Three staggered-start TCP flows through PIE, codel
and fq_codel bottleneck for TEACUP v0.4 testbed

Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 140630A
Swinburne University of Technology
Melbourne, Australia
garmitage @swin.edu.au

Abstract—This technical report summarises a basic set
of staggered-start three-flow TCP experiments using pfifo
(tail-drop), PIE, codel and fq_codel queue management
schemes at the bottleneck router running Linux kernel
3.10.18. The goal is to illustrate plausible operation of
our TEACUP testbed under teacup-v0.4.x using NewReno
(FreeBSD) and CUBIC (Linux). Over a 10Mbps bottleneck
and 20ms RTT path we observe that induced queuing
delays drop dramatically (without significant impact on
achieved throughput) when using PIE, codel or fq_codel
at their default settings. Hashing of flows into separately
scheduled queues allows fq_codel to provide smoother
capacity sharing. Over a 200ms RTT path the three AQM
schemes exhibited some drop-off in throughput relative
to pfifo, suggesting a need to explore non-default settings
in high RTT environments. The impact of ECN is a
matter for future work. This report does not attempt to
make any meaningful comparisons between the tested TCP
algorithms, nor rigorously evaluate the consequences of
using PIE, codel or fq_codel over a range of RTTs.

Index Terms—TCP, codel, fq_codel, PIE, pfifo, experi-
ments, testbed, TEACUP

I. INTRODUCTION

CAIA has developed TEACUP! [1] to support a com-
prehensive experimental evaluation of different TCP
congestion control algorithms. Our actual testbed is
described in [2]. This report summarises a basic set of
staggered-start three-flow TCP experiments that illustrate
the impact of pfifo (tail-drop), PIE [3], codel [4] and
fq_codel [5] queue management schemes at the bottle-
neck router.

The trials use six hosts to create three competing flows
partially overlapping in time. The bottleneck in each
case is a Linux-based router using netem and tc to
provide independently configurable bottleneck rate limits

'TCP Experiment Automation Controlled Using Python.

CAIA Technical Report 140630A

June 2014

and artificial one-way delay (OWD). The trials run over a
small range of emulated path conditions using FreeBSD
NewReno and Linux CUBIC. ECN is not used.

Over a path with 20ms base RTT and 10Mbps bottleneck
we observe that using PIE, codel or fq_codel at their
default settings provides a dramatic drop in overall
RTT (without significant impact on achieved throughput)
relative to using a pfifo bottleneck. The hashing of
flows into separately managed queues allows fq_codel
to provide smoother capacity sharing than either PIE or
codel. When the path RTT rises to 200ms all three AQM
schemes exhibited some drop-off in throughput relative
to pfifo, suggesting a need to explore non-default settings
in high RTT environments.

This report does not attempt to make any meaningful
comparisons between the tested TCP algorithms, nor
do we explore the differences between PIE, codel and
fq_codel in any significant detail. The potential impact
of ECN is also a subject for future work.

The rest of the report is organised as follows. Sec-
tion II summarises the the testbed topology, physical
configurations and emulated path characteristics for these
trials. For similar paths and combinations of AQM,
we look at the behaviour of three FreeBSD NewReno
flows in Section III and three Linux CUBIC flows in
Section IV. Section V concludes and outlines possible
future work.

II. TESTBED TOPOLOGY AND TEST CONDITIONS

Trials involved three concurrent TCP connections each
pushing data through a single bottleneck for 60 sec-
onds. The path has different emulated delays, bottleneck
speeds and AQM algorithms. Here we document the
testbed topology, operating systems, TCP algorithms and
path conditions.

page 1 of 22

mailto:garmitage@swin.edu.au

A. Hosts and router

Figure 1 (from [2]) shows a logical picture of
the testbed’s networks?. The router provides a con-
figurable bottleneck between three hosts on net-
work 172.16.10.0/24 and three hosts on network
172.16.11.0/24. In this report, hosts on 172.16.10/24
send traffic to hosts on 172.16.11/24.

The bottleneck router runs 64-bit Linux (openSUSE
12.3 with kernel 3.10.18 patched to run at 10000 Hz).
Physically the router is a Supermicro X8STi motherboard
with 4GB RAM, 2.80GHz Intel® Core™ i7 CPU, 2 x
Intel 82576 Gigabit NICs for test traffic and 2 x 82574L
Gigabit NICs for control traffic.

Each host is a triple-boot machine that can run 64-bit
Linux (openSUSE 12.3 with kernel 3.9.8 and web10g
patch [6]), 64-bit FreeBSD (FreeBSD 9.2-RELEASE #0
1255898) or 64-bit Windows 7 (with Cygwin 1.7.25 for
unix-like control of the host). Physically each host is a
HP Compaq dc7800, 4GB RAM, 2.33GHz Intel Core2
Duo CPU, Intel 82574L Gigabit NIC for test traffic and
82566DM-2 Gigabit NIC for control traffic.

See [2] for more technical details of how the router and
each host was configured.

Internet

—_—

Control

Data and
=1 || control
server

Host6

p— . N e o
Experiment (172.16.10 ——@— 172.16.11

/. Router /.
Netem/tc (Linux)

Figure 1: Testbed overview

B. Host operating system and TCP combinations

The trials used used two different operating systems and
TCP algorithms.

e FreeBSD: Newreno
¢ Linux: CUBIC

2Each network is a switched gigabit ethernet VLAN on a single
Dell PowerConnect 5324.

CAIA Technical Report 140630A

June 2014

See Appendices A and B for details of the TCP stack
configuration parameters used for the FreeBSD and
Linux end hosts respectively.

C. Emulated path and bottleneck conditions

The bottleneck router uses netem and t c to concatenate
an emulated path with specific one way delay (OWD)
and an emulated bottleneck whose throughput is limited
to a particular rate. Packets sit in a 1000-packet buffer
while being delayed (to provide the artificial OWD), then
sit in a separate “bottleneck buffer” of configurable size
(in packets) while being rate-shaped to the bottleneck
bandwidth.

1) Bottleneck AQM: We repeated each trial using the
Linux 3.10.18 kernel’s implementations of pfifo, PIE,
codel and fq_codel algorithms in turn to manage the
bottleneck buffer (queue) occupancy. To explore the
impact of actual available buffer space, we set the total
buffer size to either 180 packets® or 2000 packets.

As noted in Section V.D of [2], we compiled PIE into the
3.10.18 kernel from source [7] dated July 2nd 2013,* and
included a suitably patched iproute2 (v3.9.0) [8].

As they are largely intended to require minimal operator
control or tuning, we used PIE, codel and fq_codel
at their default settings.’ For example, when config-
ured for a 180-packet buffer, the relevant qdisc details
were:

PIE:

limit 180p target 20 tupdate 30

alpha 2 beta 20

codel:

limit 180p target 5.0ms interval 100.0ms
fq_codel:

limit 180p flows 1024 quantum 1514

target 5.0ms interval 100.0ms

See Appendix C for more details on the bottleneck
router’s AQM configuration.

3 Significantly lower than the default codel and fq_codel buffer
sizes of 1000 and 10000 packets respectively

*MODULE_INFO(srcversion, "1F54383BFCB1F4F3D4C7CE6")

Except buffer size overridden by individual trial conditions.

page 2 of 22

2) Path conditions: This report covers the following
emulated path and bottleneck conditions:

o 0% intrinsic loss rate®

e One way delay: 10 and 100ms

« Bottleneck bandwidth: 10Mbps

« Bottleneck buffer sizes: 180 and 2000 pkts
o ECN disabled on the hosts

These conditions were applied bidirectionally, using
separate delay and rate shaping stages in the router
for traffic in each direction. Consequently, the path’s
intrinsic (base) RTT is always twice the configured
OWD. The 180 and 2000-packet bottleneck buffers were
greater than the path’s intrinsic BDP (bandwidth delay
product).

D. Traffic generator and logging

Each concurrent TCP flow was generated using iperf
2.0.5 [9] on both OSes, patched to enable better control
of the send and receive buffer sizes [10]. For each flow,
iperf requests 600Kbyte socket buffers to ensure cwnd
growth was not significantly limited by each destination
host’s maximum receive window.

Each 60-second flow was launched 20 seconds apart
between the following host pairs:

e Hostl—Host4d att =0
e Host2—Host5 at ¢ = 20
e Host3—Host6 at t = 40

Data packets from all flows traverse the bottleneck
router in the same direction. TCP connection statistics
were logged using SIFTR [11] under FreeBSD and
Web10g [6] under Linux. Packets captured at both hosts
with tcpdump were used to calculate non-smoothed
end to end RTT estimates using CAIA’s passive RTT
estimator, SPP [12], [13].

E. Measuring throughput

‘Instantaneous’ throughput is an approximation derived
from the actual bytes transferred during constant (but
essentially arbitrary) windows of time. Long windows
smooth out the effect of transient bursts or gaps in packet
arrivals. Short windows can result in calculated through-
put that swings wildly (but not necessarilly meaning-
fully) from one measurement interval to the next.

®No loss beyond that induced by bottleneck buffer congestion.

CAIA Technical Report 140630A

June 2014

For this report we use a window two seconds wide,
sliding forward in steps of 0.5 second.

III. THREE NEWRENO FLOWS, AQM, NOo ECN

This section illustrates how varying the AQM influences
the observed throughput and overall RTT versus time
when three NewReno flows share the bottleneck. ECN
is disabled for these trials.

A. Throughput, cwnd and RTT versus time — two runs
with pfifo queue management

By way of introduction we first review the result of three
NewReno flows sharing a 10Mbps bottleneck using pfifo
queue management, a 180-packet bottleneck buffer and
either a 20ms RTT path or a 200ms RTT path. The main
message here is that in real testbeds no two trial runs will
be identical.

1) Three flows over a 20ms RTT path: Figure 2 illus-
trates how three NewReno flows behave during two runs
over a 20ms RTT (10ms OWD) path.

Figures 2a (throughput vs time) and 2c¢ (cwnd vs time)
show the three flows very crudely sharing the botteneck
capacity during periods of overlap in the first run.
Flows 1 and 2 share somewhat equally from ¢ = 20
to ¢ = 40, but the sharing becomes noticeably unequal
once Flow 3 joins at ¢ = 40.

Figures 2b and 2d show a broadly similar chain of events
in the repeat (second) run, with some differences. During
the period from ¢ = 40 to t = 80 Flow 2 has a greater
share of overall capacity than it did in the first run.

Queuing delays impact on all traffic sharing the dominant
congested bottleneck. Figures 2e and 2f show the RTT
cycling between ~100ms and ~240ms, with the RTT
experienced by each flow tracking closely over time
within each run.’

2) Three flows over a 200ms RTT path: Figure 3 repeats
the previous experiment but this time with a 200ms RTT.
As with the 20ms case, capacity sharing is crude to the
point of being quite unequal.

Figures 3a and 3b show that Flow 1 is still able to reach
full capacity relatively quickly before Flow 2 starts, and

"At 10Mbps the 180-packet buffer full of 1500-byte TCP Data
packets adds ~216ms to the OWD in the Data direction. The return
(ACK) path’s buffer is mostly empty, adding little to the RTT.

page 3 of 22

Flow 3 is (mostly) able to utilise the path’s full capacity
once Flows 1 and 2 cease.

Relative to Figure 2, the impact of a 200ms base RTT is
evident in the slower periodic cycling of cwnd vs time
(Figures 3c and 3d) and total RTT vs time (Figures 3e
and 3f). In this case, cwnd must rise to a far higher
value to ‘fill the pipe’ and queuing delays increase RTT
by up to ~220ms over the base 200ms.

CAIA Technical Report 140630A June 2014 page 4 of 22

12000 —

@L0000

o

o)

§ 8000

£6000

o

3

£ 4000
2000

700
600
500
400
300

CWND (k)

200
100

250

200

150

100

SPP RTT (ms)

50

e Flow1(172.16.10.3 5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

: ;'\ s ’ x
. ; " xw
¢ 'ahw"' Py :
; #58
I I I I I I
0 20 40 60 80 100
Time (s)

(a) Throughput vs time — first run

o Flow1(172.16.10.3 5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

vl

0 20 40 60 80 100

Time (s)

(c) cwnd vs time — first run

o Flow 1 (172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

M1/

40 60 80 100

Time (s)

(e) Total RTT vs time — first run

12000 —

70000

o

o)

3} 8000

£6000

(o]

3

£ 4000
2000

700
600
500
400
300

CWND (k)

200
100

250

200

150

100

SPP RTT (ms)

50

e Flow 1 (172.16.10.3_5000) x Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
— ._ SSICEIOCEIEREN
¢ x
x
- . «
: . x
- x
. X
N W :\\}%W
. e x
N
- X .
X .
x . x
— % .
I I I I I I
0 20 40 60 80 100
Time (s)

(b) Throughput vs time — second run

o Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

% Flow 3 (172.16.10.4_5008)

(it

0 20 40 60 80 100
Time (s)
(d) cwnd vs time — second run
o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
/MY
. *
" X [
I I I I I I
0 20 40 60 80 100
Time (S)

(f) Total RTT vs time — second run

Figure 2: Two separate runs of three overlapping FreeBSD NewReno flows over a 20ms RTT path with 10Mbps
rate limit and 180-packet pfifo bottleneck buffer (no ECN).

CAIA Technical Report 140630A

June 2014

page 5 of 22

o Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008) e Flow 1 (172.16.10.3_5000) x Flow 3 (172.16.10.4_5008)
12000] Flow 2 (172.16.10.2_5004) 12000 1 Flow 2 (172.16.10.2_5004)
o) a .
i) - . f * 8 © s * x
<8000 - . ; <8000 | - . x
=} . 2, x = .
= 4 Mo x = 4 W " x
cg 6000 o e, x % 6000 y)m
o - ° 5 x 9 -1 ° X
E 4000 f)‘” . £ 4000 }x
2000 , RM@# . 2000 . e .
04° * x 0-° S&g .-
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(a) Throughput vs time — first run (b) Throughput vs time — second run
o Flow1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008) o Flow1(172.16.10.3_5000) x Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004) Flow 2 (172.16.10.2_5004)
600 — 600 —
3 3
a 400 — a 400 —
P P
5 / 5
(O] O /
200 — 200 —
j)/ |
0 0
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(c) cwnd vs time — first run (d) cwnd vs time — second run
500 . Flow 1 (172.16.10.3_5000) % Flow 3 (172.16.10.4_5008) 500 . Flow 1 (172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004) Flow 2 (172.16.10.2_5004)
400 —] 400 — , i
m w . x
£ 300 A / / £ 300 A §
o . x =) 4 x
= X = x x
a 200 — a 200 — i ¥
o o
n ()]
100 — 100 —
0 0
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(e) Total RTT vs time — first run (f) Total RTT vs time — second run

Figure 3: Two separate runs of three overlapping FreeBSD NewReno flows over a 200ms RTT path with 10Mbps
rate limit and 180-packet pfifo bottleneck buffer (no ECN).

CAIA Technical Report 140630A June 2014 page 6 of 22

B. Throughput and RTT versus time — one NewReno run
with PIE, codel and fq_codel

Next we look at the impact of PIE, codel and fq_codel on
flow behaviour over time.® First we look at a path having
a 20ms RTT, a 10Mbps bottleneck rate limit and either
a 180-packet or 2000-packet bottleneck buffer. Then we
look at the same path with a 200ms RTT and 180-packet
bottleneck buffer. Relative to the pfifo case (Figures 2e
and 2f), all three AQM schemes provide better capacity
sharing with significantly reduced bottleneck queuing
delays.

1) Using a 180-packet bottleneck buffer @ 20ms RTT:
Through the PIE bottleneck, Figure 4a show all three
flows sharing broadly equally during periods of overlap,
with moderate fluctuations over time. A similar result
is observed in Figure 4c when traversing a codel bottle-
neck. In contrast, Figure 4e shows that using an fq_codel
bottleneck results in each flow achieving quite consistent
throughput and balanced sharing.

Figures 4b, 4d and 4f illustrate the RTT experienced
by each flow over time using PIE, codel and fq_codel
respectively. Ignoring the brief spikes induced during
slow-start as Flows 2 and 3 begin, PIE sees a somewhat
wider range of RTT than codel or fq_codel (within
~30ms of base RTT for PIE and within ~10-15ms of
base RTT for codel and fq_codel).

2) Using a 2000-packet bottleneck buffer @ 20ms RTT:
Section III-B1’s use of a 180-packet buffer is signifi-
cantly lower than the default codel and fq_codel buffer
sizes of 1K and 10K packets respectively. Figure 5 shows
a repeat of the trials in Section III-B1 (Figure 4), but now
with the bottleneck buffer bumped up from 180 to 2000
packets to look for any differences.

Visual inspection shows that overall the results are es-
sentially the same. PIE, codel and fq_codel all meet their
goals of keeping the RTTs low despite the significantly
higher bottleneck buffer space (and with much the same
range of absolute values as in Figure 4) . Throughput
and capacity sharing also appears reasonably similar to
what was achieved with a 180-packet buffer.

3) Using 180-packet bottleneck buffers @ 200ms RTT:
Figure 6 show the performance over time when the
path’s base RTT is bumped up to 200ms.” Total RTT in

8Keeping in mind that detailed evaluations of PIE, codel and
fq_codel are a matter for future study.
9Noting that codel’s defaults are set assuming a 100ms RTT [4].

CAIA Technical Report 140630A

June 2014

Figures 6b, 6d and 6f is not unlike the 20ms case — all
show RTT spiking at the start of each flow, then (mostly)
stabilising much closer to the path’s base RTT.

Figures 6a, 6¢ and 6e show an interesting result relative
to the pfifo case in Figure 3. In all three cases Flow 1
struggles to reach full path capacity during its first 20
seconds, and Flow 3 struggles during the final 20 sec-
onds. A likely explanation can be found in Figures 7a, 7b
and 7c (cwnd vs time) — Flow 1 switches from slow-
start (SS) to congestion avoidance (CA) mode at a much
lower cwnd than was the case with pfifo.

Using PIE, Flow 1’s cwnd initially spikes to ~600kB,
but this is quickly followed by two drops, resulting in
CA mode taking over at ~150kB (much lower than the
switch to CA mode at ~300kB in Figure 3c).'” In both
the codel and fq_codel cases Flow 1’s cwnd rises to
~270kB before being hit with a drop and switching to
CA mode at ~135kB.

4) Discussion: Neither PIE nor codel can eliminate
interactions between the flows, as they manage all flows
in a common queue. Nevertheless they are clearly better
than pfifo in terms of reducing the queuing delays,
keeping RTT low for both 180-packet and 2000-packet
bottleneck buffers.

The behaviour with fq_codel is a little more complex.
Individual flows are hashed into one of 1024 different
internal queues, which are serviced by a modified form
of deficit round robin scheduling. Codel is used to
manage the sojourn times of packets passing through
each internal queue. Figure 4e reflects the fact that each
flow was mapped into a separate codel-managed queue,
and hence received an approximately equal share of the
bottleneck bandwidth.!!

Figure 6 illustrates the potential value of tuning AQM pa-
rameters for paths having high RTTs. Although Figure 7
showed each AQM keeping total RTTs low, throughput
clearly takes a hit due to the AQMs triggering a switch
from SS to CA modes ‘too early’.

The same double-drop was observed in a 2™ run of this trial.
""'The impact of different flows being hashed into the same internal
queue is a matter for future study

page 7 of 22

12000 —

@L0000

o

o)

f%sooo

£6000

o

3

£ 4000
2000

12000 —

@L0000

o

o)

f;sooo

£6000

o

3

£ 4000

|_
2000

12000 —

BL0000

o

o)

< 8000

5

£6000

[@)]

>

24000
2000

o Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
° @
2 . x E
x N—r
|_
. X E
* . ;'.c . % o X o
[2] X X
RN TNl 3 7
o “ o \'}
e %- x
. SN .
F .
*
. b3
I I I I I I
0 20 40 60 80 100
Time (s)
(a) Throughput vs time — PIE
o Flow1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
Fameansmentansad SRS /(;)\
* * x é
. . x E
S A
LY ! we (% x s o
: T, ﬁf“‘x&g a
X . . ')&(x U)
" Mﬁ X
. b X
X .
x
I I I I I I
0 20 40 60 80 100
Time (s)
(c) Throughput vs time — codel
o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
Semegm— s 3 —~
. x g
A R I~
. * m
e e X AR
B " X o
. X (%)
x . *
. . .
% . X
I I I I I I
0 20 40 60 80 100
Time (s)

(e) Throughput vs time — fq_codel

150

100

50

150

100

50

150

100

50

o Flow1(172.16.10.3 5000) x Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

100
Time (s)

(b) Total RTT vs time — PIE

o Flow1(172.16.10.3_5000) x Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

L

I I I I I I
0 20 40 60 80 100

Time (s)

(d) Total RTT vs time — codel

e Flow1(172.16.10.3_5000) X Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

0 20 40 60 80 100
Time (S)

(f) Total RTT vs time — fq_codel

Figure 4: Three overlapping FreeBSD NewReno flows over a 20ms RTT path with 10Mbps rate limit and 180-packet
bottleneck buffer managed by PIE, codel or fq_codel (no ECN)

CAIA Technical Report 140630A

June 2014

page 8 of 22

12000 —

@L0000

o

o)

f%sooo

£6000

o

3

£ 4000
2000

12000

@L0000

o

o)

f;sooo

£6000

o

3

£ 4000

|_
2000

12000 —

BL0000

o

o)

< 8000

5

£6000

[@)]

>

24000
2000

o Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
P BRI
x ~~
b 3 (2]
: . x =
*
. .r’. a \-.. :< x: * x o
J S TS T R T o
LS SRR S SRR 5 %
b5 S .
. S . ol
i S
X .. x
I I I I I I
0 20 40 60 80 100
Time (s)
(a) Throughput vs time — PIE
o Flow1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
Sememmmes SRR —~~
x (2]
. S
X x ~—
. . x lI:
Y z
D hdAs))((X&(X o
. @ e v A ’& o
- § "
. x .
x .
X X
. .
I I I I I I
0 20 40 60 80 100
Time (s)
(c) Throughput vs time — codel
o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
SRRRRERAROANRD OSSN —~~
x (2]
y S
X X ~—
. M [
x =
. o m
Jue———— * AR
. ot)
. X .
X .
X . x
I I I I I I
0 20 40 60 80 100
Time (s)

(e) Throughput vs time — fq_codel

150

100

50

150

100

50

150

100

)]
o

 Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

% Flow 3 (172.16.10.4_5008)

100
Time (s)

(b) Total RTT vs time — PIE

o Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

.

I I I I I I
40 60 80 100

% Flow 3 (172.16.10.4_5008)

Time (s)

(d) Total RTT vs time — codel

o Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

AN

I I I I I I
40 60 80 100

% Flow 3(172.16.10.4_5008)

Time (s)

(f) Total RTT vs time — fq_codel

Figure 5: Three overlapping FreeBSD NewReno flows over a 20ms RTT path with 10Mbps rate limit and 2000-
packet bottleneck buffer managed by PIE, codel or fg_codel (no ECN)

CAIA Technical Report 140630A

June 2014

page 9 of 22

o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
12000 — Flow 2 (172.16.10.2_5004)
#0000 400
Q' .
e} R /(;)\
<8000 4 -, / . . £ 300
= R
v —
26000 o -7 SR E
= Sy oA o 200
2 4000 - - oo B 1 o
= % x g @g‘ N
2000 | . " ;x / 100
0 I I—, ¢ x
T T T T T T 0
0 20 40 60 80 100
Time (s)
(a) Throughput vs time — PIE
® Flow 1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
12000] Flow 2 (172.16.10.2_5004)
Z0000 — 400
o
S . %
<= 8000 — £ 300
E e
£ 6000 . £ E
S : S a7 : o 200
2 4000 — ,//gz o
|-E . 4 L w > 0
2000 - . EV 100
0-° # . *
T T T T T T 0
0 20 40 60 80 100
Time (s)
(c) Throughput vs time — codel
® Flow1(172.16.10.3_5000) X Flow 3 (172.16.10.4_5008)
12000 — Flow 2 (172.16.10.2_5004)
Z0000 — 400
o .
2 M
<= 8000 — ‘ % £ 300
El ' £
£6000 o . E
2 1 X x & 200
S 4000 o ! e EE o
g : P ; 5
) Y 100
2000 . 3]
0 ¢ X s *
T T T T T T 0
0 20 40 60 80 100
Time (s)

(e) Throughput vs time — fq_codel

 Flow 1 (172.16.10.3_5000)

Flow 2 (172.16.10.2_5004)

% Flow 3 (172.16.10.4_5008)

- 4 — WM
I I I I I I
0 20 40 60 80 100
Time (s)
(b) Total RTT vs time — PIE
e Flow 1(172.16.10.3 5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

I I I I I I
0 20 40 60 80 100
Time (s)

(d) Total RTT vs time — codel
o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
L '
I I I I I I
0 20 40 60 80 100
Time (S)

(f) Total RTT vs time — fq_codel

Figure 6: Three overlapping FreeBSD NewReno flows over a 200ms RTT path with 10Mbps rate limit and 180-
packet bottleneck buffer managed by PIE, codel or fq_codel (no ECN)

CAIA Technical Report 140630A

June 2014

page 10 of 22

e Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
600 —
<3
n 400 —
zZ
=
(@)
200 —
| 71
. I
T T T T T T
0 20 40 60 80 100
Time (s)
(a) cwnd vs time — PIE
o Flow1(172.16.10.3_5000) X Flow 3 (172.16.10.4_5008)
300 — Flow 2 (172.16.10.2_5004)
250 —
< 200
g
s 150 —
O
100 — / /
50 — r
0 —
T T T T T T
0 20 40 60 80 100
Time (s)
(b) cwnd vs time — codel
o Flow1(172.16.10.3_5000) X Flow 3 (172.16.10.4_5008)
300] Flow 2 (172.16.10.2_5004)
250 —
< 200
g
s 150 —
(]
100 —
50 r (/
O —
T T T T T T
0 20 40 60 80 100
Time (s)

(c) cwnd vs time — fq_codel

Figure 7: Three overlapping FreeBSD NewReno flows
over a 200ms RTT path at 10Mbps and 180-packet
bottleneck buffer managed by PIE, codel or fg_codel

CAIA Technical Report 140630A June 2014

page 11 of 22

IV. THREE CUBIC FLOWS, AQM, NO ECN

This section illustrates how varying the AQM influences
the observed throughput and overall RTT versus time
when three CUBIC flows share the bottleneck. ECN is
disabled for these trials.

A. Throughput, cwnd and RTT versus time — two runs
with pfifo queue management

By way of introduction we first review the result of
three CUBIC flows sharing a 10Mbps bottleneck using
pfifo queue management, a 180-packet bottleneck buffer
and either a 20ms RTT path or a 200ms RTT path. As
with the NewReno trials, no two CUBIC trial runs are
identical.

1) Three flows over a 20ms RTT path: Figure 8 illus-
trates how three CUBIC flows behave during two runs
over a 20ms RTT (10ms OWD) path.

Figures 8a (throughput vs time) and 8c (cwnd vs time)
show the three flows very poorly sharing the botteneck
capacity during periods of overlap in the first run.
Flows 1 dominates Flow 2 from ¢t = 20 to ¢t = 40, with
Flow 2 only slowly gaining a share of bandwidth. The
sharing remains noticeably unequal after Flow 3 joins at
t = 40.

Figures 8b and 8d show a broadly similar chain of events
in the repeat (second) run, differing only in small details
(e.g. from ¢t = 40 to ¢ = 80 Flow 2 has a greater share
of overall capacity than it did in the first run relative to
Flow 3). No doubt a third run would differ again in the
precise sequence of events.

Queuing delays impact on all traffic sharing the domi-
nant congested bottleneck. Figures 8e and 8f show the
RTT cycling up to ~240ms, with the RTT experienced
by each flow tracking closely over time within each
run.

2) Three flows over a 200ms RTT path: Figure 9 repeats
the previous experiment but this time with a 200ms RTT.
As with the 20ms case, capacity sharing is crude to
the point of being quite unequal. But we also see an
interesting artefact of how Linux allocates buffer space
at the receiver.

Figures 9a and 9b show that Flow 1 is still able to reach
full capacity relatively quickly before Flow 2 starts, and
Flow 3 is (mostly) able to utilise the path’s full capacity
once Flows 1 and 2 cease. However, Figures 9¢ and 9d

CAIA Technical Report 140630A

June 2014

reveal that cwnd now behaves a little differently to what
we observed in Figure 8.

Although our patched iperf requests a 600kB receiver
buffer, the Linux kernel advertises a smaller maximum
receiver window. Consequently, from ¢ = 0 to t = 20
Flow 1’s cwnd rises quickly then stabilises at just
over 400kB — a level sufficient to ‘fill the pipe’ (and
achieve full path utilisation) but insufficient to overflow
the bottleneck’s pfifo buffer. Thus we do not see any
loss-induced cyclical cwnd behaviour during this period.
After t = 80 only Flow 3 remains, with its own cwnd
similarly capped at a value high enough to fill the pipe
but unable to over-fill the bottleneck buffer.

Between ¢t = 20 and ¢ = 80 the combination of flows
means the aggregate traffic is now capable of overfilling
the bottleneck buffer, leading to classic, cyclical cwnd
behaviour. Figures 9e and 9f show the expected RTT
variations during this time, as queuing delays increase
RTT by up to ~220ms over the base 200ms.

Closer inspection reveals that the RTT variations be-
tween ¢ = 0 and ¢ = 20 and after { = 80 are largely
due to the source sending line-rate bursts towards the
bottleneck. Figure 10 provides a close-up of the RTT
in the first few seconds of Flow 1. Between ¢ = 0 and
t = 1.5 we see six bursts of RTT ramping up from
~200ms to increasingly higher values during the initial
growth of cwnd. These occur once every 200ms. Then
every ~116ms from roughly ¢ = 2.0 onwards the RTT
repeatedly ramps up from ~228ms to ~338ms.

page 12 of 22

o Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008) e Flow 1 (172.16.10.3_5000) x Flow 3 (172.16.10.4_5008)
12000] Flow 2 (172.16.10.2_5004) 12000 1 Flow 2 (172.16.10.2_5004)
©l0000 — ——— ‘©l0000 — ea—
g : g TN x
<8000 * <8000 -~ . x
§_ ° b.. i x *g'_ . .\'
=y 6000 — ""\\ M =y 6000 — "1-_ S .
S . W x S . *\h— %
o _ X o - .
= 4000 % = 4000 SR
= . — b3 x
2000 * ..,,f”'p{ 2000 * -
0 : x 0 — X : *
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(a) Throughput vs time — first run (b) Throughput vs time — second run
350 —{ ¢ Flow1(172.16.10.3 5000) X Flow 3 (172.16.10.4_5008) 350 —* Flow1(1721610.3.5000) x Flow3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004) Flow 2 (172.16.10.2_5004)
300 — 300 —
250 — : 250 —
< /1 &
5 200 — /"]/1 o 200 —
P P
< 150 — Yw_w_ = 150
(@) (@)
100 — 100 —
50 — 50 —
] 3
s 1 X
0 0
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(c) cwnd vs time — first run (d) cwnd vs time — second run
e Flow 1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008) e Flow1(172.16.10.3_5000) * Flow 3(172.16.10.4_5008)
Flow 2 (172.16.10.2_5004) Flow 2 (172.16.10.2_5004)
250 } 250 ;
1 i1 B
@ 200 — w 200 L I *
é X é /] I o x
X I * x
E 150 = 150 I | x :
o x o * Y
& 100 & 100 - l X
n ()]
50 — 50
0 0
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(e) Total RTT vs time — first run (f) Total RTT vs time — second run

Figure 8: Two separate runs of three overlapping Linux CUBIC flows over a 20ms RTT path with 10Mbps rate
limit and 180-packet pfifo bottleneck buffer (no ECN).

CAIA Technical Report 140630A June 2014 page 13 of 22

o Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008) e Flow 1 (172.16.10.3_5000) x Flow 3 (172.16.10.4_5008)
12000] Flow 2 (172.16.10.2_5004) 12000 1 Flow 2 (172.16.10.2_5004)
e} . % ko) -. X
<8000 | * i ; . <8000 | * % - .
5 . = .
26000 - . T A x £6000 — ! x
2 Y A - - S ke X
£ 4000 s P © 4000 "
< . . < . g,
(= < " = X X
2000 — M 2000 — M
0 — : &%(- x 0 4 : >§(° s
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(a) Throughput vs time — first run (b) Throughput vs time — second run
500 1. Flow 1 (172.16.10.3_5000) x Flow 3 (172.16.10.4_5008) 500 e Flow 1 (172.16.10.3_5000) * Flow 3(172.16.10.4_5008)
Flow 2 (172.16.10.2_5004) Flow 2 (172.16.10.2_5004)
400 — " 400 — ,k
£ 300 i ; < 300 4 |
[a) : o :
S 2o] | fry el I i
5 200 — = 5 200 — y 7}
100 o § 100 |
H H
i :
0 0
I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(c) cwnd vs time — first run (d) cwnd vs time — second run
500 . Flow 1 (172.16.10.3_5000) % Flow 3 (172.16.10.4_5008) 500 . Flow 1 (172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004) Flow 2 (172.16.10.2_5004)
400 , ‘ﬁ g 400 i
@ Ty . ’ m
£ 300 i 'l’-! s £ 300 -
— ! I . ~ ’
= =]
: I | : £
a 200 — : x o 200 —
o o
n ()]
100 — 100 —
0 0
I I I I I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(e) Total RTT vs time — first run (f) Total RTT vs time — second run

Figure 9: Two separate runs of three overlapping Linux CUBIC flows over a 200ms RTT path with 10Mbps rate
limit and 180-packet pfifo bottleneck buffer (no ECN).

CAIA Technical Report 140630A June 2014 page 14 of 22

o Flow 1 (172.16.10.3_5000)

/i,

300 —

200 - !

SPP RTT (ms)

I I I I I I
0.0 0.5 1.0 15 2.0 2.5

Time (s)

Figure 10: Closeup of Figure 9¢ from ¢t =0to ¢t = 2.5
(Flow 1 alone, not overfilling the bottleneck’s buffer)

B. Throughput and RTT versus time — one CUBIC run
with PIE, codel and fq_codel

Next we look at the impact of PIE, codel and fq_codel
on flow behaviour over time in Figure 11. Again, the
path has a base 20ms RTT (10ms OWD), a 10Mbps
bottleneck rate limit and either a 180-packet or 2000-
packet bottleneck buffer. Relative to the pfifo case (Fig-
ures 8e and 8f), all three AQM schemes provide better
capacity sharing with significantly reduced bottleneck
queuing delays.

1) Using a 180-packet bottleneck buffer: Figure 1la
show all three flows sharing broadly equally during peri-
ods of overlap through a PIE bottleneck, with moderate
fluctuations over time. A similar result is observed in
Figure 11c when traversing a codel bottleneck. In con-
trast, Figure 11e shows that using an fq_codel bottleneck
results in each flow achieving quite consistent throughput
and almost ‘perfect’ sharing.

Figures 11b, 11d and 11f illustrate the RTT experienced
by each flow over time using PIE, codel and fq_codel
respectively. Ignoring the brief spikes induced during
slow-start as Flows 2 and 3 begin, PIE sees a somewhat
wider range of RTT than codel or fq_codel (within
~30ms of base RTT for PIE and within ~10-15ms of
base RTT for codel and fq_codel).

2) Using a 2000-packet bottleneck buffer: As noted
in Section III-B2, a 180-packet buffer is significantly
smaller than the recommended defaults for codel and
fq_codel. Figure 12 repeats Section IV-B’s trials with
the bottleneck buffer increased to 2000 packets.

CAIA Technical Report 140630A

June 2014

Visual inspection shows that overall the results are es-
sentially the same. PIE, codel and fq_codel all meet their
goals of keeping the RTTs low despite the significantly
higher bottleneck buffer space (and with much the same
range of absolute values as in Figure 11) . Throughput
and capacity sharing also appears reasonably similar to
what was achieved with a 180-packet buffer.

3) Using 180-packet bottleneck buffers @ 200ms RTT:
Figure 13 show the performance over time when the
path’s base RTT is bumped up to 200ms.'? Total RTT in
Figures 13b, 13d and 13f is not unlike the 20ms case — all
show RTT spiking at the start of each flow, then (mostly)
stabilising much closer to the path’s base RTT.!3

Figures 13a, 13c and 13e show an interesting result
relative to the pfifo case in Figure 9. In all three cases
Flow 1 struggles to reach full path capacity during
its first 20 seconds, and Flow 3 struggles during the
final 20 seconds. A likely explanation can be found in
Figures 14a, 14b and 14c (cwnd vs time) — Flow 1
switches from slow-start (SS) to congestion avoidance
(CA) mode at a much lower cwnd than was the case
with pfifo.

Using PIE, Flow 1’s cwnd initially spikes to ~390kB,
but this is quickly followed by two drops, resulting in
CA mode taking over at ~150kB (lower than the level
required for full path utilisation). In both the codel and
fq_codel cases Flow 1’s cwnd rises to ~340kB before
being hit with a drop and switching to CA mode at
~150kB.

4) Discussion: As noted in Section III-B4, we again see
all three AQM algorithms providing significant reduction
in queuing delays. And fq_codel again provides balanced
capacity sharing as individual flows are hashed into sepa-
rate codel-managed queues, then serviced by a modified
form of deficit round robin scheduling. And again we
see the potential value of tuning AQM parameters for
paths having high RTTs. Although Figure 14 showed
each AQM keeping total RTTs low, throughput takes a
hit due to the AQMs triggering a switch from SS to CA
modes ‘too early’.

2Noting that codel’s defaults are set assuming a 100ms RTT [4].
The less smooth PIE results in Figure 13b need further investi-
gation.

page 15 of 22

12000 —

@L0000

o

o)

f;sooo

£6000

o

3

£ 4000
2000

12000

@L0000

o

o)

f;sooo

£6000

o

3

£ 4000

|_
2000

12000
BL0000
o
o)
< 8000
5
£6000
[@)]
>
24000
2000

o Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
- S s——
x X
] x
° . x
—] %X
LN TS gﬂ’{& g X %
. : o a,ﬁ', &(% «
N W S o ’g%?
ko R
—° e, x
* .
I I I I I I
0 20 40 60 80 100
Time (s)
(a) Throughput vs time — PIE
o Flow1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
_ |+ Flow2(172.16.10.2_5004)
] X
. x
- . .
° X
a x
1 YA %
. ae o Mg&% .
| . A x
% w2 géﬁ(
% e
. ot S 3
; .
I I I I I I
0 20 40 60 80 100
Time (s)

(c) Throughput vs time — codel

o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
_|+ Flow2(@72.16.102_5004)
—] —]
- x *
. ° X
—] . x X
° X
— ;‘ x
NI
. x .
x . x
X .
— X
I I I I I I
0 20 40 60 80 100

Time (s)

(e) Throughput vs time — fq_codel

SPP RTT (ms)

SPP RTT (ms)

SPP RTT (ms)

150

100

50

150

100

50

150

100

50

o Flow1(172.16.10.3 5000) x Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

I I I I I I
0 20 40 60 80 100

Time (s)

(b) Total RTT vs time — PIE

o Flow1(172.16.10.3_5000) x Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

I I I I I I
0 20 40 60 80 100

Time (s)

(d) Total RTT vs time — codel

e Flow1(172.16.10.3_5000) X Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)

N

0 20 40 60 80 100
Time (S)

(f) Total RTT vs time — fq_codel

Figure 11: Three overlapping Linux CUBIC flows over a 20ms RTT path with 10Mbps rate limit and 180-packet
bottleneck buffer managed by PIE, codel or fq_codel (no ECN)

CAIA Technical Report 140630A

June 2014

page 16 of 22

o Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
12000] Flow 2 (172.16.10.2_5004)
‘BL0000 | e emm———— 150
s . x x m
<8000 ; x £
3 ’ x « = 100
26000 Y . i
=) < s s R
> . vz o % o
© 4000 - N A |5
= bl Tl 50
2000 — ° <Y .
0 : 0
I I I I I I
0 20 40 60 80 100
Time (s)
(a) Throughput vs time — PIE
o Flow1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
12000] Flow 2 (172.16.10.2_5004)
_ 150
g.OOOO s -
< 8000 . . . E
5 . . x E 100
26000 PRy 'E
(@) VWYV X Xise X
3 ; @l T x XX o
£ 4000 — ; ") b
2000 — - : .
0 - x . 0
T T T T T T
0 20 40 60 80 100
Time (s)
(c) Throughput vs time — codel
o Flow 1 (172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
12000 — Flow 2 (172.16.10.2_5004)
0000 o —— JR— 150
o . x * 2}
< 8000 . : E
3 ' x F 100
£6000 . - E
g . . :)%--? &
o _ . x x
£ 4000 E 5 e
2000 - ° : ? «
0 - x 0
T T T T T T
0 20 40 60 80 100
Time (s)

(e) Throughput vs time — fq_codel

 Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

% Flow 3 (172.16.10.4_5008)

(b) Total RTT vs time — PIE

I I
40 60

Time (s)

80 100

o Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

% Flow 3 (172.16.10.4_5008)

.

(d) Total RTT vs time — codel

I I
40 60

Time (s)

80 100

o Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

% Flow 3(172.16.10.4_5008)

—

I I
40 60

Time (s)

80 100

(f) Total RTT vs time — fq_codel

Figure 12: Three overlapping Linux CUBIC flows over a 20ms RTT path with 10Mbps rate limit and 2000-packet
bottleneck buffer managed by PIE, codel or fq_codel (no ECN)

CAIA Technical Report 140630A

June 2014

page 17 of 22

12000 —

BL0000
o
o)
=} 8000

=}
£6000
o

3
£ 4000
2000

12000 —

70000
o
<8000
£6000
o
>
2 4000
e

2000

12000 —

70000
[oR
o)
<8000
£6000
o
=}
2 4000
e

[
2000

o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
. 400
Loee X% g
TR o @
VA x £ 300
t” -'-"'5.,' Y &g‘g x ||:
A * T 00
) k! M o
S * o
. n
o M{"‘F ” 100
: % . .
T T T T T T 0
0 20 40 60 80 100
Time (s)
(a) Throughput vs time — PIE
® Flow 1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
400
K x % @
PO RS £ 300
e - T E
. y o Bl B > 200
P Yt | &
o, [. 100
T T T T T T 0
0 20 40 60 80 100
Time (s)
(c) Throughput vs time — codel
® Flow1(172.16.10.3_5000) X Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
400
: X n
PO o £ 300
S N
. . *a)sllg X n:
. g 200
g fs % & &
x . x 100
T T T T T T 0
0 20 40 60 80 100
Time (s)

(e) Throughput vs time — fq_codel

 Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

% Flow 3 (172.16.10.4_5008)

I I I I I I
40 60 80 100

Time (s)
(b) Total RTT vs time — PIE

o Flow 1 (172.16.10.3_5000)
Flow 2 (172.16.10.2_5004)

% Flow 3 (172.16.10.4_5008)

WS B

0 20 40 60 80 100
Time (s)
(d) Total RTT vs time — codel
o Flow 1(172.16.10.3_5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
A
]
I I I I I I
0 20 40 60 80 100
Time (S)

(f) Total RTT vs time — fq_codel

Figure 13: Three overlapping Linux CUBIC flows over a 200ms RTT path with 10Mbps rate limit and 180-packet
bottleneck buffer managed by PIE, codel or fq_codel (no ECN)

CAIA Technical Report 140630A

June 2014

page 18 of 22

e Flow1(172.16.10.3_5000) * Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
400 ,
5 3
< 300 — l
2w 1M
= 200 + ¢ ,J
O :
100 H : -
0 —
I I I I I I
0 20 40 60 80 100
Time (s)
(a) cwnd vs time — PIE
400 —{ e Flow1(172.16.10.3 5000) X Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
300 — !
g .
S 200 - 1
; (]
(@) : 3
o N
100 — ‘,i_/-,” 5
: o
$ ¥
0 —
I I I I I I
0 20 40 60 80 100
Time (s)
(b) cwnd vs time — codel
400 — ¢ Flow1(172.16.10.3 5000) % Flow 3 (172.16.10.4_5008)
Flow 2 (172.16.10.2_5004)
300 — l
= .
S 200 !
= : L y
(@) : ‘
100 - : ~
O —
I I I I I I
0 20 40 60 80 100
Time (s)

(c) cwnd vs time — fq_codel

Figure 14: Three overlapping Linux CUBIC flows over
a 200ms RTT path at 10Mbps and 180-packet bottleneck
buffer managed by PIE, codel or fq_codel

CAIA Technical Report 140630A June 2014

page 19 of 22

V. CONCLUSIONS AND FUTURE WORK

This report describes some simple, staggered-start three-
flow TCP tests run on the CAIA TCP testbed using
TEACUP v0.4.x. We provide preliminary observations
as to the consequences of three overlapping TCP flows
sharing a 10Mbps bottleneck in the same direction.
We compare results where the bottleneck uses pfifo
(tail-drop), PIE, codel or fq_codel queue management
schemes with default settings. This report is only in-
tended to illustrate the plausibly correct behaviour of our
testbed when three flows share a symmetric path.

As expected, NewReno and CUBIC induced significant
queuing delays when sharing a pfifo-based bottleneck.
Using PIE, codel and fq_codel at their default settings
resulted in observed RTT dropping dramatically without
significant impact on achieved throughput. Due to its
hashing of flows into separate queues, fq_codel provides
smoother capacity sharing between the three flows than
either codel or PIE.

One topic for further analysis is the way in which default
settings for pie, codel and fq_codel caused some sub-
optimal performance when the path RTT was 200ms.
(Initial analysis suggests this occurs due to the AQMs
triggering a switch from slow start to congestion avoid-
ance mode earlier than is desirable on such a path.)
Another topic for further analysis is to explore the impact
of enabling ECN on the end hosts.

Detailed analysis of why we see these specific results is
a subject for future work. Future work will also include
varying any PIE and fq_codel parameters that may
plausibly be tuned, and explore both asymmetric path
latencies and asymmetric path bottleneck bandwidths
with concurrent (competing) TCP flows. Future work
may also attempt to draw some conclusions about which
of the tested TCP and AQM algorithms are ‘better’ by
various metrics.

ACKNOWLEDGEMENTS

TEACUP v0.4.x was developed at CAIA by Sebastian
Zander, as part of a project funded by Cisco Systems and
titled “Study in TCP Congestion Control Performance In
A Data Centre”. This is a collaborative effort between
CAIA and Mr Fred Baker of Cisco Systems.

CAIA Technical Report 140630A

June 2014

APPENDIX A
FREEBSD HOST TCP STACK CONFIGURATION

For the NewReno and CDG trials:

uname

FreeBSD newtcp3.caia.swin.edu.au 9.2-RELEASE FreeBSD
9.2-RELEASE #0 r255898: Thu Sep 26 22:50:31 UTC 2013
root@bake.isc.freebsd.org:/usr/obj/usr/src/sys/GENERIC
amd64

System information from sysctl

kern.ostype: FreeBSD

kern.osrelease: 9.2-RELEASE
kern.osrevision: 199506

kern.version: FreeBSD 9.2-RELEASE #0
r255898: Thu Sep 26 22:50:31 UTC 2013
root@bake.isc.freebsd.org:

/usr/obj/usr/src/sys/GENERIC

net.inet.tcp information from sysctl

net.inet.tcp.rfcl323: 1
net.inet.tcp.mssdflt: 536
net.inet.tcp.keepidle: 7200000
net.inet.tcp.keepintvl: 75000
net.inet.tcp.sendspace: 32768
net.inet.tcp.recvspace: 65536
net.inet.tcp.keepinit: 75000
net.inet.tcp.delacktime: 100
net.inet.tcp.vémssdflt: 1220
net.inet.tcp.cc.available: newreno
net.inet.tcp.cc.algorithm: newreno
net.inet.tcp.hostcache.purge: 0
net.inet.tcp.hostcache.prune: 5
net.inet.tcp.hostcache.expire: 1
net.inet.tcp.hostcache.count: 0
net.inet.tcp.hostcache.bucketlimit: 30
net.inet.tcp.hostcache.hashsize: 512
net.inet.tcp.hostcache.cachelimit: 15360
net.inet.tcp.recvbuf_max: 2097152
net.inet.tcp.recvbuf_inc: 16384
net.inet.tcp.recvbuf_auto: 1
net.inet.tcp.insecure_rst: 0
net.inet.tcp.ecn.maxretries: 1
net.inet.tcp.ecn.enable: 0
net.inet.tcp.abc_1l_var: 2
net.inet.tcp.rfc3465: 1
net.inet.tcp.experimental.initcwndl0: 0
net.inet.tcp.rfc3390: 1
net.inet.tcp.rfc3042: 1
net.inet.tcp.drop_synfin: 0
net.inet.tcp.delayed_ack: 1
net.inet.tcp.blackhole: 0
net.inet.tcp.log_in_vain: 0
net.inet.tcp.sendbuf_max: 2097152
net.inet.tcp.sendbuf_inc: 8192
net.inet.tcp.sendbuf_auto: 1
net.inet.tcp.tso: 0
net.inet.tcp.path_mtu_discovery: 1
net.inet.tcp.reass.overflows: 0
net.inet.tcp.reass.cursegments: 0
net.inet.tcp.reass.maxsegments: 1680
net.inet.tcp.sack.globalholes: 0
net.inet.tcp.sack.globalmaxholes: 65536
net.inet.tcp.sack.maxholes: 128
net.inet.tcp.sack.enable: 1
net.inet.tcp.soreceive_stream: 0
net.inet.tcp.isn_reseed_interval: 0
net.inet.tcp.icmp_may_rst: 1
net.inet.tcp.pcbcount: 6
net.inet.tcp.do_tcpdrain: 1
net.inet.tcp.tcbhashsize: 512
net.inet.tcp.log_debug: 0
net.inet.tcp.minmss: 216
net.inet.tcp.syncache.rst_on_sock_fail: 1
net.inet.tcp.syncache.rexmtlimit: 3
net.inet.tcp.syncache.hashsize: 512
net.inet.tcp.syncache.count: 0
net.inet.tcp.syncache.cachelimit: 15375
net.inet.tcp.syncache.bucketlimit: 30

page 20 of 22

net.inet.tcp.syncookies_only: 0
net.inet.tcp.syncookies: 1
net.inet.tcp.timer_race: 0
net.inet.tcp.per_cpu_timers: 0
net.inet.tcp.rexmit_drop_options: 1
net.inet.tcp.keepcnt: 8
net.inet.tcp.finwait2_timeout: 60000
net.inet.tcp.fast_finwait2_recycle: 0
net.inet.tcp.always_keepalive: 1
net.inet.tcp.rexmit_slop: 200
net.inet.tcp.rexmit_min: 30
net.inet.tcp.msl: 30000
net.inet.tcp.nolocaltimewait: 0
net.inet.tcp.maxtcptw: 5120

APPENDIX B
LINUX HOST TCP STACK CONFIGURATION

For the Cubic trials:

uname

Linux newtcp3.caia.swin.edu.au 3.9.8-desktop-weblOg
#1 SMP PREEMPT Wed Jan 8 20:20:07 EST 2014 x86_64
x86_64 x86_64 GNU/Linux

System information from sysctl

e kernel.osrelease = 3.9.8-desktop-weblOg

e kernel.ostype = Linux

e kernel.version = #1 SMP PREEMPT Wed Jan 8
20:20:07 EST 2014

net.ipv4.tcp information from sysctl

net.ipv4.tcp_abort_on_overflow = 0
net.ipvé4.tcp_adv_win_scale = 1
net.ipvéd.tcp_allowed_congestion_control = cubic reno
net.ipvéd.tcp_app_win = 31
net.ipvé4.tcp_available_congestion_control = cubic reno
net.ipvé.tcp_base_mss = 512
net.ipvé4.tcp_challenge_ack_limit = 100
net.ipvé4.tcp_congestion_control = cubic
net.ipvé4.tcp_cookie_size = 0
net.ipvé4.tcp_dma_copybreak = 4096
net.ipvéd.tcp_dsack = 1
net.ipvé.tcp_early_retrans = 2
net.ipvéd.tcp_ecn = 0

net.ipvd.tcp_fack = 1
net.ipv4.tcp_fastopen = 0
net.ipv4.tcp_fastopen_key = e8a015b2-e29720c6-4cedeff7-83c84664
net.ipvéd.tcp_fin_timeout = 60
net.ipvéd.tcp_frto = 2
net.ipvéd.tcp_frto_response = 0
net.ipvéd.tcp_keepalive_intvl = 75
net.ipvé.tcp_keepalive_probes = 9
net.ipvéd.tcp_keepalive_time = 7200
net.ipvéd.tcp_limit_output_bytes = 131072
net.ipvé4.tcp_low_latency = 0
net.ipv4.tcp_max_orphans = 16384
net.ipvéd.tcp_max_ssthresh = 0
net.ipvé4.tcp_max_syn_backlog = 128
net.ipvéd.tcp_max_tw_buckets = 16384
net.ipvéd.tcp_mem = 89955 119943 179910
net.ipvé.tcp_moderate_rcvbuf = 0
net.ipvé.tcp_mtu_probing = 0
net.ipvd.tcp_no_metrics_save = 1
net.ipv4.tcp_orphan_retries = 0
net.ipv4.tcp_reordering = 3
net.ipvé4.tcp_retrans_collapse = 1
net.ipvéd.tcp_retriesl 3
net.ipvé4.tcp_retries2 15
net.ipvéd.tcp_rfcl337 = 0
net.ipvéd.tcp_rmem = 4096 87380 6291456
net.ipvé4.tcp_sack = 1
net.ipvé.tcp_slow_start_after_idle = 1
net.ipvé.tcp_stdurg = 0

net.ipvéd.tcp_syn_retries = 6
net.ipv4.tcp_synack_retries = 5
net.ipvéd.tcp_syncookies = 1
net.ipvé4.tcp_thin_dupack = 0
net.ipv4.tcp_thin_linear_timeouts = 0

CAIA Technical Report 140630A

June 2014

net.ipvé.tcp_timestamps = 1
net.ipvé.tcp_tso_win_divisor = 3
net.ipvé.tcp_tw_recycle = 0
net.ipvé.tcp_tw_reuse = 0
net.ipvé.tcp_window_scaling = 1
net.ipvé.tcp_wmem = 4096 65535 4194304
net.ipvé.tcp_workaround_signed_windows = 0

tep_cubic information from /sys/module

/sys/module/tcp_cubic/parameters/beta:717
/sys/module/tcp_cubic/parameters/hystart_low_window:16
/sys/module/tcp_cubic/parameters/fast_convergence:1
/sys/module/tcp_cubic/parameters/initial_ssthresh:0
/sys/module/tcp_cubic/parameters/hystart_detect:3
/sys/module/tcp_cubic/parameters/bic_scale:41
/sys/module/tcp_cubic/parameters/tcp_friendliness:1
/sys/module/tcp_cubic/parameters/hystart_ack_delta:2
/sys/module/tcp_cubic/parameters/hystart:1
/sys/module/tcp_cubic/version:2.3

APPENDIX C
LINUX ROUTER CONFIGURATION

The bottleneck router is an 8-core machine, patched (as
noted in Section V.D of [2]) to tick at 10000Hz for high
precision packet scheduling behaviour.

uname

Linux newtcpb.caia.swin.edu.au
3.10.18-vanilla-10000hz #1 SMP PREEMPT Fri
Nov 8 20:10:47 EST 2013 x86_64 x86_64 x86_64
GNU/Linux

System information from sysctl

e kernel.osrelease = 3.10.18-vanilla-10000hz
e kernel.ostype = Linux
kernel.version = #1 SMP PREEMPT Fri Nov 8
20:10:47 EST 2013

Bottleneck / AQM configuration

As noted in Section III.H of [1], we use separate stages
to apply artificial delay and rate shaping respectively and
separate pipelines for traffic flowing in either direction
through the bottleneck router. The selected AQM is
applied on ingress to the rate shaping section (the 3.10.18
kernel’s pfifo, PIE or fq_codel). For example, when
configured for a 180-packet bottleneck buffer:

qdisc when using PIE:

gdisc pie 1002: dev ifb0 parent 1:2 limit 180p
target 20 tupdate 30 alpha 2 beta 20

qdisc when using codel:

gdisc codel 1002: dev ifb0 parent 1:2 limit 180p
target 5.0ms interval 100.0ms ecn

qdisc when using fq_codel:

gdisc fg_codel 1002: dev ifb0 parent 1:2 limit
180p flows 1024 quantum 1514 target 5.0ms interval
100.0ms ecn

page 21 of 22

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]
(10]

(11]

[12]

[13]

CAIA Technical Report 140630A

REFERENCES

S. Zander, G. Armitage, “TEACUP v0.4 - A System for
Automated TCP Testbed Experiments,” Centre for Advanced
Internet Architectures, Swinburne University of Technology,
Tech. Rep. 140314A, March 2014. [Online]. Available: http:
/Icaia.swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf

S. Zander, G. Armitage, “CAIA Testbed for TCP Experiments,”
Centre for Advanced Internet Architectures, Swinburne
University of Technology, Tech. Rep. 140314B, March 2014.
[Online]. Available: http://caia.swin.edu.au/reports/140314B/
CAIA-TR-140314B.pdf

R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian,
F. Baker, and B. V. Steeg, “PIE: A Lightweight Control Scheme
To Address the Bufferbloat Problem,” February 2014. [Online].
Available: http://tools.ietf.org/html/draft-pan-aqm-pie-01

K. Nichols and V. Jacobson, “Controlled Delay Active
Queue Management,” March 2014. [Online]. Available:
http://tools.ietf.org/html/draft-nichols-tsvwg-codel-02

T. Hgiland-Jgrgensen, P. McKenney, D. Taht,
J. Gettys, and E. Dumazet, “FlowQueue-Codel,”
March 2014. [Online]. Available: http://tools.ietf.org/html/
draft-hoeiland-joergensen-aqm-fq-codel-00

“The Web10G Project.” [Online]. Available: http://web10g.org

“PIE AQM source code.” [Online]. Available: ftp://ftpeng.
cisco.com/pie/linux_code/pie_code

“iproute2 source code.” [Online]. Available: http://www.kernel.
org/pub/linux/utils/net/iproute2

“iperf Web Page.” [Online]. Available: http://iperf.fr/

“NEWTCP Project Tools.” [Online]. Available: http://caia.swin.
edu.au/urp/newtcp/tools.html

L. Stewart, “SIFTR - Statistical Information For TCP
Research.” [Online]. Available: http://www.freebsd.org/cgi/
man.cgi?query=siftr

S. Zander and G. Armitage, “Minimally-Intrusive Frequent
Round Trip Time Measurements Using Synthetic Packet-Pairs,”
in The 38th IEEE Conference on Local Computer Networks
(LCN 2013), 21-24 October 2013.

A. Heyde, “SPP Implementation,” August 2013. [Online].
Available: http://caia.swin.edu.au/tools/spp/downloads.html

June 2014

page 22 of 22

http://caia.swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf
http://caia.swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf
http://caia.swin.edu.au/reports/140314B/CAIA-TR-140314B.pdf
http://caia.swin.edu.au/reports/140314B/CAIA-TR-140314B.pdf
http://tools.ietf.org/html/draft-pan-aqm-pie-01
http://tools.ietf.org/html/draft-nichols-tsvwg-codel-02
http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00
http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00
http://web10g.org
 ftp://ftpeng.cisco.com/pie/linux_code/pie_code
 ftp://ftpeng.cisco.com/pie/linux_code/pie_code
http://www.kernel.org/pub/linux/utils/net/iproute2
http://www.kernel.org/pub/linux/utils/net/iproute2
http://iperf.fr/
 http://caia.swin.edu.au/urp/newtcp/tools.html
 http://caia.swin.edu.au/urp/newtcp/tools.html
http://www.freebsd.org/cgi/man.cgi?query=siftr
http://www.freebsd.org/cgi/man.cgi?query=siftr
http://caia.swin.edu.au/tools/spp/downloads.html

	Introduction
	Testbed topology and test conditions
	Hosts and router
	Host operating system and TCP combinations
	Emulated path and bottleneck conditions
	Bottleneck AQM
	Path conditions

	Traffic generator and logging
	Measuring throughput

	Three NewReno flows, AQM, no ECN
	Throughput, cwnd and RTT versus time -- two runs with pfifo queue management
	Three flows over a 20ms RTT path
	Three flows over a 200ms RTT path

	Throughput and RTT versus time -- one NewReno run with PIE, codel and fq_codel
	Using a 180-packet bottleneck buffer @ 20ms RTT
	Using a 2000-packet bottleneck buffer @ 20ms RTT
	Using 180-packet bottleneck buffers @ 200ms RTT
	Discussion

	Three CUBIC flows, AQM, no ECN
	Throughput, cwnd and RTT versus time -- two runs with pfifo queue management
	Three flows over a 20ms RTT path
	Three flows over a 200ms RTT path

	Throughput and RTT versus time -- one CUBIC run with PIE, codel and fq_codel
	Using a 180-packet bottleneck buffer
	Using a 2000-packet bottleneck buffer
	Using 180-packet bottleneck buffers @ 200ms RTT
	Discussion

	Conclusions and Future Work
	Appendix A: FreeBSD Host TCP stack configuration
	Appendix B: Linux Host TCP stack configuration
	Appendix C: Linux router configuration
	References

