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Abstract—This technical report summarises a basic set
of two-flow and three-flow TCP experiments designed to
illustrate the operation of our TEACUP testbed under
teacup-v0.4.8 using pfifo (tail-drop), PIE and fq_codel
queue management schemes at the bottleneck router.
We primarily observe that both PIE and fq_codel cause
competing loss-based TCP flows to induce substantially less
bottleneck queuing delays than pfifo, without materially
impacting on throughput. We test FreeBSD’s NewReno,
Linux’s CUBIC and Windows 7’s default TCP. This report
does not attempt to make any meaningful comparisons be-
tween the tested TCP algorithms, nor rigorously evaluate
the consequences of using PIE or fq_codel.

Index Terms—TCP, fq_codel, PIE, pfifo, experiments,
testbed, TEACUP

I. INTRODUCTION!

CAIA has developed TEACUP? [1] to support a com-
prehensive experimental evaluation of different TCP
congestion control algorithms. Our actual testbed is
described in [2]. This report summarises a basic set of
two-flow and three-flow TCP experiments that illustrate
the impact of pfifo (tail-drop), PIE [3] and fq_codel [4]
(based on codel [5]) queue management schemes at the
bottleneck router.

The trials use four or six hosts to create two or three
competing flows respectively. The bottleneck in each
case is a Linux-based router using netem and tc to
provide independently configurable bottleneck rate limits
and artificial one-way delay (OWD). The trials run over a
small range of emulated path conditions using FreeBSD
NewReno, Linux CUBIC and (for the two-flow case)
Windows 7’s default TCP.

"Erratum: Online copy updated July 13™ 2014 to clarify use of
Windows 7’s default TCP.
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We primarily observe that both PIE and fq_codel cause
competing loss-based TCP flows to induce substantially
less bottleneck queuing delays than pfifo, without mate-
rially impacting throughput. This report does not attempt
to make any meaningful comparisons between the tested
TCP algorithms, nor do we explore the differences
between PIE and fq_codel in any detail.

The rest of the report is organised as follows. Section II
summarises the the testbed topology and physical con-
figuration for these trials. We then summarise the impact
of base RTT, buffer size and AQM on throughput and
induced RTT for two flows in Section III and three flows
in Section IV. Section V concludes and outlines future
work.

II. TESTBED TOPOLOGY AND TEST CONDITIONS

Trials involved either two or three concurrent TCP
connections pushing data through a single bottleneck
for 60 or 90 seconds. The path has different emulated
delays, bottleneck speeds and AQM algorithms. Here we
document the testbed topology, operating systems, TCP
algorithms and path conditions.

A. Hosts and router

Figure 1 (from [2]) shows a logical picture of
the testbed’s networks®. The router provides a con-
figurable bottleneck between three hosts on net-
work 172.16.10.0/24 and three hosts on network
172.16.11.0/24. Each host is a triple-boot machine that
can run 64-bit Linux (openSUSE 12.3 with kernel 3.9.8
and web10g patch [6]), 64-bit FreeBSD (FreeBSD 9.2-
RELEASE #0 r255898) or 64-bit Windows 7 (with
Cygwin 1.7.25 for unix-like control of the host).

3Each network is a switched Gigabit Ethernet VLAN on a common
managed switch.
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For all experiments the bottleneck router runs 64-bit
Linux (openSUSE 12.3 with kernel 3.10.18 patched to
run at 10000 Hz). We used hosts on 172.16.10/24 as the
data sources and hosts on 172.16.11/24 as the data sinks.
See [2] for more technical details of how the router and
each host was configured.
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Figure 1: Testbed overview

B. Host operating system and TCP combinations

The two-flow trials used used three different operating
systems, and four different TCP algorithms.

e FreeBSD: Newreno* and CDG’ (v0.1)
e Linux: CUBIC
e Windows 7: default TCP

The three-flow trials used used two different operating
systems, and three different TCP algorithms.®

e FreeBSD: Newreno and CDG (v0.1)
e Linux: CUBIC

See Appendices A, B and C for details of the TCP stack
configuration parameters used for the FreeBSD, Linux
and Windows 7 end hosts respectively.

C. Emulated path and bottleneck conditions

The bottleneck router uses netem and t ¢ to concatenate
an emulated path with specific one way delay (OWD)
and an emulated bottleneck whose throughput is limited
to a particular rate. Packets sit in a 1000-packet buffer
while being delayed (to provide the artificial OWD), then

*http://www.freebsd.org/cgi/man.cgi?query=cc_newreno

Shttp://www.freebsd.org/cgi/man.cgi?query=cc_cdg

®Due to temporary instability in the testbed we have no Windows 7
results for the three-flow trials.
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sit in a smaller “bottleneck buffer” of configurable size
(in packets) while being rate-shaped to the bottleneck
bandwidth.

1) Bottleneck AQOM: We repeated each trial using the
Linux 3.10.18 kernel’s implementations of pfifo, PIE and
fq_codel algorithms in turn to manage the bottleneck
buffer (queue) occupancy.

As noted in Section V.D of [2], we compiled PIE into the
3.10.18 kernel from source [7] dated July 2nd 2013,” and
included a suitably patched iproute2 (v3.9.0) [8].

See Appendix D for more details on the bottleneck
router’s AQM configuration. Since they are largely in-
tended to require minimal operator control or tuning,
we used PIE and fq_codel at their default settings.
As PIE and fq_codel are under active development,
future experiments will likely requiring re-patching and
updating of the router’s kernel.

2) Path conditions: We emulated the following path and
bottleneck conditions:

e 0% intrinsic loss rate®

e One way delay: 0, 10, 40 and 100ms

o Bottleneck bandwidths: 2, 6 and 10Mbps’

o Bottleneck buffer sizes: 50, 90 and 180 pkts

These conditions were applied bidirectionally, using
separate delay and rate shaping stages in the router
for traffic in each direction. Consequently, the path’s
intrinsic (base) RTT is always twice the configured
OWD. The 180-packet bottleneck buffer was greater than
the path’s intrinsic BDP (bandwidth delay product) for
all combinations of bandwidth and OWD.

D. Traffic generator and logging

Each concurrent TCP flow was generated using iperf
2.0.5 [9] on all three OSes, patched to enable correct
control of the send and receive buffer sizes [10]. For
each flow, iperf requests 600Kbyte socket buffers to
ensure cwnd growth was not artificially limited by the
maximum receive window.

The two-flow trials launched concurrent 90-second flows
between the following host pairs:

"MODULE_INFO(srcversion, "1F54383BFCB 1F4F3D4C7CE6");
81.e. no additional packet loss beyond that induced by congestion
of the bottleneck’s buffer.

The three-flow trials only used the 10Mbps rate limit.

page 2 of 23


http://www.freebsd.org/cgi/man.cgi?query=cc_newreno
http://www.freebsd.org/cgi/man.cgi?query=cc_cdg

e Hostl—Host4
¢ Host2—Host5

The three-flow trials launched concurrent 60-second
flows between the following host pairs (Figure 1):

e Hostl —Host4
e Host2—Host5
¢ Host3—Host6

Data packets from all flows traverse the bottleneck router
in the same direction.

TCP connection statistics were logged using SIFTR [11]
under FreeBSD, Webl0Og [6] under Linux and TCP
EStats under Windows.

Packets captured at both hosts with tcpdump were used
to calculate non-smoothed end to end RTT estimates us-
ing CAIA’s passive RTT estimator, SPP [12], [13].

E. Measuring throughput

‘Instantaneous’ throughput is an approximation derived
from the actual bytes transferred during constant (but
essentially arbitrary) windows of time. Long windows
smooth out the effect of transient bursts or gaps in packet
arrivals. Short windows can result in calculated through-
put that swings wildly (but not necessarilly meaning-
fully) from one measurement interval to the next.

For these experiments we use a two-second wide window
sliding forward in steps of 0.5 second.

III. IMPACT OF AQM ON RTT AND THROUGHPUT
WITH TWO CONCURRENT FLOWS

This section summarises the impact of varying the
AQM and path parameters — base OWD, bottleneck
buffer size and speed — on achievable throughput and
overall RTT when two flows share the bottleneck. We
ran two NewReno flows (section III-A), two CUBIC
flows (section III-B), two Windows 7 default TCP flows
(section III-C) and one NewReno with one CDG v0.1
flows flows (section III-D).

A. Two NewReno flows

Two competing NewReno flows ran for 90 seconds
through the bottleneck between FreeBSD hosts.
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1) RTT and throughput at 10Mbps: Figure 2a shows the
RTT experienced by two competing FreeBSD NewReno
flows through a 10Mbps bottleneck. As expected, the use
of pfifo results in both flows experiencing extremely high
queueing delays. However, using either PIE or fq_codel
effectively drops the experienced RTT down almost to
the path’s intrinsic RTT.

Figure 2b shows that the throughput achieved by each
flow is broadly the same using all three AQMs. Nev-
ertheless, pfifo still creates a more unpredictable shar-
ing of bandwidth, whilst fq_codel appears to provide
exceedingly tight bandwidth sharing at Oms and 10ms
OWD.

2) RTT and throughput at 2, 6 and 10Mbps and 20ms
RTT: Figure 3a shows the variation of path RTT versus
AQM with 2Mbps, 6Mbps and 10Mbps bottleneck rate
limits at 10ms OWD (20ms RTT). The dramatic benefit
of either PIE or fq_codel at lower bottleneck rates is
quite clear. Figure 3b shows the variation in achieved
throughput under the same circumstances. Both PIE
and fq_codel achieve their RTT improvement with no
meaningful impact on performance.!’

3) Throughput, cwnd and RTT versus time — two runs
with pfifo: Boxplots do not provide insight into how
characteristics like throughput and RTT actually vary
over the lifetime of an individual flow. Figure 4 illustrates
how NewReno behaves during two runs of the same
experimental conditions — 20ms RTT (10ms OWD),
10Mbps bottleneck rate limit, pfifo queue management
of a 180-packet bottleneck buffer. In real testbeds no two
trial runs will be identical.

Figures 4a (throughput vs time) and 4c (cwnd vs time)
show the first run experiences multiple periods where
the two flows diverge and re-converge on half of the
available path capacity. Figures 4b and 4d show this
divergence occurring only once in the second run. Nev-
ertheless, both runs show a similar spread of throughput
over time. Given that queuing delays are imposed on
all traffic sharing the dominant congested bottleneck,
Figures 4e and 4f show the RTT fluctuations of both
flows (around a median RTT just under 200ms) track
closely over time within each run.

4) Throughput, cwnd and RTT versus time — one run
with PIE and fq_codel: Next we look briefly at the

OFuture work will evaluate why, for low OWDs, throughput
appears to fluctuate more over time when the bottleneck is managed
by PIE rather than fq_codel.
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Figure 2: Two FreeBSD NewReno flows — 180 packet bottleneck buffer [del: OWD in ms, agm: AQM scheme]

impact of PIE and fq_codel on flow behaviour over time
in Figure 5.!' Again, the path has a base 20ms RTT
(10ms OWD), 10Mbps bottleneck rate limit and 180-
packet bottleneck buffer.

Figure 5a show each flow’s throughput through the PIE
bottleneck fluctuating relatively evenly over time, while
Figure 5b shows each flow’s throughput being equal
and constant through the fq_codel bottleneck. This is

""Keeping in mind that clarity around the different impacts of PIE
and fq_codel are a matter for future work.
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consistent with the aggregate results in Figure 2b. At
the same time, Figures 5c and 5d show cwnd cycling
relatively rapidly for PIE, and bouncing very rapidly over
a small range with fq_codel.

The nett effect on RTT is shown in Figures 5c¢ and 5d
— RTT cycles relatively rapidly between 20ms to 60ms
for PIE, and bounces very rapidly between 20ms and
40ms with fq_codel. In both cases the reduction relative
to RTT over a pfifo bottleneck (Figures 4e and 4f) is
dramatic.
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B. Two CUBIC flows

Two competing CUBIC flows ran for 90 seconds through
the bottleneck between Linux hosts.

1) RTT and throughput at 10Mbps: Figure 6a shows the
RTT experienced by two competing Linux CUBIC flows
through a 10Mbps bottleneck. As expected, the use of
pfifo results in both flows experiencing extremely high
queueing delays. However, using either PIE or fq_codel
effectively drops the RTT down almost to the path’s
intrinsic RTT.

Figure 6b shows that the throughput achieved by each

flow is broadly the same using all three AQMs. As
with the NewReno case, pfifo still creates a more unpre-

dictable sharing of bandwidth, whilst fq_codel appears
to provide exceedingly tight bandwidth sharing at Oms
and 10ms OWD.

2) RTT and throughput at 2, 6 and 10Mbps and 20ms
RTT: Figure 7a shows the variation of path RTT versus
AQM with 2Mbps, 6Mbps and 10Mbps bottleneck rate
limits at 10ms OWD (20ms RTT). The dramatic benefit
of either PIE or fq_codel at lower bottleneck rates is
quite clear. Figure 7b shows the variation in achieved
throughput under the same circumstances. Both PIE
and fq_codel achieve their RTT improvement with no
meaningful impact on performance.
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3) Throughput, cwnd and RTT versus time — two runs
with pfifo: As we did for the NewReno experiments, we
illustrate in Figure 8 how CUBIC behaves during two
runs of the same experimental conditions — 20ms RTT
(10ms OWD), 10Mbps bottleneck rate limit, pfifo queue
management of a 180-packet bottleneck buffer.

Figures 8a (throughput vs time) and 8c (cwnd vs time)
show the two concurrent flows experiencing slightly
unbalance sharing of available path capacity over time.
In the second run (Figures 8b and 8d) this happens again,
but plays out somewhat differently over time. Given
that queuing delays are imposed on all traffic sharing
the dominant congested bottleneck, the RTT fluctuations
(Figures 8e and 8f) of both flows track closely over time
within each run.

4) Throughput, cwnd and RTT versus time — one run
with PIE and fq_codel: Next we look briefly at the
impact of PIE and fq_codel on flow behaviour over time
in Figure 9. Again, the path has a base 20ms RTT (10ms
OWD), 10Mbps bottleneck rate limit and 180-packet
bottleneck buffer.

Figure 9a show each flow’s throughput through the PIE
bottleneck fluctuating relatively evenly over time, while
Figure 9b shows each flow’s throughput being equal
and constant through the fq_codel bottleneck. This is
consistent with the aggregate results in Figure 6b. At
the same time, Figures 9c and 9d show cwnd cycling
relatively rapidly for PIE, and bouncing around over a
very small range with fq_codel.

The nett effect on RTT is shown in Figures 9c¢ and 9d
— RTT cycles relatively rapidly around 25ms to 55ms
for PIE, and bounces between 20ms and 30ms with
fq_codel. In both cases the reduction relative to RTT over
a pfifo bottleneck (Figures 4e and 4f) is dramatic.
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Figure 9: Two concurrent Linux CUBIC flows over a 20ms RTT path with 10Mbps rate limit and 180-packet
bottleneck buffer managed by PIE or fgq_codel
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C. Two Win7 default TCP flows

Two competing default TCP flows ran for 90 seconds
through the bottleneck between Windows 7 hosts.

Figure 10a shows the RTT experienced by two compet-
ing flows through a 10Mbps bottleneck. As expected, the
use of pfifo results in both flows experiencing extremely
high queueing delays. However, using either PIE or
fq_codel effectively drops the RTT down almost to the
path’s intrinsic RTT.

Figure 10b shows that the throughput achieved by each
flow is broadly the same using all three AQMs. As

with the NewReno case, pfifo still creates a more unpre-
dictable sharing of bandwidth, whilst fq_codel appears

to provide exceedingly tight bandwidth sharing at Oms
and 10ms OWD.
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D. One NewReno and one CDG flow

Figure 11a shows the RTT experienced by a FreeBSD
NewReno and FreeBSD CDG v0.1 flow competing with
each other through a 10Mbps bottleneck. The loss-
based TCP flow effectively over-rides CDG’s attempts
to minimise the shared bottleneck queue’s length, so
with pfifo queue management both flows experience
extremely high queueing delays. However, as seen with
the NewReno and CUBIC cases, using either PIE or
fq_codel queue management effectively drops the ex-
perienced RTT down almost to the path’s intrinsic
RTT.

Figure 11b shows that choice of AQM also has a
noticeable impact on the sharing of capacity between
the CDG and NewReno flows. With pfifo, CDG vO0.1
is dominated by the NewReno flow. With PIE and
fq_codel the CDG v0.1 flow achieves a modest share
of the available bandwidth at low OWDs. CDG’s poor
performance at higher OWDs is consistent with the poor
single-flow CDG behaviour also seen in [14] at higher
OWDs.'?

"2Clarity around the behaviour of CDG v0.1 at higher OWDs is a
matter for future work.
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Figure 10: Two Win7 default TCP flows — 180 packet bottleneck buffer [del: OWD in ms, agm: AQM scheme]
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Figure 11: NewReno and CDG v0.1 flow — 180 packet bottleneck buffer [del: OWD in ms, agm: AQM scheme]
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IV. IMPACT OF AQM ON RTT AND THROUGHPUT
WITH THREE CONCURRENT FLOWS

This section summarises the impact of varying the AQM
and path parameters — base OWD, bottleneck buffer size
and speed — on achievable throughput and overall RTT
when three flows share the bottleneck for 60 seconds. We
ran three FreeBSD NewReno (section IV-A), three Linux
CUBIC (section IV-B) and a mix of FreeBSD NewReno
and CDG vO0.1 flows (section IV-C).

A. Three NewReno flows

Figure 12a shows the RTT experienced by three com-

peting FreeBSD NewReno flows through a 10Mbps
bottleneck. As expected, the use of pfifo results in all

three flows experiencing extremely high queueing delays.
However, using either PIE or fq_codel effectively drops
the experienced RTT down almost to the path’s intrinsic
RTT.

Figure 12b shows that the throughput achieved by
each flow is broadly the same using all three AQMs.
Nevertheless, pfifo still creates a more unpredictable
sharing of bandwidth, whilst fq_codel appears to provide
exceedingly tight bandwidth sharing at Oms and 10ms
OWD.
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B. Three CUBIC flows

Figure 13a shows the RTT experienced by three compet-
ing Linux CUBIC flows through a 10Mbps bottleneck.
As expected, the use of pfifo results in all three flows
experiencing extremely high queueing delays. However,
using either PIE or fq_codel effectively drops the RTT
down almost to the path’s intrinsic RTT.

Figure 13b shows that the throughput achieved by each
flow is broadly the same using all three AQMs. As
with the NewReno case, pfifo still creates a more unpre-
dictable sharing of bandwidth, whilst fq_codel appears
to provide exceedingly tight bandwidth sharing at Oms
and 10ms OWD.

C. One CDG and two NewReno flows

Figure 14a shows the RTT experienced by one FreeBSD
CDG v0.1 flow competing with two FreeBSD NewReno
flows through a 10Mbps bottleneck. As would be ex-
pected, the use of pfifo results in all three flows expe-
riencing extremely high queueing delays. And as seen
with the NewReno and CUBIC cases, using either PIE
or fq_codel effectively drops the RTT down almost to
the path’s intrinsic RTT.

Figure 14b shows that choice of AQM has a noticeable
impact on the sharing of capacity between the CDG and
NewReno flows. With pfifo, CDG v0.1 is dominated by
the two NewReno flows. But with PIE and fq_codel,
the CDG flow achieves respectible share of the available
bandwidth at low OWDs. CDG’s poor performance at
higher OWDs is consistent with the poor single-flow
behaviour also seen in [14] at higher OWDs.
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Figure 12: Three FreeBSD NewReno flows @ 10Mbps and 180 pkt buffer [OWD (del): Oms, 10ms, 40ms and
100ms. AQM (aqm): pfifo, PIE and fq_codel]
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V. CONCLUSIONS AND FUTURE WORK

This report describes some simple multi-flow TCP tests
run on the CAIA TCP testbed using TEACUP v0.4.8. We
provide preliminary observations as to the consequences
of two or three TCP flows concurrently sharing a 2Mbps,
6Mbps and 10Mbps bottleneck in the same direction.
The bottleneck uses pfifo (tail-drop), PIE or fq_codel
queue management schemes with default settings.

As expected, FreeBSD NewReno, Linux CUBIC and
Windows 7 default TCP all induced significant queuing
delays when sharing a pfifo-based bottleneck. Using PIE
and fq_codel at their default settings resulted in observed
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RTT dropping significantly (almost to the path’s intrinsic
RTT) without significant impact on achieved through-
put.

This report is only intended to illustrate the plausibly
correct behaviour of our testbed when two and three con-
current flows share a symmetric path. Detailed analysis
of why we see these specific results is a subject for future
work. Future work will also include varying any PIE and
fq_codel parameters that may plausibly be tuned, and
explore both asymmetric path latencies and asymmetric
path bottleneck bandwidths with concurrent (competing)
TCP flows. Future work may also attempt to draw some
conclusions about which of the tested TCP and AQM
algorithms are ‘better’ by various metrics.
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APPENDIX A
FREEBSD HOST TCP STACK CONFIGURATION

net.inet.tcp.log_debug: 0
net.inet.tcp.minmss: 216
net.inet.tcp.syncache.rst_on_sock_fail: 1
net.inet.tcp.syncache.rexmtlimit: 3
net.inet.tcp.syncache.hashsize: 512
net.inet.tcp.syncache.count: 0
net.inet.tcp.syncache.cachelimit: 15375
net.inet.tcp.syncache.bucketlimit: 30
net.inet.tcp.syncookies_only: 0
net.inet.tcp.syncookies: 1
net.inet.tcp.timer_race: 0
.inet.tcp.per_cpu_timers: 0
net.inet.tcp.rexmit_drop_options: 1
net.inet.tcp.keepcnt: 8
net.inet.tcp.finwait2_timeout: 60000
net.inet.tcp.fast_finwait2_recycle: 0
net.inet.tcp.always_keepalive: 1
net.inet.tcp.rexmit_slop: 200
net.inet.tcp.rexmit_min: 30
net.inet.tcp.msl: 30000
net.inet.tcp.nolocaltimewait: 0
net.inet.tcp.maxtcptw: 5120

For the NewReno and CDG trials:

uname

FreeBSD newtcp3.caia.swin.edu.au 9.2-RELEASE FreeBSD
9.2-RELEASE #0 r255898: Thu Sep 26 22:50:31 UTC 2013
root@bake.isc.freebsd.org:/usr/obj/usr/src/sys/GENERIC
amd64

System information from sysctl

00000000000 OCEOGEOSGNOSEOSEOSEOSETOSOIOIOPS
=3
0]
o

kern.ostype: FreeBSD
kern.osrelease: 9.2-RELEASE

kern.osrevision: 199506 APPENDIX B

kern.version: FreeBSD 9.2-RELEASE #0 L H TCP
r255898: Thu Sep 26 22:50:31 UTC 2013 INUX HOST STACK CONFIGURATION

root@bake.isc.freebsd.org:
/usr/obj/usr/src/sys/GENERIC For the Cubic trials:

net.inet.tcp information from sysctl

uname
net.inet.tcp.rfcl323: 1
mﬁ'#EEiCpisyﬁi§’5igmom Linux newtcp3.caia.swin.edu.au 3.9.8-desktop-weblOg
net.inet.tcp.keepidle: . .
net.inet.tcp.keepintvl: 75000 #1 SMP PREEMPT Wed ..?Ian 8 20:20:07 EST 2014 x86_64
net.inet.tcp.sendspace: 32768 x86_64 x86_64 GNU/Linux
net.inet.tcp.recvspace: 65536
net.inet.tcp.keepinit: 75000
net.inet.tcp.delacktime: 100 . .
net.inet .tep.vémssdflt: 1220 System information from sysctl
net.inet.tcp.cc.available: newreno, cdg
net.inet.tcp.cc.algorithm: cdg (Or newreno) ® kernel.osrelease = 3.9.8-desktop-weblOg
net.inet.tcp.cc.cdg.loss_compete_hold_backoff: 5 e kernel ostype = Linux
net.inet.tcp.cc.cdg.loss_compete_consec_cong: 5 . _
net . inet .tep.cc.cdg. smoothing factor: 8 e kernel.version = #1 SMP PREEMPT Wed Jan 8
net.inet.tcp.cc.cdg.exp_backoff_scale: 3 20:20:07 EST 2014

net.inet.tcp.cc.cdg.beta_loss: 50
net.inet.tcp.cc.cdg.beta_delay: 70
net.inet.tcp.cc.cdg.alpha_inc: 0 . . .
net . inet .tep.ce.cdg . version: 0.1 net.ipv4.tcp information from sysctl
net.inet.tcp.hostcache.purge: 0
net.inet.tcp.hostcache.prune: 5
net.inet.tcp.hostcache.expire: 1
net.inet.tcp.hostcache.count: 0
net.inet.tcp.hostcache.bucketlimit: 30
net.inet.tcp.hostcache.hashsize: 512
net.inet.tcp.hostcache.cachelimit: 15360
net.inet.tcp.recvbuf_max: 2097152
net.inet.tcp.recvbuf_inc: 16384
net.inet.tcp.recvbuf_auto: 1
.inet.tcp.insecure_rst: 0
net.inet.tcp.ecn.maxretries: 1
net.inet.tcp.ecn.enable: 0
net.inet.tcp.abc_1_var: 2
net.inet.tcp.rfc3465: 1
net.inet.tcp.experimental.initcwndl0: 0
net.inet.tcp.rfc3390: 1
net.inet.tcp.rfc3042: 1
net.inet.tcp.drop_synfin: 0
net.inet.tcp.delayed_ack: 1
net.inet.tcp.blackhole: 0
net.inet.tcp.log_in_vain: 0
net.inet.tcp.sendbuf_max: 2097152
net.inet.tcp.sendbuf_inc: 8192
net.inet.tcp.sendbuf_auto: 1
net.inet.tcp.tso: 0
net.inet.tcp.path_mtu_discovery: 1
net.inet.tcp.reass.overflows: 0
net.inet.tcp.reass.cursegments: 0
net.inet.tcp.reass.maxsegments: 1680
net.inet.tcp.sack.globalholes: 0
net.inet.tcp.sack.globalmaxholes: 65536
net.inet.tcp.sack.maxholes: 128
net.inet.tcp.sack.enable: 1
net.inet.tcp.soreceive_stream: 0
net.inet.tcp.isn_reseed_interval: 0
net.inet.tcp.icmp_may_rst: 1
net.inet.tcp.pcbcount: 6
net.inet.tcp.do_tcpdrain: 1
net.inet.tcp.tcbhashsize: 512

net.ipvé.tcp_abort_on_overflow = 0
net.ipvé.tcp_adv_win_scale = 1
net.ipvé.tcp_allowed_congestion_control = cubic reno
net.ipvé.tcp_app_win = 31
net.ipvd.tcp_available_congestion_control = cubic reno
net.ipvé.tcp_base_mss = 512
net.ipv4.tcp_challenge_ack_limit = 100
net.ipv4.tcp_congestion_control = cubic
net.ipv4.tcp_cookie_size = 0
net.ipv4.tcp_dma_copybreak = 4096
net.ipvd.tcp_dsack = 1
net.ipvéd.tcp_early_retrans = 2
net.ipvéd.tcp_ecn = 0

net.ipvéd.tcp_fack = 1
net.ipvé.tcp_fastopen = 0
net.ipvé.tcp_fastopen_key = e8a015b2-e29720c6-4cedeff7-83c84664
net.ipvé4.tcp_fin_timeout = 60
net.ipvé.tcp_frto = 2
net.ipvé.tcp_frto_response = 0
.ipvé.tcp_keepalive_intvl = 75
net.ipvé.tcp_keepalive_probes = 9
net.ipvé.tcp_keepalive_time = 7200
net.ipvéd.tcp_limit_output_bytes = 131072
net.ipvd.tcp_low_latency = 0
net.ipv4.tcp_max_orphans = 16384
net.ipv4.tcp_max_ssthresh = 0
net.ipv4.tcp_max_syn_backlog = 128
net.ipv4.tcp_max_tw_buckets = 16384
net.ipvd.tcp_mem = 89955 119943 179910
net.ipvé.tcp_moderate_rcvbuf = 0
net.ipvé4.tcp_mtu_probing = 0
net.ipvé4.tcp_no_metrics_save = 1
net.ipvé.tcp_orphan_retries = 0
net.ipvé4.tcp_reordering = 3
net.ipvé.tcp_retrans_collapse = 1
net.ipvé.tcp_retriesl = 3
net.ipvé.tcp_retries2 = 15
net.ipvéd.tcp_rfcl337 = 0
net.ipvéd.tcp_rmem = 4096 87380 6291456

00 0 0000000000000 00000 000000000 0CO0CEOCEOCEOCNONOCEONONONONONONONOEONEOEOEOEOEOEOEEONOOOTOIOO
=]
[]
jt

0 0000000000000 0000000000000 000000° 00 0 00
=1
]
s
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net.ipvé4.tcp_sack = 1
net.ipvé.tcp_slow_start_after_idle = 1
net.ipvé4.tcp_stdurg = 0

net.ipv4.tcp_window_scaling = 1
net.ipvéd.tcp_wmem = 4096 65535 4194304
net.ipv4.tcp_workaround_signed_windows = 0

L]

L]

L]

® net.ipvd.tcp_syn_retries = 6

® net.ipvéd.tcp_synack_retries = 5
® net.ipvd.tcp_syncookies = 1

® net.ipvd.tcp_thin_dupack = 0

® net.ipvd.tcp_thin_linear_timeouts = 0
® net.ipvéd.tcp_timestamps = 1

® net.ipvéd.tcp_tso_win_divisor = 3
® net.ipvéd.tcp_tw_recycle = 0

® net.ipvd.tcp_tw_reuse = 0

(]

L]

L]

tep_cubic information from /sys/module

/sys/module/tcp_cubic/parameters/beta:717
/sys/module/tcp_cubic/parameters/hystart_low_window:16
/sys/module/tcp_cubic/parameters/fast_convergence:1
/sys/module/tcp_cubic/parameters/initial_ssthresh:0
/sys/module/tcp_cubic/parameters/hystart_detect:3
/sys/module/tcp_cubic/parameters/bic_scale:41
/sys/module/tcp_cubic/parameters/tcp_friendliness:1
/sys/module/tcp_cubic/parameters/hystart_ack_delta:2
/sys/module/tcp_cubic/parameters/hystart:1
/sys/module/tcp_cubic/version:2.3

APPENDIX C
WINDOWS 7 HOST TCP STACK CONFIGURATION

For the default TCP trials:

Cygwin uname

CYGWIN_NT-6.1 newtcp3 1.7.25(0.270/5/3) 2013-08-31
20:37 x86_64 Cygwin

netsh int show int

Admin State State Type Interface Name

Enabled Connected Dedicated Local Area Connection 2

Enabled Connected Dedicated Local Area Connection

netsh int tcp show global

Querying active state...

TCP Global Parameters

Receive-Side Scaling State : enabled
Chimney Offload State : disabled
NetDMA State : enabled
Direct Cache Acess (DCA) disabled
Receive Window Auto-Tuning Level : normal
Add-On Congestion Control Provider : none

ECN Capability : disabled

RFC 1323 Timestamps : disabled

CAIA Technical Report 140516A

netsh int tcp show heuristics

TCP Window Scaling heuristics Parameters

Window Scaling heuristics : enabled
Qualifying Destination Threshold : 3
Profile type unknown : normal
Profile type public : normal

Profile type private : normal
Profile type domain : normal

netsh int tcp show security

Querying active state...

Memory Pressure Protection : disabled

Profiles : enabled

netsh int tcp show chimneystats

Your System Administrator has disabled TCP Chimney.
netsh int ip show offload

Interface 1: Loopback Pseudo-Interface 1

Interface 12: Local Area Connection

Interface 14: Local Area Connection 2

netsh int ip show global

Querying active state...

General Global Parameters

Default Hop Limit : 128 hops

Neighbor Cache Limit : 256 entries per interface
Route Cache Limit : 128 entries per compartment
Reassembly Limit : 32893088 bytes

ICMP Redirects : enabled

Source Routing Behavior : dontforward

Task Offload : disabled

Dhcp Media Sense : enabled

Media Sense Logging : disabled

MLD Level : all

MLD Version : version3

Multicast Forwarding : disabled

Group Forwarded Fragments : disabled

Randomize Identifiers : enabled

Address Mask Reply : disabled

Current Global Statistics

Number of Compartments : 1
Number of NL clients : 7

Number of FL providers : 4
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APPENDIX D
LINUX ROUTER CONFIGURATION

The bottleneck router is an 8-core machine, patched (as
noted in Section V.D of [2]) to tick at 10000Hz for high
precision packet scheduling behaviour.

uname

Linux newtcpb.caia.swin.edu.au
3.10.18-vanilla-10000hz #1 SMP PREEMPT Fri
Nov 8 20:10:47 EST 2013 x86_64 x86_64 x86_64
GNU/Linux

System information from sysctl

® kernel.osrelease = 3.10.18-vanilla-10000hz

® kernel.ostype = Linux

e kernel.version = #1 SMP PREEMPT Fri Nov 8
20:10:47 EST 2013

Bottleneck / AQM configuration

As noted in Section III.H of [1], we use separate stages
to apply artificial delay and rate shaping respectively.
The selected AQM (pfifo, PIE or fq_codel) is applied
on ingress to the rate shaping section.

qdisc when using PIE:

gdisc pie 1002: dev i1ifb0 parent 1:2 limit 90p target
20 tupdate 30 alpha 2 beta 20

qdisc when using fq_codel:

gdisc fg_codel 1002: dev ifb0 parent 1:2 limit
90p flows 1024 quantum 1514 target 5.0ms interval
100.0ms ecn
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