Using CAIA’s NS-3/FreeBSD Network Stack VM
Appliance (Version 0.1)

Jonathan Kua Tze Hwei, Lawrence Stewart, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 140702A
Swinburne University of Technology
Melbourne, Australia
jtkua@swin.edu.au, lastewart@swin.edu.au, garmitage @swin.edu.au

Abstract—This technical report discusses the architec-
ture, design and use of CAIA’s NS-3/FreeBSD VM Appli-
ance (Version 0.1), developed as part of our “Exploring
Possible Mitigation for Incast TCP Congestion in Data
Centres” project. It describes the purpose and the oper-
ation of the simulator in the context of incast congestion
control in data centres. This report also provides a detailed
explanation of the operation of the switch model and how
virtual output queueing mechanism is implemented. It also
shows how to control simulation parameters, understand
the debugging output and interpret the results obtained.

Index Terms—Incast Congestion, Switch Model, Head
of Line (HoL) Blocking, Virtual Output Queuing (VOQ),
Network Simulator 3 (NS-3) and Network Simulation
Cradle (NSO).

I. INTRODUCTION

Network simulators are used for simulation, testing
and results validation of large scale data networks in a
laboratory environment. The Network Simulator 3 (NS-
3) and Network Simulation Cradle (NSC) are devel-
oped for computer networks and data communications
research purposes. NS-3 is a discrete time event simu-
lator which models the behavior of real world networks
closely [1]. NSC provides an environment for researchers
to build and test networks by using actual network stacks
instead of the idealised NS-3 network stack. This enables
simulation results to be more accurate and resemble real
world data.

As part of our project “Exploring Possible Mitigation
for Incast TCP Congestion in Data Centres" we devel-
oped the "CAIA NS-3/NSC FreeBSD 9 Based Simu-
lation Environment Virtual Machine Image v0.1" [2].
This image can be downloaded from http://caia.swin.
edu.au/urp/incast/tools.html. It is a FreeBSD 9 based
VirtualBox Appliance containing NS-3 and a version of
NSC patched to work with the actual Transmission Con-
trol Protocol (TCP) stacks from FreeBSD 9-STABLE

CAIA Technical Report 140702A

July 2014

and FreeBSD-HEAD. This enable simulations to use the
same TCP congestion control algorithms as implemented
in real FreeBSD systems.

In the context of incast congestion in large data
centres, the switch plays a major role in transferring
the received packets from the receiving ports to the
output port. The switch implements an algorithm that
intelligently transfer the packet accross the switch fabric
to the transmitting port. Virtual Output Queuing (VOQ)
is implemented in the switch to overcome the Head of
Line (HoL) blocking problem in older implementations
of switches. However, congestion can still occur when
multiple responders transmit packets simulataneously to
the querier. This can cause packet loss when the queue
is full.

The purpose of this technical report is to demonstrate
how the simulator can be used in the context of TCP
incast. The rest of report is organised as follows. Section
II introduces the incast topology which is common in
data centres and the architecture of the switch model. It
then shows how VOQ is implemented in the simulator
to handle incoming packets to overcome HoL blocking
problem. Section III introduces specific details of the
switch model as implemented in our NS-3/FreeBSD
Virtual Machine (VM) environment. It shows how to
run this simulation by controlling different parameters
and discusses some modifications made to the NS-3
source codes. Section IV presents an incast simulation
trial. It shows how to interpret the debugging output and
the queue occupancy information from the simulation.
Section V concludes the report.

II. INCAST AND SWITCHES
A. The Incast Topology

TCP incast is a phenomenon in distributed storage
clusters first described and identified by Nagle et al [3].

page 1 of 9

mailto:jtkua@swin.edu.au
mailto:lastewart@swin.edu.au
mailto:garmitage@swin.edu.au
http://caia.swin.edu.au/urp/incast/tools.html
http://caia.swin.edu.au/urp/incast/tools.html

It is a network transport pathology that affects many-to-
one communication patterns in large data centres which
is caused by a complex interaction between data centres
applications, underlying switches, network topology and
the dynamic behaviour of TCP [4]. A typical incast
topology is shown in Figure 1.

Responder 1

Responder 2

RX-Q
1 Gbps RX-Q 1 Gbps
Querier X-Q Link
Link RX-Q
Switch
RX-Q
Responder 3
Responder 4
Figure 1. Typical Incast Topology in Data Centre Networks

In data centre networks, a querier is connected to
multiple responders via a switch. In Figure 1, all physical
network links are configured with 1Gbps. There are 4
responders and 1 querier. The architecture of the switch
plays an important role in transferring incoming packets
from the ports to the desired output port. In the context
of incast network topology, after a querier sends a query,
there is a possiblity that multiple responders will respond
to the query. Since there are multiple high speed (1Gbps)
links connected to the incoming ports and only one high
speed link for the outgoing port, packets will arrive at
the switch at a rate faster than the processing rate of the
switch. Therefore, packets will be queued at the receiving
or ingress queue (RX-Q) of incoming ports and waited
to be processed accordingly. The transmitting or egress
queue (TX-Q) is generally a small queue compared to
the RX-Q.

Incast congestion is an issue because the responders
are sending packets much faster than the processing
speed of the switch and at some point it will overflow
the ingress queue buffer. In this case, packets will be
dropped, causing packet loss. Consequently there is an
increase in the queuing delay of packet flows and a

CAIA Technical Report 140702A

July 2014

decrease in application level throughput to a level far
below the link bandwdth.

B. The Switch Model

Our NS-3/FreeBSD Network Stack VM Appliance
implements a switch architecture that resembles the
switch architecture in reality. Figure 2 illustrates the
architecture of the switch implemented in this simulator.

Querier Responder 1
Port 1 Port 2
VOQ/RX-Q VOQ/RX-Q
— Switch Fabric —

VOQ/RX-Q VOQ/RX-Q
Port 3 Port 4

Responder 2 Responder 3

Figure 2. Architecture of the Switch Model

In Figure 2, the switch has 4 ports with 1 connected to
the querier and the other 3 connected to the responders.
Each port has 3 virtual output queues and a transmit
queue buffer. It is noted that VOQs are not independent
memory space (they are not physically separated), they
share a common receive queue buffer determined by the
number of bytes and the number of cells. VOQs are
logically separated, where the number in the virtual out-
put queues as shown in Figure 2 denotes the destination
port of the incoming packets. Since the destination port
of each packet is determined before the packet enters
the queue, this information is tagged on the packet and
placed in the queue buffer. The switch fabric in the
middle of the switch is where all the packets traverse
across from the receive queue to the transmit queue of
the destination port. Subsection II-C will discuss why
VOQs are implemented instead of the traditional queuing
mechanism.

page 2 of 9

C. Oversubscription and Head of Line (HoL) Blocking
Problem

In order to understand the importance of the switch
architecture as described in II-B, we must first address
the oversubscription and Head of Line (HoL) Blocking
problem.

1) Oversubscription: High end network switches are
designed in a way that have the potential of oversubscrib-
ing access to the switching fabric [5]. The oversubscrip-
tion design allows the links connected to the switch ports
to have higher link capacity than the switching fabric,
assuming not all connections would be transmitting
packets to switch at their maximum sending rate. The
reason for doing this is to reduce the manufacturing cost
of switches yet allow the links to send data at high speed.
In a burst of traffic or during peak times in data centres,
oversubscription and congestion occurs.

Some ways of dealing with oversubscription are port
bandwidth reservation that allows dedication of specific
amount of bandwidth to certain ports. Another option
is to design a switch that operates as a full-rate, non-
oversubscribed module that allows all links to transmit
that their maximum rate. Oversubscription along with
advanced traffic management capabilities enables cost
optimization [5].

2) Head of Line (HoL) Blocking: In switches that
handle high incoming traffic rates, a few congested
output ports can impact the overall performance of
the switch by the Head Of Line (HoL) blocking phe-
nomenon. HoL Blocking occurs whenever traffic waiting
to be transmitted prevents traffic destinated elsewhere to
be transmitted.

Most switches have buffered input ports, a switch
fabric and buffered output ports using the First-In-First-
Out (FIFO) queuing mechanism at the input buffers. By
using FIFO, the packet that arrives earliest at the receive
queue buffer is processed [6]. If the packet cannot be
processed due to a full transmit queue buffer at the
destination port, all packets that arrives later cannot
be processed, thus the earlier packet blocks the later
packets.

CAIA Technical Report 140702A

July 2014

| Port2 | | Port3 | | Port4 |
TX-Q NX-Q TX-Q
: 2]
Switch B
3]
1 RX-Q
3
Port 1
Figure 3. Head of Line (HoL) Blocking

As illustrated in Figure 3, packets arrived at Port 1
with the port destination sequence of 2, 2, 3, 4 and
3. Generally, the transmit queue buffer (TX-Q) at the
destination port is much smaller than the receive queue
buffer (RX-Q), usually just a packet or two long in data
centre switches. In this example, assuming TX-Q is only
1 packet long which means that the transmitting port can
only process 1 packet at a time, and no other packets are
allowed to be at TX-Q when the queue buffer is full.

FIFO is implemented in this switch and the decision
as to which packet is destinated to which port is only
decided at the end of the receive queue buffer just
before it is transmitted across the switch fabric. When
the the earliest packet (packet destinated for Port 2) is
processed, the TX-Q at Port 2 is full thus the next packet
destinated for Port 2 cannot be processed. This can limit
the performance and throughput of the switch because
the switch cannot process subsequent packets destinated
for Port 3 and 4, even though the queue buffer at Port 3
and Port 4 is empty. This phenomenon is known as HoL
blocking, where a series of packets is blocked by the
earlier packet. A HoL blocking architecture prevents the
delivery of full amount of bandwdith even if individual
switching modules are not oversubscribed or not all
the ports are transmitting simultaneously. This limitation
is overcomed by the implementation of Virtual Output
Queuing (VOQ) in switches.

D. Virtual Output Queuing (VOQ)

A significant feature of VOQ is the assignment of
logical queues for each output port to each input port.
In other words, packets are tagged with information of
destinated ports once they enter into the switch and then
they are placed in logical RX-Qs at the input port. Each

page 3 of 9

input port maintains a separate logical queue for each
output port. It is important to note that each RX-Q is
still a shared input buffer with no defined queue capacity
for each virtual output queue. Packets are queued into
the RX-Q according to the destinated port number and
processed with parallel processing mechanism.

| Port2 | | Port3 |
TX-Q
3witcm\

Port 1

| Port4 |

TX-Q TX-Q

Figure 4. Virtual Output Queuing (VOQ)

As illustrated in Figure 4, dedicated VOQs for packets
with different port destinations are assigned to Port 1.
When a stream of packets enters Port 1, the placement
of packets in RX-Qs is determined by the destinated port
number of the incoming packets. HoL blocking problem
is solved as multiple packets destinated for different ports
can be processed simultaneously. The implementation of
VOQ with an effective scheduling algorithm can achieve
full throughput performance. VOQ queuing mechanism
is implemented in our simulator. This will be discussed
in detail in Section IV.

III. SIMULATING AN INCAST SCENARIO
A. Running an Incast Simulation

The incast simulation constructs a set of nodes con-
nected via a virtual output queued Ethernet switch
model, where one of the nodes is the querier and the
other nodes are the responders. The traffic generated by
all nodes (query traffic from the querier and response
traffic from the responders) is designed to simulate TCP
incast when the responses converge towards the querier’s
switch port. The commands to run the incast simulation
by using the appliance are shown below:

CAIA Technical Report 140702A

July 2014

SSH from local machine
ssh —-XY -p2222 ns3@localhost

In VM environment

cd /usr/home/ns3/ns—-3-allinone/nsc

./scons.py freebsd-9stable

cd /usr/home/ns3/ns-3-allinone/ns—-3-dev

./waf —--with-nsc=../nsc/freebsd-9stable
configure

./waf build -j2

To see which command line parameters are available
for run-time tweaking:

cd /usr/home/ns3/ns-3-allinone/ns—-3-dev
./waf —--run="incast --PrintHelp"

The user arguments available for run-time tweaking
are:

—— queries: Number of query/response

—— responders: Number of responder nodes
—-— gquery-size: Per-responder query size
(bytes)

—-— response-size: Response size (bytes)

—-— rxqueue-cells: Ingress gqueue size in

cells (number of cells)

—-— txqueue-cells: Egress queue size in
cells

—— bytespercell: Number of bytes per cell

(Queue buffer size = number of cells x

bytes per cell)

—— backplane-latency: Number of microseconds
Path to store simulation data

-— data-store:
—-— duration: How long to run simulation
—— nsc-stack: Name of the NSC stack to use

These parameters will be explained in detail in Section
I1I-B.

A simulation trial with the following parameters is
done.

e Number of responders = 2 responders

o Application level response size = 100000 bytes

o Ingress queue (RX-Q) size: 256 cells

o Egress queue (TX-Q) size: 16 cells

e Queue buffer cell size: 384 bytes

o Number of queries to a each responder: 1 query

e Query size: 500 bytes

o Backplane latency of switch: 6us
To run this simulation, issue the command:

cd /usr/home/ns3/ns-3-allinone/ns—-3-dev

./waf —--run=incast --data-store=/home/ns3/
simulation_data —--responders=2
——rxqueue-cells=256
—-—txqueue-cells=16
——response-size=100000"

page 4 of 9

The simulation data will be stored in
/home/ns3/simulation_data as a directory with
runtime date, time and other associated parameters. For
example, the simulation data directory run on July 1,
2014, at 10:17am is:

simname=ns3-dev-incast-debug:
datetime=20140701-10h17m04s:
responders=2:qrylen=500:
rsplen=100000:rxcells=256:
txcells=16:cellbytes=384:
backplanelatency=6:queries=1

This directory contains packet trace files (pcap) cap-
tured at all nodes and net devices, queue trace files and
a SIFTR [7] log file that logs the state of TCP for the
connection.

B. Switch Model in the Simulator

The switch model described in Section II-B is defined
as BridgeNetDevice in the bridge—-net-device.cc
' module. It is a major overhaul of the default NS-3
bridge module.

Important incast simulation parameters to note as
shown in Section III-A are:

o Number of responses per query (queries): Default
value is 1.

o Number of responders (responders) : The number
of responders will affect the amount of incast traffic.
Default value is 2.

e Query size per responder in bytes (query-size):
Default value is 500.

o Response size in bytes (response-size): The
application level response size of the responder. The
default value is 5000.

e Ingress queue size (RX-Q) in number of cells
(rxqueue—cells): The size virtual output queues
in number of cells for the incoming packets to be
buffered. The default value is 256 cells.

e Egress queue size (TX-Q) in number of cells
(txqueue—-cells): The outgoing queue buffer in
cells of the transmitting port. The egress queue size
is much smaller than the ingress queue size. The
default value is 16 cells.

o Number of bytes per cell (bytespercell): Default
value is 384 bytes.

o Backplane latency (backplane-latency): The
amount of time taken for a packet to traverse the

"The module is located at /usr/home/ns3/ns-3-allinone/
ns—-3-dev/src/bridge/model/bridge-net-device.cc

CAIA Technical Report 140702A

July 2014

switch fabric from the virtual output queue to the
egress queue. The default value is 6 microseconds.

e Simulation duration (duration): The default value
is 10 seconds.

o Name of NSC stack to be used in the simulation
(nsc-stack): The default NSC stack is FreeBSD
9-STABLE.

The queue buffer size of the RX-Q or the VOQs for any
port is defined as the number of cells multiplied by the
number of bytes per cell. Therefore the default queue
buffer size for the RX-Q is 256 cells * 384 bytes =
98304 bytes.

1) Simulating Backplane Latency: In real world
switches, the backplane latency is defined as the amount
of time taken for a packet to traverse the switch fabric
from the virtual output queue to the egress queue. There
is a finite amount of time for a packet to traverse the
switch fabric and this time plays a role in determining the
processing speed and throughput of the switch. However,
in this simulator, there is no simulated switch fabric
so a backplane latency is simulated using a different
mechanism. In the simulator, the backplane latency is
simulated by holding the packet that is ready to be
transmitted at the virtual output queue or the receive
queue buffer for a finite amount of time defined by the
backplane latency, then it instantaneously arrives at the
transmit queue of the destinated port.

2) Simulating Back Pressure: Back pressure occurs
when there is a buildup of packets behind the trans-
mitting port. In other words, the TX-Q buffer is full
and is incapable of receiving any more data. In this
situation, there exist a back pressure from the RX-Q to
put packets in the destinated transmit queue buffer. It
halts its sending until the transmit queue is emptied and
is capable of receiving packets.

In real switches, a switching algorithm is implemented
so the scheduler knows that the transmit queue is full
and is incapable of handling anymore packets, so it
will stop the sending of other packets from the virtual
output queues. This process is implemented in a slightly
different way in this simulator. During the simulation, the
scheduler will ‘wakeup’ and do a round robin, a process
of checking all the RX-Qs to see if there any packets
that are ready to be transmitted. If packets in the RX-
Q are ready to be transmitted, the scheduler will take
the packets and place it in the TX-Q of the destinated
port. In the case where the TX-Q is empty, then the
scheduler will successfully place the packets in the TX-
Q and continue to do round robin scheduling. However,
if the TX-Q is full, the scheduler will still attempt to

page 5 of 9

push the packet in the full TX-Q but without success.
This unsuccessful attempt causes the scheduler to put
the packet back to the RX-Q. This process of pulling out
packets from the RX-Q and pushing it into a full TX-Q
queue is not implemented in the real world switches. In
order to resemble real world data as closely as possible,
the simulation time is stopped when this situation occurs.
Although there is a finite amount of real time elapsed
when this process occurs, there is no time elapsed in the
simulation. Therefore, from the perspective of observing
the simulated time logged in the queue trace log files, it
seems that the scheduler somehow knows that the TX-
Q buffer is full and is incapable of handling anymore
packets, so it does not attempt to push packets into a
full queue, which is a real world behaviour of a switch.

C. Modifications Made to the Simulator

The major modifications [8] made are:

e Added a new QueryResponseApplication
model to simulate one-to-many query-response
network traffic patterns commonly found in data
centres.

e Added a new MultiQueue model to simulate
queues which have a fixed resource limit that
can be shared between logically partitioned sub-
queues. This model forms a building block for the
BridgeNetDevice overhaul.

e Overhauled the BridgeNetDevice model to turn
it into a round-robin, input queued device utilising
virtual output queuing (VOQ) at each ingress port.

o Extended the interface between NS-3 and NSC to
support socket upcalls, generic route manipulation
and an enhanced mechanism for NSC to obtain the
virtual time from the simulator.

o Added support for the RFC1323 TCP window scale
option to NS-3’s TCP model.

o Modified Queue tracing to make it possible to use a
single callback function for selective per-queue and
per-action tracing.

e Added an incast which utilises
the vOQ of and
QueryResponseApplication to simulate simple
TCP incast scenarios.

simulation
BridgeNetDevice

IV. UNDERSTANDING THE OUTPUT
A. Debugging Output

Section III-A showed the commands for running an
incast simulation. In order to run the simulation with
the same parameters in debugging mode, the environ-
ment variable env is set to the name of the class
associated with the model. In this case, we are inter-
ested in the debugging output of the switch model,
bridge-net-device.cc

env NS_LOG="BridgeNetDevice":INFO

./waf —--run="incast
—--data-store=/usr/home/ns3/simulation_data
——responders=2 —--rxqueue-cells=256
—-—txqueue-cells=16 —--response-size=100000"

Part of the debugging information is shown below:

BridgeNetDevice:DoDispose ()
BridgeNetDevice:DoDispose () :
Port 0 txQueueVogBytes=0
txQueueVogBytesHighwater=101864
rxQueueBytesHighwater=1140
rxQueueCellsHighwater=10
rxQueuePacketsDropped=0

[INFO]

BridgeNetDevice:DoDispose(): [INFO]
Port 1 txQueueVogBytes=0
txQueueVogBytesHighwater=640
rxQueueBytesHighwater=50252
rxQueueCellsHighwater=133

rxQueuePacketsDropped=0

BridgeNetDevice:DoDispose () :
Port 2 txQueueVogBytes=0
txQueueVogBytesHighwater=570
rxQueueBytesHighwater=51612
rxQueueCellsHighwater=136
rxQueuePacketsDropped=0

[INFO]

Port O

txQueueVogBytesHighwater Value =101864
totalPacketLoss =0
BridgeNetDevice:~BridgeNetDevice ()

e Added a "dumbbell" simulation which utilises
the PointToPointDumbbellHelper and
BulkSendApplication to simulate simple
TCP dumbbell networks.
CAIA Technical Report 140702A July 2014 page 6 of 9

In order to understand the debugging information,
consider Figure 5.

Port 0
txQueueVoqBytesHighWater
Responder 1 Responder 2 | = symmation of all the
packets (bytes) destined for
| | Port 0 at the height of
simulation
| Pot1 | | Port2 |
2 1
0 0
Switch
Legend:
1]]2
[] [1xa |
| Port 0 I
Querier
Figure 5. Debugging Information Illustration

Figure 5 shows the illustration of the switch archi-
tecture with 3 ports. Port 0 is connected to the querier
whereas Port 1 and 2 are connected to the responders.
Since all the packets arrived at the VOQs are destinated
for the querier connected to Port 0, only the RX-Q ‘0’ is
filled with data packets, whereas other RX-Qs are empty
(this is illustrated in 5 with long logical RX-Q ‘0’ and
short logical RX-Qs for the others).

From the debugging information, it is known
that Port O at its worst case had 101864 bytes
(txQueueVogBytesHighwater) waiting to be trans-
mitted out of it. In other words, all the RX-Qs at
Port 1 and 2 had a sum total of 101864 bytes in
them at the height of the simulation (worst case sce-
nario). The total peak queue occupancy can be lower
than txQueueVogBytesHighwater since the peaks of
RXQs connected to different responders can occur at
different times (as illustrated in Section IV-B). The
debugging information does not provide the information
of the exact simulation time of this event, where the
RX-Qs of the responders experience its height. It only
provides the information about the maximum amount
of packets in bytes that are waiting to be transmitted
out of Port 0. The rxQueueBytesHighwater gives the
information of the maximum amount of packets in bytes
that are received by Port 0 (queries), it is the sum of

CAIA Technical Report 140702A

July 2014

all packets in the RX-Qs of Port 0. Whenever there is a
queue buffer overflow at the RX-Q, packets are dropped
and the variable rxQueuePacketDropped will give the
information on the number of packets dropped.

B. Queue Occupancy

NS-3 is a discrete time event driven simulator, there-
fore the incast simulation script incast.cc? is written
to log packet enqueue (packets entering the RX-Q),
dequeue (packets leaving the RX-Q) and drop (packets
dropped due to full queue buffer) events with a callback
function. The queue occupancy of the RX-Q will be
logged in a queue trace file when one of these events
occur. These files stored in the simulation directory.
Figure 6 and 7 are plotted from the simulation trial
described in Section III-A.

—o— Enqueue
—o— Dequeue

50000
!

.
*

20000 30000 40000
Il Il Il

Queue Occupancy (bytes)

10000
Il

»
R d
-
"o
R
-
L
R d
o
o
R d
»
L
»o
»
R d *
»o
»wo
R
“»o
"o
“»o
-
L
L
-
o
R d
"o
Rad
R d
.

Rl *
O —| e *
T T T T
0.0 0.5 1.0 15
Time (ms)
Figure 6. Queue Occupancy of Responder 1 vs Time

The script is located at /usr/home/ns3/ns-3-allinone/
ns—-3-dev/examples/tcp/incast.cc

page 7 of 9

2 . —e— Enqueue
o — -
=] RN —— Dequeue
0 R
" *
- *
g - .
S - .
< "
—~ L g *
g - :
é 8 - *
— *
g 8 -
g © o .
a - *
3 -
*
o g - .
g 81 .
o
g « s *
& - :
- *
o "o *
8 _ -
o Road *
— - *
L4
R4 *
- *
R
O — e *
T T T T
0.0 0.5 1.0 15
Time (ms)
Figure 7. Queue Occupancy of Responder 2 vs Time

Figure 6 shows the queue occupancy of the RX-Q
connected to Responder 1. The incast scenario is a leaky
bucket scenario where the total input rate is greater than
the output rate. Figure 6 shows packets enqueuing and
dequeuing simultaneously before attaining its peak queue
occupancy, which in this case is 50252 bytes.

The RX-Q of Responder 2 exhibits a very simi-
lar behaviour with a peak queue occupancy of 51612
bytes as shown in Figure 7. This yields to a total
peak queue occupancy of 101864 bytes, which means
that there are 101864 bytes waiting to be transmitted
out the TX-Q connected to Port 0 at its worst case
(txQueueVogBytesHighwater).

Notice that both RX-Qs are configured with 256 cells
* 384 bytes = 98304 bytes, which is less than the ap-
plication level response size of 100000 bytes. However,
Figure 6 does not indicate a full queue, therefore no
packet losses have occurred. This is due to the fact that
there are only 2 responders in this scenario and the
scheduler can process and transmit packets fast enough
to prevent overflowing the queue buffer.

For Responder 1, direct inspection of the queue trace
file shows that the RX-Q achieved its peak queue occu-
pancy at 0.9041ms and packets are completely drained
out of the queue at 1.7161ms. For Responder 2, the RX-
Q achieved its peak queue occupancy at 0.9060ms and
the packets are completely drained out of the queue at
1.7152ms. This shows a high correlation between the
burst of packets from 2 responders. Since the peak queue
occupancy of both RX-Qs occurred at a slightly different
time, the total number of bytes waiting to be transmitted

CAIA Technical Report 140702A

July 2014

out of TX-Q connected to Port O at the height of the sim-
ulation is lower than txQueueVogBytesHighwater.

The dequeue events after the peak queue occupancy
for both Responder 1 and 2 reflect each queue being
drained at the share of the line rate of Port 0, which is
roughly 0.5Gbps. The downward gradients of Figure 6
and 7 is consistent with each queue draining at the rate
of roughly 0.5Gbps>.

In an incast scenario, the number of responders in-
creases to a point where the scheduler could not schedule
and process the correlated responses from the respon-
der fast enough, therefore the RX-Qs connected to the
responders will be full and subsequent packets will be
dropped, causing TCP timeouts and adding delays to the
query-response process. As a result, the application level
throughput decreases.

V. CONCLUSIONS

This technical report presents an introduction to the
“Network Simulator 3 (NS-3)/FreeBSD Network Stack
VM Appliance” and shows how this simulator can be
used to simulate large scale incast topology networks
commonly used in data centres. A significant advance-
ment made in this simulator is the availablity of the
option of selecting an actual FreeBSD 9-STABLE net-
work stack to simulate data centre networks and the
implementation of virtual output queues in the switch
model. As a result, simulation data obtained are more
likely to resemble the behaviour of real networks with
end hosts operating FreeBSD 9-STABLE. Switching
concepts such as HoL Blocking and VOQs are presented
to show the importance of VOQs in data centre networks.
It also shows how backplane latency and back pressure is
simulated in the switch model, which varies from switch
implementations in the real world. Illustrations and ex-
planations of the debugging output are presented so that
users can extract relevant information and interpret the
simulation results. An incast scenario is presented to
illustrate the fluctuations of queue occupancy in RX-
Qs connected to the responders. Future work involves
investigating the TCP incast problem in greater detail
and testing modified TCP algorithms to mitigate incast
congestion by using this simulator.

3The time required to drain roughly 50000 bytes at the rate of
0.5Gbps is approximately 0.8ms, which is close to the 0.81ms it
took for both responder traces to drain their queues.

page 8 of 9

ACKNOWLEDGEMENTS

This project has been made possible in part by a gift

from The Cisco University Research Program Fund, a
corporate advised fund of Silicon Valley Community
Foundation.

(1]
(2]
(3]

CAIA Technical Report 140702A

REFERENCES

NS-3 Consortium, “Network Simulator 3 (NS-3) and Network
Simulation Cradle (NSC).” [Online]. Available: http://nsnam.org
G. Armitage and L. Stewart, “Incast Congestion Control,” August
2013. [Online]. Available: http://caia.swin.edu.au/urp/incast/

D. Nagle, D. Serenyi, and A. Matthews, “The Panasas
ActiveScale Storage Cluster: Delivering Scalable High
Bandwidth Storage,” in Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, ser. SC ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 53—. [Online].
Available: http://dx.doi.org/10.1109/SC.2004.57

(4]

(5]

(6]
(7]

(8]

July 2014

Y. Chen, R. Griffit, D. Zats, and R. H. Katz, “Understanding
TCP Incast and Its Implications for Big Data Workloads,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2012-40, Apr 2012. [Online]. Available: http://
www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-40.pdf
P. Perazzo, “Switch Architectures and Highways,” May
2009. [Online]. Available: http://blogs.cisco.com/datacenter/
switch_architectures_and_highways/

D. Barnes and B. Sakandar, Cisco LAN Switching Fundamentals.
Indianapolis: Cisco Press, 2005.

L. Stewart and J. Healy, “Statistical Information
for TCP Research (SIFTR),” 2010. [Online]. Avail-
able: http://www.freebsd.org/cgi/man.cgi?query=siftr&sektion=

4&manpath=FreeBSD+7.4-RELEASE

G. Armitage and L. Stewart, “CAIA NS-3/NSC
FreeBSD 9 Based Simulation Environment Virtual
Machine Image v0.1 = Readme,” September 2013.
[Online]. Available: http://caia.swin.edu.au/urp/incast/tools/

README .caia-freebsd9-amd64-caia-ns3-release-0.1.txt

page 9 of 9

http://nsnam.org
http://caia.swin.edu.au/urp/incast/
http://dx.doi.org/10.1109/SC.2004.57
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-40.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-40.pdf
http://blogs.cisco.com/datacenter/switch_architectures_and_highways/
http://blogs.cisco.com/datacenter/switch_architectures_and_highways/
http://www.freebsd.org/cgi/man.cgi?query=siftr&sektion=4&manpath=FreeBSD+7.4-RELEASE
http://www.freebsd.org/cgi/man.cgi?query=siftr&sektion=4&manpath=FreeBSD+7.4-RELEASE
http://caia.swin.edu.au/urp/incast/tools/README.caia-freebsd9-amd64-caia-ns3-release-0.1.txt
http://caia.swin.edu.au/urp/incast/tools/README.caia-freebsd9-amd64-caia-ns3-release-0.1.txt

	Introduction
	Incast and Switches
	The Incast Topology
	The Switch Model
	Oversubscription and Head of Line (HoL) Blocking Problem
	Oversubscription
	Head of Line (HoL) Blocking

	Virtual Output Queuing (VOQ)

	Simulating an Incast Scenario
	Running an Incast Simulation
	Switch Model in the Simulator
	Simulating Backplane Latency
	Simulating Back Pressure

	Modifications Made to the Simulator

	Understanding the Output
	Debugging Output
	Queue Occupancy

	Conclusions
	References

