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Abstract—This report introduces FreeBSD-MPTCP
v0.4, a modification to the FreeBSD-11 kernel that enables
support for the IETF’s emerging Multipath TCP (MPTCP)
specification. We outline the motivation for (and potential
benefits of) using MPTCP, and discuss key architectural
elements of our design.
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I. INTRODUCTION

Traditional TCP has two significant challenges – it can
only utilise a single network path between source and
destination per session, and (aside from the gradual de-
ployment of explicit congestion notification) congestion
control relies primarily on packet loss as a congestion
indicator. Traditional TCP sessions must be broken and
reestablished when endpoints shift their network con-
nectivity from one interface to another (such as when
a mobile device moves from 3G to 802.11, and thus
changes its active IP address). Being bound to a single
path also precludes multihomed devices from using any
additional capacity that might exist over alternate paths.

TCP Extensions for Multipath Operation with Multi-
ple Addresses (RFC6824) [1] is an experimental RFC
that allows a host to spread a single TCP connec-
tion across multiple network addresses. Multipath TCP
(MPTCP) is implemented within the kernel and is de-
signed to be backwards compatible with existing TCP
socket APIs. Thus it operates transparently from the
perspective of the application layer and works with
unmodified TCP applications.

As part of CAIA’s NewTCP project [2] we have
developed and released a prototype implementation of
the MPTCP extensions for FreeBSD-11 [3]. In this report
we describe the architecture and design decisions behind
our version 0.4 implementation. At the time of writing, a
Linux reference implementation is also available at [4].

The report is organised as follows: we briefly outline
the origins and goals of MPTCP in Section II. In Section
III we detail each of the main architectural changes
required to support MPTCP in the FreeBSD 11 kernel.
The report concludes with Section IV.

II. BACKGROUND TO MULTIPATH TCP (MPTCP)

The IETF’s Multipath TCP (MPTCP) working group1

is focused on an idea that has emerged in various forms
over recent years – namely, that a single transport session
as seen by the application layer might be striped or
otherwise multiplexed across multiple IP layer paths
between the session’s two endpoints. An over-arching
expectation is that TCP-based applications see the tra-
ditional TCP API, but gain benefits when their ses-
sion transparently utilises multiple, potentially divergent
network layer paths. These benefits include being able
to stripe data over parallel paths for additional speed
(where multiple similar paths exist concurrently), or
seamlessly maintaining TCP sessions when an individual
path fails or as a mobile device’s multiple underlying
network interfaces come and go. The parts of an MPTCP
session flowing over different network paths are known
as subflows.

A. Benefits for multihomed devices

Contemporary computing devices such as smart-
phones, notebooks or servers are often multihomed (mul-
tiple network interfaces, potentially using different link
layer technologies). MPTCP allows existing TCP-based
applications to utilise whichever underlying interface
(network path) is available at any given time, seamlessly
maintaining transport sessions when endpoints shift their
network connectivity from one interface to another.

When multiple interfaces are concurrently available,
MPTCP enables the distribution of an application’s

1http://datatracker.ietf.org/wg/mptcp/charter/
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traffic across all or some of the available paths in a
manner transparent to the application. Networks can
gain traffic engineering benefits as TCP connections
are steered via multiple paths (for instance away from
congested links) using coupled congestion control [5].
Mobile devices such as smartphones and tablets can be
provided with persistent connectivity to network services
as they transition between different locales and network
access media.

B. SCTP is not quite the same as MPTCP

It is worth noting that SCTP (stream control transmis-
sion protocol) [6] also supports multiple endpoints per
session, and recent CMT work [7] enables concurrent use
of multiple paths. However, SCTP presents an entirely
new API to applications, and has difficulty traversing
NATs and any middleboxes that expect to see only TCP,
UDP or ICMP packets ’in the wild’. MPTCP aims to be
more transparent than SCTP to applications and network
devices.

C. Previous MPTCP implementation and development

Most early MPTCP work was supported by the EU’s
Trilogy Project2, with key groups at University College
London (UK)3 and Université catholique de Louvain in
Louvain-la-Neuve (Belgium)4 publishing code, working
group documents and research papers. These two groups
are responsible for public implementations of MPTCP
under Linux userland5, the Linux kernel6 and a simu-
lation environment (htsim)7. Some background on the
design, rationale and uses of MPTCP can be found in
papers such as [8]–[11].

D. Some challenges posed by MPTCP

MPTCP poses a number of challenges.
1) Classic TCP application interface: The API is

expected to present the single-session socket of con-
ventional TCP, while underneath the kernel is expected
to support the learning and use of multiple IP-layer
identities for session endpoints. This creates a non-trivial
implementation challenge to retrofit such functionality
into existing, stable TCP stacks.

2http://www.trilogy-project.org/
3http://nrg.cs.ucl.ac.uk/mptcp/
4http://inl.info.ucl.ac.be/mptcp
5http://nrg.cs.ucl.ac.uk/mptcp/mptcp_userland_0.1.tar.gz
6https://scm.info.ucl.ac.be/trac/mptcp/
7http://nrg.cs.ucl.ac.uk/mptcp/htsim_0.1.tar.gz

2) Interoperability and deployment: Any new imple-
mentation must interoperate with the reference imple-
mentation. The reference implementation has not yet had
to address interoperation, and as such holes and assump-
tions remain in the protocol documents. An interoperable
MPTCP implementation, given FreeBSD’s slightly dif-
ferent network stack paradigm relative to Linux, should
assist in IETF standardisation efforts. Also, the creation
of a BSD-licensed MPTCP implementation benefits both
the research and vendor community.

3) Congestion control (CC): Congestion control (CC)
must be coordinated across the subflows making up
the MPTCP session, to both effectively utilise the total
capacity of heterogeneous paths and ensure a multipath
session does not receive “...more than its fair share
at a bottleneck link traversed by more than one of its
subflows” [12]. The WG’s current proposal for MPTCP
CC remains fundamentally a loss-based algorithm that
“...only applies to the increase phase of the congestion
avoidance state specifying how the window inflates upon
receiving an ACK. The slow start, fast retransmit, and
fast recovery algorithms, as well as the multiplicative
decrease of the congestion avoidance state are the same
as in standard TCP” (Section 3, [12]). There appears
to be wide scope for exploring how and when CC
for individual subflows ought to be tied together or
decoupled.

III. CHANGES TO FREEBSD’S TCP STACK

Our MPTCP implementation has been developed as
a kernel patch8 against revision 265307 of FreeBSD-11.
Table I provides a summary of files modified or added
to the FreeBSD-11 kernel.

A broad view of the changes and additions between
revision 265307 and the MPTCP-enabled kernel:

1) Creation of the Multipath Control Block (MPCB)
and the re-purposing of the existing TCP Control
Block (TCPCB) to act as a MPTCP subflow con-
trol block.

2) Changes to user requests (called from the socket
layer) that handle the allocation, setup and deallo-
cation of control blocks.

3) New data segment reassembly routines and data-
structures.

4) Changes to socket send and socket receive buffers
to allow concurrent access from multiple subflows
and mapping of data.

8Implementing MPTCP as a loadable kernel module was consid-
ered, but deemed impractical due to the number of changes required.
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File Status
sys/netinet/tcp_var.h Modified
sys/netinet/tcp_subr.c Modified
sys/netinet/tcp_input.c Modified

sys/netinet/tcp_output.c Modified
sys/netinet/tcp_timer.c Modified
sys/netinet/tcp_reass.c Modified

sys/netinet/tcp_syncache.c Modified
sys/netinet/tcp_usrreq.c Modified
sys/netinet/mptcp_var.h Added
sys/netinet/mptcp_subr.c Added
sys/kern/uipc_sockbuf.c Modified

sys/sys/sockbuf.h Modified
sys/sys/socket.h Modified

sys/sys/socketvar.h Modified

Table I
KERNEL FILES MODIFIED OR ADDED AS PART OF MPTCP

IMPLEMENTATION

5) MPTCP option insertion and parsing code for input
and output paths.

6) Locking mechanisms to handle additional concur-
rency introduced by MPTCP.

7) Various MPTCP support functions (authentication,
hashing etc).

The changes are covered in more detail in the follow-
ing subsections. For detail on the overall structure and
operation of the FreeBSD TCP/IP stack, see [13].

A. Protocol Control Blocks

The implementation adds a new control block, the
MPTCP control block (MPCB), and re-purposes the TCP
Control Block (RFC 793 [14]) as a subflow control
block. The header file netinet/mptcp_var.h has
been added to the FreeBSD source tree, and the MPCB
structure is defined within.

A MPCB is created each time an application creates
a TCP socket. The MPCB maintains all information
required for multipath operation and manages the sub-
flows in the connection. This also includes variables for
data-level accounting and session tokens. It sits logically
between the subflow TCP control blocks and the socket
layer. This arrangement is compared with traditional
TCP in Figure 1.

At creation, each MPCB associated with a socket
contains at least one subflow (the master, or default sub-
flow). The subflow control block is a modified traditional
TCP control block found in netinet/tcp_var.h.
Modifications to the control block include the addition
of subflow flags, which are used to propagate subflow
state to the MPCB (E.g. during packet scheduling).

Sockets API

Multipath TCP Session Control 
(mpcb)

Subflow 1
(tcb)

Subflow n

TCP-based Process

IP

Subflow 2 ...

Sockets API

TCP
(tcb)

TCP-based Process

IPIP IPIP

Figure 1. Logical MPTCP stack structure (left) versus traditional
TCP (right). User space applications see same socket API.

Protocol control blocks are initialised and attached
to sockets via functions in netinet/tcp_usrreq.c
(user requests). A call to tcp_connect() in
netinet/tcp_usrreq.c results in a call to
mp_newmpcb(), which allocates and initialises the
MPCB.

A series of functions (tcp_subflow_*) are imple-
mented in tcp_usrreq.c and are used to create and
attach any additional subflows to the MPTCP connection.

B. Asynchronous Task Handlers

Listing 1 Asynchronous tasks: Provide deferred execu-
tion for several MPTCP session-related tasks.

struct task join_task; /* For enqueuing
aysnc joins in swi */

struct task data_task; /* For enqueuing
aysnc subflow sched wakeup */

struct task pcb_create_task; /* For
enqueueing async sf inp creation */

struct task rexmit_task; /* For enqueuing
data-level rexmits */

When processing a segment, traditional TCP typically
follows one of only a few paths through the TCP stack.
For example, an incoming packet triggers a hardware
interrupt, which causes an interrupt thread to be sched-
uled that, when executed, handles processing of the
packet (including transport-layer processing, generating
a response to the incoming packet).

Code executed in this path should be directly relevant
to processing the current packet (parsing options, updat-
ing sequence numbers, etc). Operations such as copying
out data to a process are deferred to other threads.

Maintaining a multipath session requires performing
several new operations that may be triggered by incom-
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Figure 2. Each subflow maintains a segment receive list. Segments
are placed into the list in subflow-sequence order as they arrive (data-
level sequence numbers are shown). When a segment arrives in data-
sequence order, the lists are locked and data-level re-ordering occurs.
The application is then alerted and can read in the in-order data.

ing or outgoing packets. Some of these operations are
not immediately related to the current packet therefore
can be executed asynchronously. We have thus defined
several new handlers for these tasks (Listing 1) which are
attached to a software interrupt thread using taskqueue9.

Each of the task variables has an associated handler in
netinet/mptcp_subr.c, and provide the following
functionality:

Join task (mp_join_task_handler): Attempt to
join addresses the remote host has advertised.

Data task (mp_datascheduler_task_handler):
Part of packet scheduling. Call output on subflows that
are waiting to transmit.

PCB Create Task (mp_sf_alloc_task_handler):
Allocate PCBs for subflows on an address we are about
to advertise.

Retransmit Task (mp_rexmit_task_handler):
Initiate data-level re-injection of segments after a sub-
flow has failed to deliver data.

The data task and retransmit task are discussed further
in Section III-F and Section III-G respectively.

C. Segment Reassembly

MPTCP adds a data-level sequence space above the
sequence space used in standard TCP. This allows seg-
ments received on multiple subflows to be ordered before
delivery to the application. Modifications to reassem-
bly are found in netinet/tcp_reass.c and in
kern/uipc_socket.c.

9http://www.freebsd.org/cgi/man.cgi?query=taskqueue

In pre-MPTCP FreeBSD, if a segment arrives that is
not the next expected segment (sequence number does
not equal receive next, tcp_rcv_nxt), it is placed into
a reassembly queue. Segments are placed into this queue
in sequence order until the expected segment arrives. At
this point, all in-order segments held in the queue are
appended to the socket receive buffer and the process is
notified that data can be read in. If a segment arrives
that is in-order and the reassembly list is empty, it is
appended to the receive buffer immediately.

In our implementation, subflows do not access the
socket receive buffer directly, and instead re-purpose the
traditional reassembly queue for both in-order queuing
and out-of-order reassembly. Unknown to subflows, their
individual queues form part of a larger multipath-related
reassembly data structure, shown in Figure 2.

All incoming segments on a subflow are ap-
pended to that subflow’s reassembly queue (the
t_segq member of the TCP control block defined
in netinet/tcp_var.h) in subflow sequence order.
When the head of a subflow’s queue is in data sequence
order (segment’s data level sequence number is the
data-level recieve next, ds_rcv_nxt), then data-level
reassembly is triggered. In the current implementation,
data-level reassembly is triggered from a kernel thread
context. A future optimisation will see reassembly de-
ferred to a userspace thread context (specifically that of
the reading process).

Data-level reassembly involves traversing each
subflow segment list and appending in-sequence
(data-level) segments to the socket receive buffer.
This occurs in the mp_do_reass() function of
netinet/tcp_reass.c. During this time a write
lock is used to exclude subflows from manipulating
their reassembly queues.

Subflow and data-level reassembly have been split this
way to reduce lock contention between subflows and
the multipath layer. It also allows data-reassembly to be
deferred to the application’s thread context during a read
on the socket, rather than performed by a kernel fast-path
thread.

At completion of data-level reassembly, a data-level
ACK is scheduled on whichever subflow next sends a
regular TCP ACK packet.

D. Send and Receive Socket Buffers

In FreeBSD’s implementation of standard TCP, seg-
ments are sent and received over a single (address,port)
tuple, and socket buffers exist exclusively for each TCP
session. MPTCP sessions have 1+n (where n denotes
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snd_nxt snd_una

SEND BUFFER

TCP Control Block

Figure 3. Standard TCP Send Buffer. The lined area represents sent
bytes that have been acknowledged by the receiver.

additional addresses) subflows that must access the same
send and receive buffers. The following sections describe
the changes to the socket buffers and the addition of the
ds_map.

1) The ds_map Struct: The ds_map struct (shown
in Listing 2), is defined in netinet/tcp_var.h,
and is used for both send-related and receive-related
functions. Maps are stored in the subflow con-
trol block lists t_txmaps (send buffer maps) and
t_rxmaps (received maps) respectively. A data-level
list, mp_rxtmitmaps, is used to queue ds_maps that
require retransmission after a data-level timeout. The
struct itself contains variables for tracking sequence
numbers, memory locations and status. It also includes
several list entries (e.g mp_ds_map_next) as an in-
stantiated map may belong to different (potentially mul-
tiple) lists, depending on the purpose.

On the send side, ds_maps track accounting in-
formation (bytes sent, acked) related to DSN maps
advertised to the peer, and are used to access data in the
socket send buffer (via for example ds_map_offset,
mbuf_offset). By mediating socket buffer access
through ds_maps in this way, rather than accessing the
send buffer directly, lock contention can be reduced
when sending data using multiple subflows. On the
receive side, ds_maps are created via incoming DSS
options and maintain mappings between subflow and
sequence spaces. .

2) Socket Send Buffer: Figure 3 illustrates how in
standard TCP, each session has exclusive access to its
own send buffer. The variables snd_nxt and snd_una
are used respectively to track which bytes in the send
buffer are to be sent next, and which bytes were the last
acknowledged by the receiver.

Figure 4 illustrates how in the multipath kernel, data
from the sending application is still stored in a single

SF1-MAP SF2-MAP UNMAPPED

sf_una

Subflow 1
Control Block

sf_snd_nxtsf_una

Subflow 2 
Control Block

sf_snd_nxt

SHARED SEND BUFFER

ds_map ds_map

Figure 4. A MPTCP send buffer contains bytes that must be mapped
to multiple TCP-subflows. Each subflow is allocated one or more
ds_maps (DSS-MAP) that define these mappings.

send socket buffer. However access to this buffer is
moderated by the packet scheduler in mp_get_map(),
implemented in netinet/mptcp_subr.c (see Sec-
tion III-F)

The packet scheduler is run when a subflow attempts
to send data via tcp_output() without owning a
ds_map that references unsent data. When invoked, the
scheduler must decide whether the subflow should be
allocated any data. If granted, allocations are returned as
a ds_map that contains an offset into the send buffer and
the length of data to be sent. Otherwise, a NULL map
is returned, and the send buffer appears ’empty’ to the
subflow. The ds_map effectively acts as a unique socket
buffer from the perspective of the subflow (i.e. subflows
are not aware of what other subflows are sending). The
scheduler is not invoked again until the allocated map
has been completely sent.

This scheme allows subflows to make forward
progress with variable overheads that depend on how
frequently the scheduler is invoked i.e. larger maps
reduce overheads.

As a result of sharing the underlying send socket
buffer via ds_maps to avoid data copies, releasing ac-
knowledged bytes becomes more complex. Firstly, data-
level ACKs rather than subflow-level ACKs mark the
multipath-level stream bytes which have safely arrived,
and therefore control the advancement of ds_snd_una.
Secondly, ds_maps can potentially overlap any portion
of their socket buffer mapping with each other (e.g. data-
level retransmit), and therefore the underlying socket
buffer bytes (encapsulated in chained mbufs) can only
be dropped when acknowledged at the data level and all
maps which reference the bytes have been deleted.

To potentially defer the dropping of bytes from the
socket buffer without adversely impacting application
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Listing 2 ds_map struct

struct ds_map {
TAILQ_ENTRY(ds_map) sf_ds_map_next;
TAILQ_ENTRY(ds_map) mp_ds_map_next;
TAILQ_ENTRY(ds_map) mp_dup_map_next;
TAILQ_ENTRY(ds_map) rxmit_map_next;
uint64_t ds_map_start; /* starting DSN of mapping */
uint32_t ds_map_len; /* length of data sequence mapping */
uint32_t ds_map_offset; /* bytes sent from mapping */
tcp_seq sf_seq_start; /* starting tcp seq num of mapping */
uint64_t map_una; /* bytes sent but unacknowledged in map */
uint16_t ds_map_csum; /* csum of dss psuedo-header & mapping data */
struct mbuf* mbuf_start; /* mbuf in which this mappings starts */
u_int mbuf_offset; /* offset into mbuf where data starts */
uint16_t flags; /* status flags */

};
...
/* Status flags for ds_maps */
#define MAPF_IS_SENT 0x0001 /* Sent all data from map */
#define MAPF_IS_ACKED 0x0002 /* All data in map is acknowledged */
#define MAPF_IS_DUP 0x0004 /* Duplicate, already acked at ds-level */
#define MAPF_IS_REXMIT 0x0008 /* Is a rexmit of a previously sent map */

throughput requires that socket buffer occupancy be
accounted for logically rather than actually. To this end,
the socket buffer variable sb_cc of an MPTCP socket
send buffer refers to the logical number of bytes held
in the buffer without data-level acknowledgment, and a
new variable sb_actual has been introduced to track
the actual number of bytes in the buffer.

3) Socket Receive Buffer: In pre-MPTCP FreeBSD,
in-order segments were copied directly into the receive
buffer, at which time the process was alerted that data
was available to read. The remaining space in the receive
buffer was used to advertise a receive window to the
sender.

As described in Section III-C, each subflow now holds
all received segments in a segment list, even if they are
in subflow sequence order. The segment lists are then
linked by their list heads to create a larger data-level
reassembly data structure. When a segment arrives that is
in data sequence order, data-level reassembly is triggered
and segments are copied into the receive buffer.

We plan to integrate the multipath reassembly struc-
ture into the socket receive buffer in a future release.
Coupled together with deferred reassembly, an applica-
tion’s thread context would be responsible for perform-
ing data-level reassembly on the multi-subflow aware

Figure 5. A future release will integrate the multipath reassembly
structure into the socket receive buffer. Segments will be read directly
from the multi-subflow aware buffer as data-level reassembly occurs.

buffer after being woken up by a subflow that received
the next expected data-level segment (see Figure 5).

E. Receiving DSS Maps and Acknowledgments

As mentioned in Section III-D1, the ds_map struct is
used within the send and receive paths as well as packet
scheduling. The struct allows the receiver to track incom-
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ing data-maps, and the sender to track acknowledgement
of data at subflow- and data- levels. The following
subsections detail the primary uses of ds_maps in the
send and receive paths.

1) Receiving data mappings: New ds_maps are cre-
ated when a packet that contains a MPTCP DSS (Data-
Sequence Signal) option that specifies a DSN-map (Data-
Sequence Number) is received. Maps are stored within
the subflow-level list t_rxdsmaps and are used to
derive the DSN of an incoming TCP segment (in cases
where a mapping spans multiple segments, the DSN
will not be included with the transmitted packet). The
processing of the DSS option (Figure 6), is summarised
as follows:

1) If an incoming DSN-map is found during option
parsing, it is compared to an existing list of
mappings in t_rxdmaps. While looking for a
matching map, any fully-acknowledged maps are
discarded.

2) If the incoming data is found to be covered by
an existing ds_map entry, the incoming DSN-map
is disregarded and the existing map is selected. If
the mapping represents new data, a new ds_map
struct is allocated and inserted into the received
map list.

3) The returned map - either newly allocated or
existing - is used to calculate the appropriate DSN
for the segment. The DSN is then “tagged” (see
below) onto the mbuf header of the incoming
segment.

The mbuf_tags10 framework is used to attach DSN
metadata to the incoming segment. Tags are attached
to the mbuf header of the incoming packet, and can
hold additional metadata (e.g. VLAN tags, firewall filter
tags). A structure, dsn_tag (Listing 3) is defined in
netinet/mptcp_var.h to hold the mbuf tag and
the 64-bit DSN.

A dsn_tag is created for each packet, regardless of
whether a MPTCP connection is active. For standard
TCP connections this means the TCP sequence number
of the packet is placed into the dsn_tag. Listing 4 shows
use of the tags for active MPTCP connections.

Once a DSN has been associated with a segment, stan-
dard input processing continues. The DSN is eventually
read during segment reassembly.

2) ACK processing and DS_Maps: The MPTCP layer
separates subflow-level sequence space and the socket
send buffers. As the same data may be mapped to

10http://www.freebsd.org/cgi/man.cgi?query=mbuf_tags

Listing 3 dsn_tag struct: This structure is used to attach
a calculated DSN to an incoming packet.

/* mbuf tag defines */
#define PACKET_TAG_DSN 10
#define PACKET_COOKIE_MPTCP 34216894
#define DSN_LEN 8

struct dsn_tag {
struct m_tag tag;
uint64_t dsn;

};

Listing 4 Prepending a dsn_tag to a received TCP
packet. The tag is used later during reassembly to
order packets from multiple subflows. Unrelated code
ommitted for brevity.

/* Initialise the mtag and containing
dsn_tag struct */

struct dsn_tag *dtag = (struct dsn_tag *)
m_tag_alloc(PACKET_COOKIE_MPTCP,

PACKET_TAG_DSN, DSN_LEN, M_NOWAIT);
struct m_tag *mtag = &dtag->tag;
...
/* update mbuf tag with current data seq

num */
dtag->dsn = map->ds_map_start +

(th->th_seq - map->sf_seq_start);
...
/* And prepend the mtag to mbuf, to be

checked in reass */
m_tag_prepend(m, mtag);

multiple subflows, data cannot be freed from the send
buffer until all references to it have been removed. A
single ds_map is stored in both subflow-level and data-
level transmit lists, and must be acknowledged at both
levels before the data can be cleared from the send buffer.

Although subflow-level acknowledgment does not im-
mediately result in the freeing of send buffer data, the
data is considered ‘delivered’ from the perspective of the
subflow. Subflow-level processing of ACKs is shown in
Figure 7.

On receiving an ACK, the amount of data acknowl-
edged is calculated and the list of transmitted maps,
t_txdmaps, is traversed. Maps covered by the ac-
knowledgement are marked as being ‘acked’ and are
dropped from the transmitted maps list. At this point
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Figure 6. Receiver processing of DSN Maps. A list of ds_maps is used to track incoming packets and tag the mbuf with an appropriate
DSN (mapping subflow-level to data-level).

a reference to dropped maps still exists within the data-
level transmit list.

If any maps were completed, the
mp_deferred_drop() function is called (detailed
in Section III-E3 below). At this point the data has
been successfully delivered, from the perspective of
the subflow. It is the MPTCP layers responsibility
to facilitate retransmission of data if it is not
ultimately acknowledged at the data-level. Data-
level acknowledgements (DACKs) are also processed at
this time, if present.

3) Deferred drop from send buffer:
The function mp_deferred_drop() in
netinet/mptcp_subr.c handles the final
accounting of sent data and allows acknowledged
data to be dropped from the send buffer. The ‘deferred’

aspect refers to the fact that the time at which segments
are acknowledged is no longer (necessarily) the time
at which that data is freed from the send buffer. The
process is shown in Figure 8, and broadly described
below:

1) Iterate through transmitted maps and store a refer-
ence to maps that have been fully acknowledged.
The loop is terminated at the end of the list, or if
a map is encountered that overlaps the acknowl-
edged region or shares an mbuf with another map
that has not yet been acknowledged.

2) If there are bytes to be dropped, the corresponding
maps are freed and the bytes are dropped from the
socket send buffer. The process is woken up at this
time to write new data. If there are no bytes to
drop, all outstanding data has been acknowledged
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Figure 7. Transmitted maps must be acknowledged at the subflow- and data-levels. However, once acknowledged at the subflow level, the
subflow considers the data as being ’delivered’.

and the send buffer is empty, the process is woken
so that it may write new data.

F. Packet Scheduling

The packet scheduler is responsible for determining
which subflows are able to send data from the socket
send buffer, and how much data they can send. A basic
packet scheduler is implemented in the v0.4 patch,
and can be found within the mp_find_dsmap()
function of netinet/mptcp_subr.c and
tcp_usr_send() in netinet/tcp_usrreq.c.
The current scheduler implementation controls two
common pathways through which data segments can be
requested for output - calls to tcp_usr_send() from
the socket, and direct calls to tcp_output() from
within the TCP stack (for example from tcp_input()
on receipt of an ACK). The packet scheduler will be
modularised in future updates, providing scope for more
complex scheduling schemes.

Figure 9 shows these data transmission pathways,
and the points at which scheduling decisions are made.
To control which subflows are able to send data at a
particular time the scheduler uses two subflow flags:
SFF_DATA_WAIT and SFF_SEND_WAIT.

1) SFF_SEND_WAIT: On calls to
tcp_usr_send(), the list of active
subflows is traversed. The first subflow with
SFF_SEND_WAIT set is selected as the subflow
to send data on. The flag is cleared before calling
tcp_output().

2) SFF_DATA_WAIT: If a subflow is not allocated
a map during a call to tcp_output(), the
SFF_DATA_WAIT flag is set. An asynchronous
task, mp_datascheduler_task_handler is
enqueued when the number of subflows with this
flag set is greater than zero. When run, the task will
call tcp_output() with the waiting subflow.
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Figure 8. Deferred removal of data from the send buffer. Data bytes are dropped from the send buffer only when acknowledged at the
data-level. It is considered deferred as the bytes are not necessarily dropped when acknowledged at the subflow level.

Subflow selection via SEND_WAIT: Figure 10 il-
lustrates the use of the SFF_SEND_WAIT flag.
When a process wants to send new data, it may
use the sosend() Socket I/O function, which re-
sults in a call to the tcp_usr_send() func-
tion in netinet/tcp_usrreq.c. On entering
tcp_usr_send() the default subflow protocol block
(‘master subflow’) is assigned.

At this point the list of subflows (if greater than one) is
traversed, checking subflow flags for SFF_SEND_WAIT.
If not set, the flag is set before iterating to the next
subflow. If set, the assigned subflow is switched, the
loop terminated, and the flag is cleared before calling
tcp_output(). If no subflows are found to be waiting
for data, the ‘master subflow’ is used for transmission.

Subflow selection via DATA_WAIT: The
SFF_DATA_WAIT flag is used in conjunction with
an asynchronous task to divide ds_map allocation
between the active subflows (Figure 11). When in
tcp_output(), a subflow will call find_dsmap()
to obtain a mapping of the send buffer. The process
of allocating a map is shown in Figure 12. The
current implementation restricts map sizes to 1420
bytes (limiting each map to cover one packet). In
cases where no map was returned, the subflow flag is
marked SFF_DATA_WAIT, and the count of ‘waiting’
subflows is increased. If a map was returned, then
the SFF_DATA_WAIT flag is cleared (if set) and the
‘waiting’ count is decremented.

As map sizes are currently limited to a single-packet
size, it is likely that on return from mp_get_map()
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Figure 9. Common pathways to tcp_output(), the function through which data segments are sent. Packet scheduling components are shown
in orange. Possible entry paths are via the socket (PRU_SEND), on receipt of an ACK or through a retransmit timer. The data scheduler
task asynchronously calls into tcp_output() when there are subflows waiting to send data. Find DS Map is allocates ds_maps to a subflow,
and can enqueue the data scheduler task.

Assign 'master'
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Figure 10. Round-robin scheduling. When a process writes new data
to be sent, the scheduler selects a subflow on which to send data.

mp_get_map
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to retransmit

Insert into subflow
transmit list

No

No

Return map
(or NULL)
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into subflow 
transmit list
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Data-level 

retransmit list

Create a new
map

Any maps waiting for
data-level retransmit?

Any bytes in 
send buffer?

Figure 12. Allocating a ds_map in mp_get_map(). First check for
maps that require retransmission. Otherwise, if unsent bytes are in
the send buffer, a new map is allocated, inserted into the transmission
list and returned.
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Figure 11. DATA_WAIT subflow selection. Enqueing the data scheduler (left) and the data scheduler (right). Rather than send data segments
back-to-back on the same subflow, the scheduler spreads data across the available subflows.

unmapped data remains in the send buffer. Therefore
a check is made for any ‘waiting’ subflows that might
be used to send data, in which case a data scheduler
asynchronous task is enqueued. When executed, the data
scheduler task will call tcp_output() on the first
subflow with SFF_DATA_WAIT set.

G. Data-level retransmission

Data-level retransmission of segments has been in-
cluded in the v0.4 patch (Figure 13). The current imple-
mentation triggers data-level retransmissions based on a
count of subflow-level retransmits. In future updates the
retransmission strategy will be modularised.

The chart on the left of Figure 13 shows the steps
leading to data-level retransmit. Each subflow maintains
a retransmission timer that is started on packet trans-
mission and stopped on acknowledgement. If left to
expire (called a retransmit timeout, or RTO), the function
tcp_timer_rexmt() in netinet/tcp_timer.c
is called, and the subflow will attempt to retransmit from
the last bytes acknowledged. The length of the timeout

is based in part on the RTT of the path. A count is kept
each time an RTO occurs, up to TCP_MAXRXTSHIFT
(defined as 12 in FreeBSD), at which point the connec-
tion is dropped with a RST.

We define a threshold of: TCP_MAXRXTSHIFT /
4 (or 12/4, giving 3 timeouts) as the point at which
data-level retransmission will occur. A check has been
placed into tcp_timer_rexmt() that tests whether
the count of RTOs has met this threshold. If met, a
reference to each ds_map that has not been acknowl-
edged at the data-level is placed into mp_rxtmitmaps
(a list of maps that require data-level re-injection).
Finally, an asynchronous task is enqueued (Figure
13, right) that, when executed, locates the first sub-
flow that is not in subflow-level retransmit and calls
tcp_output(). The packet scheduler will ensure
that ds_maps in mp_rxtmitmaps are sent before
any existing ds_maps in the subflow transmit list
(t_txdsmaps).
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Figure 13. Data-level retransmit logic (left) and task handler (right). Retransmission is keyed off the count of TCP (subflow-level) retransmit
timeouts.

It should be noted that subflows retain standard TCP
retransmit behaviour independent of data-level retrans-
mits. Subflows will therefore continue to attempt re-
transmission until the maximum retransmit count is met.
On occasions where a subflow recovers from retransmit
timeout after data-level retransmission, the receiver will
acknowledge the data at the subflow level and discard
the duplicate segments.

H. Multipath Session Management

The current implementation contains basic mecha-
nisms for joining subflows and subflow/connection ter-
mination, detailed below. Path management will be ex-
panded and modulularised in future updates.

1) Adding subflows: An address can be manually
specified for use in a connection between a multi-
homed host and single-homed host. This is done using
the sysctl11 utility. Added addresses are available to all
MPTCP connections on the host, and will be advertised
by all MPTCP connections that reach the established
stage.

Subflow joining behaviour is static, and a host
will attempt to send an MP_JOIN to any addresses

11sysctl net.inet.tcp.mptcp.mp_addresses

that are received via the ADD_ADDR option12.
The asynchronous tasks mp_join_task_handler
and mp_sf_alloc_task_handler currently pro-
vide this functionality. Both will be integrated with a
Path Manager module in a future release.

2) Removing Subflows/Connection Close: The imple-
mentation supports removal of subflows from an active
MPTCP connection only via TCP reset (RST) due to
excessive retransmit timeouts. In these cases, a sub-
flow that has failed will proceed through the standard
TCP timeout procedure (as implemented in FreeBSD-
11) before closing. Any remaining active subflows will
continue to send and receive data. There is currently
no other means by which to actively terminate a single
subflow on a connection.

On application close of the socket all subflows are
shut down simultaneously. The last subflow to be closed
will cause the MPCB to be discarded. Subflows on the
same host are able to take separate paths (active close,
passive close) through the TCP shutdown states.

3) Session Termination: Not documented in this re-
port are modifications to the TCP shutdown code paths.

12One caveat exists: If a host is the active opener (client) in the
connection and has already advertised an address, it will not attempt
to join any addresses that it receives via advertisement.
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Currently the code has been extended in-place with
additional checks to ensure that socket is not marked
as closed while at least one subflow is still active. These
modifications should however be considered temporary
and will be replaced with a cleaner solution in a future
update.

IV. CONCLUSIONS AND FUTURE WORK

This report describes FreeBSD-MPTCP v0.4, a modi-
fication of the FreeBSD kernel enabling Multipath TCP
[1] support. We outlined the motivation behind and
potential benefits of using Multipath TCP, and discussed
key architectural elements of our design.

We expect to update and improve our MPTCP im-
plementation in the future, and documentation will be
updated as this occurs. We also plan on releasing a
detailed design document that will provide more in-
depth detail about the implementation. Code profiling
and analysis of on-wire performance are also planned.

Our aim is to use this implementation as a basis
for further research into MPTCP congestion control, as
noted in Section II-D3.
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