-time of the tools, the
resulting log file may be empty. Possibly this issue could
be mitigated by turning the stdout and stderr buffering
off for these tools in future versions.

X. CONCLUSIONS AND FUTURE WORK

In this report we described TEACUP, a Python-based
software we developed to run automated TCP perfor-
mance tests in a controlled testbed. In the future we will
continue to extend TEACUP with more features.

ACKNOWLEDGEMENTS

TEACUP v0.6 was developed as part of a project funded
by Cisco Systems and titled “Study in TCP Congestion
Control Performance In A Data Centre”. This is a
collaborative effort between CAIA and Mr Fred Baker
of Cisco Systems.

REFERENCES

[1] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G.
Rao, “Youtube everywhere: Impact of device and infrastructure
synergies on user experience,” in Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference,
ser. IMC ’11, 2011, pp. 345–360.

[2] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and
W. Dabbous, “Network characteristics of video streaming traf-
fic,” in Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’11,
2011, pp. 25:1–25:12.

[3] “Dynamic adaptive streaming over HTTP (DASH) – Part 1: Me-
dia presentation description and segment formats,” ISO, 2012,
iSO/IEC 23009-1:2012. http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=57623.

[4] L. Stewart, “SIFTR – Statistical Information For TCP
Research.” [Online]. Available: http://caia.swin.edu.au/urp/
newtcp/tools.html

[5] “The Web10G Project.” [Online]. Available: http://web10g.org/

[6] S. Zander, G. Armitage, “TEACUP v0.4 – A System for
Automated TCP Testbed Experiments,” Centre for Advanced
Internet Architectures, Swinburne University of Technology,
Tech. Rep. 140314A, 2014. [Online]. Available: http://caia.
swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf

[7] ——, “CAIA Testbed for TCP Experiments,” Centre
for Advanced Internet Architectures, Swinburne Uni-
versity of Technology, Tech. Rep. 140314B, 2014.
[Online]. Available: http://caia.swin.edu.au/reports/140314B/
CAIA-TR-140314B.pdf

[8] “Fabric 1.8 documentation.” [Online]. Available: http://docs.
fabfile.org/en/1.8/

[9] “Fabric 1.8 documentation – Installation.” [Online]. Available:
http://docs.fabfile.org/en/1.8/installation.html

[10] “iperf Web Page.” [Online]. Available: http://iperf.fr/

[11] “LIGHTTPD Web Server.” [Online]. Available: http://www.
lighttpd.net/

[12] HP Labs, “httperf homepage.” [Online]. Available: http:
//www.hpl.hp.com/research/linux/httperf/

[13] J. Summers, T. Brecht, D. Eager, B. Wong, “Modified version
of httperf,” 2012. [Online]. Available: https://cs.uwaterloo.ca/
~brecht/papers/nossdav-2012/httperf.tgz

[14] “nttcp-1.47 – An improved version of the popular ttcp
program.” [Online]. Available: http://hpux.connect.org.uk/hppd/
hpux/Networking/Admin/nttcp-1.47/

[15] M. Mathis, J. Heffner, and R. Raghunarayan, “TCP Extended
Statistics MIB,” RFC 4898 (Proposed Standard), Internet
Engineering Task Force, May 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4898.txt

[16] L. Stewart, “SIFTR v1.2.3 README,” July 2010.
[Online]. Available: http://caia.swin.edu.au/urp/newtcp/tools/
siftr-readme-1.2.3.txt

[17] M. Mathis, J. Semke, R. Reddy, J. Heffner, “Documentation
of variables for the Web100 TCP Kernel Instrumentation Set
(KIS) project.” [Online]. Available: http://www.web100.org/
download/kernel/tcp-kis.txt

[18] J. Gettys, “Best practices for benchmarking bufferbloat.” [On-
line]. Available: http://www.bufferbloat.net/projects/codel/wiki/
Best_practices_for_benc%hmarking_Codel_and_FQ_Codel

[19] Linux Foundation, “netem – Network Emula-
tion Functionality,” November 2009. [Online]. Avail-
able: http://www.linuxfoundation.org/collaborate/workgroups/
networking/netem%

[20] ——, “IFB – Intermediate Functional Block device,” November
2009. [Online]. Available: http://www.linuxfoundation.org/
collaborate/workgroups/networking/ifb

[21] S. Zander and G. Armitage, “Minimally-Intrusive Frequent
Round Trip Time Measurements Using Synthetic Packet-Pairs,”
in The 38th IEEE Conference on Local Computer Networks
(LCN 2013), 21-24 October 2013.

[22] A. Heyde, “SPP Implementation,” August 2013. [Online].
Available: http://caia.swin.edu.au/tools/spp/downloads.html

[23] D. Hayes, “Timing enhancements to the FreeBSD kernel
to support delay and rate based TCP mechanisms,” Centre
for Advanced Internet Architectures, Swinburne University
of Technology, Melbourne, Australia, Tech. Rep. 100219A,
19 February 2010. [Online]. Available: http://caia.swin.edu.au/
reports/100219A/CAIA-TR-100219A.pdf

CAIA Technical Report 140918A September 2014 page 28 of 29

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html
http://web10g.org/
http://caia.swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf
http://caia.swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf
http://caia.swin.edu.au/reports/140314B/CAIA-TR-140314B.pdf
http://caia.swin.edu.au/reports/140314B/CAIA-TR-140314B.pdf
http://docs.fabfile.org/en/1.8/
http://docs.fabfile.org/en/1.8/
http://docs.fabfile.org/en/1.8/installation.html
http://iperf.fr/
http://www.lighttpd.net/
http://www.lighttpd.net/
http://www.hpl.hp.com/research/linux/httperf/
http://www.hpl.hp.com/research/linux/httperf/
https://cs.uwaterloo.ca/~brecht/papers/nossdav-2012/httperf.tgz
https://cs.uwaterloo.ca/~brecht/papers/nossdav-2012/httperf.tgz
http://hpux.connect.org.uk/hppd/hpux/Networking/Admin/nttcp-1.47/
http://hpux.connect.org.uk/hppd/hpux/Networking/Admin/nttcp-1.47/
http://www.ietf.org/rfc/rfc4898.txt
http://caia.swin.edu.au/urp/newtcp/tools/siftr-readme-1.2.3.txt
http://caia.swin.edu.au/urp/newtcp/tools/siftr-readme-1.2.3.txt
http://www.web100.org/download/kernel/tcp-kis.txt
http://www.web100.org/download/kernel/tcp-kis.txt
http://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benc% hmarking_Codel_and_FQ_Codel
http://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benc% hmarking_Codel_and_FQ_Codel
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem%
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem%
http://www.linuxfoundation.org/collaborate/workgroups/networking/ifb
http://www.linuxfoundation.org/collaborate/workgroups/networking/ifb
http://caia.swin.edu.au/tools/spp/downloads.html
http://caia.swin.edu.au/reports/100219A/CAIA-TR-100219A.pdf
http://caia.swin.edu.au/reports/100219A/CAIA-TR-100219A.pdf

import sys
import datetime
from fabric.api import env

env.user = ’root’
env.password = ’password’
env.shell = ’/bin/sh -c’
env.timeout = 5
env.pool_size = 10

TPCONF_script_path = ’/home/test/src/teacup’
sys.path.append(TPCONF_script_path)
TPCONF_tftpboot_dir = ’/tftpboot’
TPCONF_router = [’192.168.1.4’,]
TPCONF_hosts = [’192.168.1.2’, ’192.168.1.3’,]
TPCONF_host_internal_ip = {
’192.168.1.4’ : [’172.16.10.1’, ’172.16.11.1’],
’192.168.1.2’ : [’172.16.10.2’],
’192.168.1.3’ : [’172.16.11.2’], }

now = datetime.datetime.today()
TPCONF_test_id = now.strftime("%Y%m%d-%H%M%S") + ’_experiment’
TPCONF_remote_dir = ’/tmp/’
TPCONF_host_os = {
’192.168.1.4’ : ’Linux’,
’192.168.1.2’ : ’FreeBSD’,
’192.168.1.3’ : ’FreeBSD’, }
TPCONF_linux_kern_router = ’3.14.18-10000hz’
TPCONF_force_reboot = ’1’
TPCONF_boot_timeout = 100
TPCONF_do_power_cycle = ’0’
TPCONF_host_power_ctrlport = {}
TPCONF_power_admin_name = ”
TPCONF_power_admin_pw = ”
TPCONF_max_time_diff = 1

TPCONF_router_queues = [
(’1’, "source=’172.16.10.0/24’, dest=’172.16.11.0/24’, delay=V_delay, loss=V_loss, rate=V_urate, queue_disc=V_aqm, queue_size=V_bsize"),
(’2’, "source=’172.16.11.0/24’, dest=’172.16.10.0/24’, delay=V_delay, loss=V_loss, rate=V_drate, queue_disc=V_aqm, queue_size=V_bsize"),]

traffic_iperf = [
(’0.0’, ’1’, "start_iperf, client=’192.168.1.2’, server=’192.168.1.3’, port=5000, duration=V_duration"),
(’0.0’, ’2’, "start_iperf, client=’192.168.1.2’, server=’192.168.1.3’, port=5001, duration=V_duration"),]
TPCONF_traffic_gens = traffic_iperf;

TPCONF_duration = 30
TPCONF_runs = 1
TPCONF_ECN = [’0’, ’1’]
TPCONF_TCP_algos = [’newreno’, ’cubic’, ’htcp’,]
TPCONF_host_TCP_algos = { }
TPCONF_host_TCP_algo_params = { }
TPCONF_host_init_custom_cmds = { }
TPCONF_delays = [0, 25, 50, 100]
TPCONF_loss_rates = [0, 0.001, 0.01]
TPCONF_bandwidths = [(’8mbit’, ’1mbit’), (’20mbit’, ’1.4mbit’),]
TPCONF_aqms = [’pfifo’, ’codel’, ’pie’]
TPCONF_buffer_sizes = [1000, 1]

TPCONF_parameter_list = {
’delays’ : ([’V_delay’], [’del’], TPCONF_delays, {}),
’loss’ : ([’V_loss’], [’loss’], TPCONF_loss_rates, {}),
’tcpalgos’ : ([’V_tcp_cc_algo’], [’tcp’], TPCONF_TCP_algos, {}),
’aqms’ : ([’V_aqm’], [’aqm’], TPCONF_aqms, {}),
’bsizes’ : ([’V_bsize’], [’bs’], TPCONF_buffer_sizes, {}),
’runs’ : ([’V_runs’], [’run’], range(TPCONF_runs), {}),
’bandwidths’ : ([’V_drate’, ’V_urate’], [’down’, ’up’], TPCONF_bandwidths, {}), }
TPCONF_variable_defaults = {
’V_ecn’ : TPCONF_ECN[0],
’V_duration’ : TPCONF_duration,
’V_delay’ : TPCONF_delays[0],
’V_loss’ : TPCONF_loss_rates[0],
’V_tcp_cc_algo’ : TPCONF_TCP_algos[0],
’V_drate’ : TPCONF_bandwidths[0][0],
’V_urate’ : TPCONF_bandwidths[0][1],
’V_aqm’ : TPCONF_aqms[0],
’V_bsize’ : TPCONF_buffer_sizes[0], }

TPCONF_variable_defaults TPCONF_vary_parameters = [’tcpalgos’, ’delays’, ’loss’, ’bandwidths’, ’aqms’, ’bsizes’, ’runs’,]

Figure 14. Example config.py file

CAIA Technical Report 140918A September 2014 page 29 of 29

	Introduction
	Fabric Background
	Overview
	Installation

	Design
	Requirements
	General
	Topology
	TCP algorithms
	Path characteristics
	Bottleneck AQM
	ECN Support
	Host OS
	Traffic loads

	Overall design
	Experiment process flow
	Traffic sources and sinks
	iperf
	ping
	lighttpd
	httperf
	httperf_dash
	httperf_incast
	nttcp

	Loggers
	Traffic logger
	TCP statistics logger

	Host information logged
	Host setup
	Linux router setup
	Approach
	Example
	Notes

	FreeBSD router setup
	Log file naming

	Config File
	V_variables
	Fabric configuration
	Testbed configuration
	General experiment settings
	Custom host init commands
	Router queue setup
	Traffic generator setup
	Available traffic generators
	start_iperf
	start_ping
	start_http_server
	create_http_dash_content
	create_http_incast_content
	start_httperf
	start_httperf_dash
	start_httperf_incast
	start_nttcp

	Mandatory experiment variables
	Experiment-specific variables
	Defining parameters to vary
	Adding new V_ variables

	Running Experiments
	Initial steps
	Example config
	Running experiments

	Analysing Experiment Data
	Basic analysis functions
	Analysis functions options
	Analysis functions environment variables
	Data series selection
	Plotting DASH goodput
	Comparison of metrics depending on variables
	Combining graphs

	Host Control Utility Functions
	Extending the implementation
	Additional host setup
	New TCP congestion control algorithm
	New traffic generator
	New data logger
	New analysis method

	Known Issues
	Conclusions and Future Work
	References

