
CAIA Testbed for TEACUP Experiments
Sebastian Zander, Grenville Armitage

Centre for Advanced Internet Architectures, Technical Report 140314B
Swinburne University of Technology

Melbourne, Australia
szander@swin.edu.au, garmitage@swin.edu.au

Abstract—This technical report describes how we setup a
TEACUP v0.4 testbed to conduct automated TCP experi-
ments. Over the last few decades several TCP congestion
control algorithms were developed in order to optimise
TCP’s behaviour in certain situations. While TCP was
traditionally used mainly for file transfers, more recently
it is also becoming the protocol of choice for streaming
applications, for example YouTube or Netflix [1], [2]. Now
there is even an ISO standard called Dynamic Adaptive
Streaming over HTTP (DASH) [3]. However, the impact of
different TCP congestion control algorithms on TCP-based
streaming flows (within a mix of other typical traffic) is
not well understood. TEACUP experiments in a controlled
testbed allow to shed more light on this issue.

Index Terms—TCP, experiments, testbed

I. INTRODUCTION

Over the last few decades several TCP congestion control
algorithms were developed in order to optimise TCP’s
behaviour in certain situations. While TCP was tradi-
tionally used mainly for file transfers, more recently it
is also becoming the protocol of choice for streaming
applications, for example YouTube or Netflix [1], [2].
Now there is even an ISO standard called Dynamic
Adaptive Streaming over HTTP (DASH) [3]. However,
the impact of different TCP congestion control algo-
rithms on TCP-based streaming flows (within a mix of
other typical traffic) is not well understood. Experiments
in a controlled testbed allow to shed more light on this
issue.

This technical report describes how we setup a
TEACUP1 [4] testbed to conduct automated TCP exper-
iments using real machines. Note that in this report we
have replaced all host names and public IP addresses in
our testbed uses with fake names and private IP addresses
for security reasons. The design and implementation of

1 “TCP Experiment Automation Controlled Using Python”

the TEACUP v0.4 software itself is described in more
detail in [4].

The rest of the report is organised as follows. Section
II describes the overall design of the testbed. Section III
describes our PXE boot setup. Section IV describes the
setup of the testbed hosts that are used as traffic sources
and sinks. Section V describes the setup of the testbed
router. Section VI describes the setup of other hardware
part of the testbed, such as power controllers. Section
VII lists a few known issues. Section VIII concludes
and outlines future work.

II. OVERALL TESTBED DESIGN

Our testbed is installed in a single rack. It consists of
the following hardware:

• Six PC-based testbed hosts that can be used as
traffic sources or sinks.

• PC-based router that routes between testbed net-
works.

• Managed switch to which all PCs are connected
• PC used for testbed control and data collection
• Two power controllers to control the power of the

testbed hosts and router
• 8-port IP KVM that allows to remotely access the

console of the testbed hosts and router

The six testbed hosts are installed as triple-boot machines
that can run Linux (openSUSE 12.3 64bit), FreeBSD 9.2
64bit, and Windows 7 64bit. This allows to experiment
with all major TCP congestion control variants. The
testbed router is dual-boot and runs Linux (openSUSE
12.3 64bit) or FreeBSD 9.2 64bit. We mainly focus
on a Linux router, since only Linux supports all the
Adaptive Queue Management (AQM) techniques we
are interested in. However, we also want to have a
FreeBSD router as comparison for the AQM techniques
FreeBSD supports. To automatically boot machines with

CAIA Technical Report 140314B March 2014 page 1 of 13

mailto:szander@swin.edu.au
mailto:garmitage@swin.edu.au

the required operating system (OS) we use a PXE-based
booting approach.

Figure 1 shows a logical picture of the testbed. All
testbed hosts, the testbed router and the data and
control server are connected to a control network
(192.168.1.0/24). The control network is connected to
the Internet. Three testbed hosts are connected to the
test network 172.16.10.0/24 and three hosts are con-
nected to test network 172.16.11.0/24. The testbed router
routes between the two test networks. The three different
networks are switched Gigabit Ethernet networks, each
mapped to a different VLAN on our managed switch. For
the sake of brevity in Figure 1 we have omitted the power
controllers and the KVM, which are also connected to
192.168.1.0/24.

III. PXE BOOT SETUP

To automatically switch between OS on the hosts and the
router we setup a PXE-based boot solution. All machines
are installed with the different OS on different hard disk
partitions. All machines boot via PXE and the PXE boot
configuration determines the hard disk partition to boot.
The PXE configuration can be changed on the fly by our
automated test script system TEACUP [4].

The overall PXE boot process works as follows. The
PXE-enabled client contacts the local DHCP server. The
DHCP server will hand out an IP address and the address
of a local TFTP server that provides the boot image.
The client will download the boot image from the TFTP
server and then boot it. In our case the boot image is
GRUB4DOS and the GRUB4DOS configuration selects
the hard disk partition to boot from.

We first describe the setup of the different components
and then describe the boot process in more detail.

A. DHCP server

Our DHCP server runs on FreeBSD. For setting up
a DHCP server refer to the technical report [5]. The
following configuration was added to our DHCP server.
The following example shows the entry for testbed host
testhost1; the entries for other hosts only differ in the
MAC and IP addresses.
host testhost1 {

hardware ethernet 00:1e:0b:9d:8f:fb;
fixed-address 192.168.1.2;
next-server 192.168.1.254;
if exists user-class and

option user-class = "iPXE" {
filename "conf.ipxe";

} else {
filename "undionly.kpxe";
option routers 192.168.1.1;

}
}

A host is identified by its MAC address (hardware eth-
ernet) and handed out a static IP address (fixed-address).
The next-server specifies the TFTP server that serves the
boot files, in our case the control host 192.168.1.254. If
the client is an iPXE [6] client, it is given the name
of the configuration file to download from the TFTP
server (conf.ipxe). If the client is not an iPXE client,
it is given the name of the iPXE ROM to download
from the TFTP server and is also told its gateway. Since
our testbed hosts and router are not iPXE they will
first download the iPXE ROM, reboot, execute the iPXE
ROM and then download conf.ipxe from the from the
TFTP server.

B. TFTP server

The control host is a FreeBSD machine and runs
the TFTP server. We enabled the TFTP server as
follows. In /etc/inetd.conf we removed the #
in front of the line: tftp dgram udp wait root

/usr/libexec/tftpd tftpd -l -s /tftpboot.
The directory /tftpboot is the directory with the boot
files. In /etc/rc.conf we added inetd_enable="YES"
to start inetd at boot time.

For downloads from within iPXE configuration, we ac-
tually decided to use an HTTP server because it is faster
and more configurable. We installed thttpd from the ports
tree, in /etc/rc.conf we added thttpd_enable="YES" to
start thttpd at boot time, and we configured it as follows
(/usr/local/etc/thttpd.conf):
user=www
dir=/tftpboot
port=8080
chroot
logfile=/var/log/thttpd.log
pidfile=/var/run/thttpd.pid

The iPXE ROM image undionly.kpxe and the ipxe con-
figuration files are placed in /tftpboot (the iPXE image
can be downloaded from [6]). We use GRUB for DOS
[7] to select the boot partition. The file grub.exe must
also be placed in /tftpboot.

CAIA Technical Report 140314B March 2014 page 2 of 13

���������

��������� ���������

���������

����	�
�

��	�	

�����	

�������� ��	������

�������� �������

����� ���������� ����

�������

����! ����"

��������

Figure 1. Testbed overview

C. Clients

We enabled PXE booting for all hosts in the BIOS.
For most of our PCs this was straight-forward, we just
needed to put network boot first in the boot options
list. For the testbed router, which is a different type of
machine, we first had to enable an option “Enable Option
ROM". Then after a reboot a new network boot entry
appeared in the boot devices list, and we set this as first
entry.

D. Boot process

Assuming PXE boot is enabled in the BIOS, first the
client machine will contact the DHCP server. The DHCP
server will hand out the client’s IP address and tell the
client the IP address of a TFTP serve. If the client is not
an iPXE client (our case) the client will then download
the iPXE ROM (undionly.kpxe) from the TFTP server,
reboot and execute the iPXE ROM. Then the client will
download the conf.ipxe iPXE configuration file from the
TFTP server.

The file conf.ipxe looks as follows:
#!ipxe
echo "Welcome to the IPXE loader"
chain http://192.168.1.254:8080/conf-macaddr_
${net0/mac}.ipxe || goto unknown
:unknown
chain http://192.168.1.254:8080/grub.exe

--config-file="rootnoverify (hd0);
chainloader +1"

Based on conf.ipxe the client will then attempt to down-
load the file conf-macaddr_${net0/mac}.ipxe from the

HTTP server, where ${net0/mac} is substituted by the
client’s MAC address. If this file is not present the client
will download and use grub.exe to boot from the first
hard disk. This will then activate GRUB2 installed in
the MBR, which allows to select the OS via the GRUB2
menu, if one has terminal access. By default after a
timeout Linux will be booted.

The host specific ipxe files look as follows. The
following is the file for the host testhost1 conf-
macaddr_00:1e:0b:9d:8f:fb.ipxe:
#!ipxe
chain http://192.168.1.254:8080/grub.exe
--config-file="root (hd0,2); chainloader +1"

In this case the client first downloads grub.exe and then
uses the GRUB configuration (value of --config-file) to
boot from the 3rd partition on the first hard disk. This
partition has FreeBSD installed and the chainloader +1
command will invoke the FreeBSD boot loader installed
in that partition. Note that in GRUB1 (also called legacy-
GRUB) the partition numbers start with 0 in contrast
to GRUB2 where numbers now start with 1. The file
conf-macaddr_00:1e:0b:9d:8f:fb.ipxe looks very similar
for booting Windows 7. The only difference is that
Windows is installed on the first partition. Again, we
use the GRUB chainloader command to hand over to
the Windows boot manager.
#!ipxe
chain http://192.168.1.254:8080/grub.exe
--config-file="root (hd0,0); chainloader +1"

For booting Linux, the file conf-
macaddr_00:1e:0b:9d:8f:fb.ipxe looks a bit different.

CAIA Technical Report 140314B March 2014 page 3 of 13

Not only does the partition number change (Linux is
installed on the second partition), but also for Linux
we use the GRUB commands kernel and initrd to
specify the Linux kernel and and the initial RAM
disk to boot. One could install a Linux boot loader,
such as GRUB2, in the second partition and hand over
with the chainloader command (as for FreeBSD and
Windows). However, our approach has the advantage
that we can select the Linux kernel to boot from the
iPXE file.
#!ipxe
chain http://192.168.1.254:8080/grub.exe
--config-file="root (hd0,1);
kernel /boot/vmlinuz-3.10.18;
initrd /boot/initrd-3.10.18"

Our TEACUP control framework [4] writes the conf-
macaddr_${net0/mac}.ipxe files based on a template and
the user’s choice of OS and then sends the shutdown
command to the machine. The machine will then reboot
the desired OS as explained above.

IV. HOST SETUP

In this section describe the setup of the testbed hosts.
Since we had to install six testbed hosts, we choose
the following approach. We installed and configured one
host in a virtual machine running under Virtual Box.
We then cloned this host to multiple physical machines.
After the cloning a few post-installation tasks must be
carried out for each OS on each host.

A. BIOS

PXE boot needs to be enabled. The option is called
something like “Enable Option ROM” or “LAN boot”.
After enabling PXE we need to reboot once before we
can select the network card connected to the control
network as first boot device. Then under “Boot devices
selection” we move the network interface to the first po-
sition. We also need to make sure PCs start automatically
after a power outage or power cycle. On our PCs this
could be enabled under “Power options” (enable “Turn
on after power outage”).

B. Hard disk partitioning

The hard disk size is 80 GB on the hosts. We use
MBR partitioning instead of GPT, because it creates
less problems with older software, e.g. the PXE boot
solution we implemented does only work with MBR

Table I
HOST PARTITION LAYOUT

Type Size Purpose
Prim 30GB Windows 7
Prim 10GB Linux
Prim 10GB FreeBSD
Ext 1GB Linux Swap
Ext 1GB FreeBSD swap
Ext 28GB FAT32 data exchange

partitions since Grub4DOS cannot handle GPT. Also the
advantages of GPT are not really needed in our testbed.
With MBR we can only have three primary partitions and
booting an OS from an extended partition is problematic.
We use the partition layout in Table I. The reasons for
putting the swap spaces in extended partitions (and not
making them part of the Linux or FreeBSD partition) is
that then we can still adjust the sizes. It is relatively
easy to change the sizes of the last three (extended)
partitions and reformat the FAT32 partition in case we
need more/less swap space.

First, we used Windows 7 fdisk to create the Windows
partition. Then after installing Windows we used Linux
fdisk to create all other partitions. Initially we tried to
create all partitions with Linux fdisk, but Windows 7
refused to use the Windows partition created.

If Windows 7 is installed into an existing partition it will
not create the separate 100 MB System reserved partition
it creates when installed on an unpartitioned hard disk. In
our case we needed to avoid this extra partition because
with MBR we only have three primary partitions (and
also this partition is not really needed in our case).

C. Boot manager

We use the GRUB2 boot manager from openSUSE 12.3
(installed into the MBR). The configuration is created
with the following command:

> grub2-mkconfig -o /boot/grub2/grub.cfg

This will add all bootable Linux partitions (in our case
the second partition) and all available kernels to the boot
menu. At the top level the “openSUSE” entry will boot
the default kernel. Under “Advanced options for open-
SUSE” we can select any of the installed kernels. The
first kernel in the list is the default kernel. Bootable Win-
dows 7 partitions are recognised automatically and added
to the boot menu, when running the above command.
There is no need to manually create boot menu entries
for Windows 7. However, GRUB2 does not automatically

CAIA Technical Report 140314B March 2014 page 4 of 13

recognise FreeBSD installations. The FreeBSD partition
must be added manually by adding the following to the
file /etc/grub.d/40_custom:
menuentry "FreeBSD 9.2" {
insmod ufs2
set root=(hd0,msdos3)
chainloader +1
}

After changing /etc/grub.d/40_custom we must rerun
grub2-mkconfig.

D. Windows 7 64bit

We installed Windows 7 on the first partition following
the Windows setup prompts. We set language to English,
set timezone to Sydney/Melbourne, create a user named
‘root’ with the same root password we will use for
the root user on Linux/FreeBSD. We skipped security
settings (select “Ask me later”), and set location to ‘Work
network’. We installed the following applications:

• Chrome
• Wireshark
• WinPcap
• WinDump (put it in a directory in PATH, e.g.

C:\Windows)
• Windows updates (all available at the time)
• VirtualBox guest additions
• win-estats-logger (our TCP statistics logger)
• Cygwin 64bit
• Traffic generation tools (iperf, httperf, nttcp), see

Section IV-G

We installed the following packages for Cygwin (using
the Cygwin setup tool2):

• cygrunsrv
• openssh
• wget
• procps
• psmisc
• make
• autoconf
• automake
• gcc
• lighttpd
• openssh

2Command line installation for Cygwin should work as follows:
setup-x86_64.exe -q -P <package>,<package>,... but in our case this
command still opened a pop-up window requiring user input.

• pcre-devel (needed by lighttpd)
• patch

Note that on Cygwin lighttpd is installed under
/usr/sbin but that path is not in PATH for non-
interactive shells (and it is hard to add that path as normal
user, since files such as .profile are ignored by non-
interactive shells). We created a symlink so that lighttpd
is in the PATH for a non-interactive shell:

> cd /usr/bin
> ln -s /usr/sbin/lighttpd lighttpd

We configured Windows 7 as follows:

• Turn off firewall
• Set host name
• Configure primary NIC (turn off IPv6, NetBIOS, all

discovery)
• Configure secondary NIC (turn off IPv6, NetBIOS,

all discovery)
• Configure static route into other testbed network:

.

if host connected to 172.16.10.0
> route add 172.16.11.0 mask
255.255.255.0 172.16.10.1 -p
otherwise
> route add 172.16.10.0 mask
255.255.255.0 172.16.11.1 -p

.

• Turn off automatic updates
• Turn off automatic go to sleep under power man-

agement (set to “Never”)
• Enable remote desktop access
• Enable NTP (set W32Time service start to “Auto-

matic (Delayed Start)”)

We configured NTP as follows (with <server1> and
<server2> being our local NTP servers):

> w32tm /config /manualpeerlist:"<server1>
<server2>" /syncfromflags:MANUAL /update
> net stop w32time
> net start w32time
> w32tm /resync

We configured SSH under Cygwin based on the instruc-
tions at [8]:

• Open a Cygwin shell (run as administrator)
• Run: ssh-host-config -y

• Type in a password for the user that runs sshd
• Run: mkpasswd -l -u root >> /etc/passwd

• Login as root: ssh root@localhost (home di-
rectory and . files are created when logging in for
the first time)

CAIA Technical Report 140314B March 2014 page 5 of 13

E. Linux openSUSE 12.3 64bit

We selected the Linux partition as installation target.
We set language to English, set timezone to Syd-
ney/Melbourne, under Desktop selection selected “Min-
imal Server Selection (Text Mode)”, and set the root
password. In the Installation Settings we clicked on
“Software” and in the software selection screen, besides
the already selected patterns we also selected the “En-
hanced Base System”, “Network Administration” and
“Base Development” patterns. We followed the open-
SUSE installer instructions to set up language, time zone,
root user etc.

We installed the following patched kernels:

• Linux kernel 3.7 (default for openSUSE 12.3) with
web10g patch;

• Linux kernel 3.9.8 with web10g patch (at the
time of the installation the latest kernel for which
web10g patches were available was 3.9).

Since the hard disk space is limited on our testbed hosts
we built the modified kernels on a different machine with
more hard disk space. Then we installed the patched
kernel on the testbed machines by copying the kernel
and the initrd files in /boot and the kernel modules
in /lib/modules/<kernel> (best to tar the modules and
copy the tar file) from the build machine to the testbed
host. Finally, on the testbed host we update GRUB2
with:

> grub2-mkconfig -o /boot/grub2/grub.cfg

We installed the following additional applications:

• lighttp (zypper install lighttp)
• Update everything with zypper update

• Traffic generation tools (iperf, httperf, nttcp), see
Section IV-G

We configured Linux as follows:

• Turn off firewall (in Yast)
• Turn on sshd (in Yast)
• Add "PermitRootLogin yes" to
/etc/ssh/sshd_config (and restart sshd
as necessary)

• Set host name (in Yast)
• Configure primary network interface (in Yast)
• Configure secondary network interface (in Yast)
• Set up default route and static routes for testbed

networks (in Yast)

• Set up DNS servers (in Yast)
• Disable boot splash (edit /etc/default/grub

and change splash=silent to splash=0 in
GRUB_CMDLINE_LINUX_DEFAULT)

• Turn automatic updates off (should not be on by
default)

• Enable NTP with local NTP servers (in Yast)
• Add GRUB2 FreeBSD entry (see Section IV-C)

1) web10g patch: We patched both kernels with the
web10g kernel patch from [9]. First one needs to copy
an existing kernel source or download a kernel source
and untar it under /usr/src:

copy kernel
> cd /usr/src && cp -a linux-3.7.10-1.16
linux-3.7.10-1.16-web10g
unpack kernel
> cd /usr/src && tar -xvzf linux-3.9.8.tar.gz

Then we needed to apply the web10g patch, for exam-
ple:

> cd linux-3.9.8
> patch -p1 < /home/‘echo $USER‘/src/
web10g-0.6.2-patches/web10g-0.6.2-3.7.patch

Then we configured the kernel (copy existing .config to
new kernel directory and run make oldconfig).

Then we ran make menuconfig:

1) Go to “Networking support”->”Networking op-
tions” and enable “TCP: Extended TCP statistics
(TCP ESTATS) MIB”. This will automatically
enable “TCP: ESTATS netlink module”.

2) Go to “General setup”->”Local version” and (for
Linux 3.9.8) change the string to ‘-desktop-
web10g’

Then we built the kernel and the modules:

> make mrproper
> make
> make INSTALL_MOD_STRIP=1 modules_install
> make install # creates initrd as well

Finally, we added the new kernel to the boot man-
ager:

> grub2-mkconfig -o /boot/grub2/grub.cfg

Next, we installed a modified version of the web10g
user space applications. Our modified version has
an additional tool. The problem was that the exist-
ing tool web10g-watchvars allows to poll the TCP
state variables for a specified connection, but the poll
interval is fixed to one second, which is far too

CAIA Technical Report 140314B March 2014 page 6 of 13

large for TCP performance evaluations. Also the tool
web10g-watchvars is very verbose and produces a lot
of output that is hard to parse. Hence, we implemented
a tool called web10g-logger that logs data for all
flows with a configurable frequency in CSV format. The
following steps are required to install the web10g user
space library and applications.

First, we needed to install libmnl:

> zypper install libmnl0 libmnl-devl

Then we built the web10g userland tools:

> ./configure --prefix=/usr
> make
> make install

The following commands can be used to test if web10g
is installed:

> modprobe tcp_estats_nl
list connections
> web10g-listconns
get state for connection 1
> web10g-readvars 1
output stats every 500ms
> web10g-logger -i 0.5

2) NIC driver update: We also installed the latest Intel
NIC driver for e1000e (e1000e driver version 2.5.4).
We downloaded the driver from the Intel web page. We
built the module not on the testbed machine but the
development machine:

• To build against a specific kernel run:
BUILD_KERNEL=<kernel_version> make

• To install for a specific kernel run:
BUILD_KERNEL=<kernel_version> make
install

We then copied the kernel module
(e1000e.ko) to the testbed machine (directory
/lib/modules/3.9.8-desktop-web10g/kernel/

drivers/net/ethernet/intel/e1000e/) and ran
makedep -a.

F. FreeBSD 9.2 64bit

First we made the FreeBSD partition useful for
FreeBSD. We booted FreeBSD DVD into rescue/shell
mode and executed:

> gpart modify -i 3 -t freebsd-ufs ada0
> bsdlabel /dev/ada0s3
> newfs /dev/ada0s3

Then we booted the FreeBSD DVD again, entered the
installation mode and made ada0s3 the root with type

“freebsd-ufs”. We followed the installation instructions,
select the “src” and the “ports” packages to install,
enabled SSH and NTP daemons, and selected Mel-
bourne/Sydney as timezone.

Then we updated the ports tree with the portsnap

tool (see FreeBSD handbook on how this is done) and
installed the following applications:

• portmaster
• vim (portmaster editors/lighttp)
• lighttp (portmaster web/lighttp)
• Traffic generation tools (iperf, httperf, nttcp), see

Section IV-G

We installed the SIFTR ERTT [10] patch:

> cd /usr/src
> patch < FreeBSD-9.2_siftr_log_ertt.patch
> cd sys/modules/siftr
> make
> make install

We configured FreeBSD as follows:

• Add swap to fstab: /dev/ada0s6 none swap sw 0

0 /dev/ada0s7 /data msdosfs rw 1 2

• Add "PermitRootLogin yes" to etc/ssh/sshd_conf
and restart sshd (service sshd restart)

• Set host name (if not set during installation)
• Edit /etc/rc.conf to setup host name, primary and

secondary NICs and static routes:
hostname="testhost1"
ifconfig_em0="inet 192.168.1.2/24"
ifconfig_em1="inet 172.16.10.2/24"
defaultrouter="192.168.1.1"
static_routes="inet1"
route_inet1="-net 172.16.10.0/24 172.16.11.1"
sshd_enable="YES"
ntpd_enable="YES"
dumpdev="NO"
firewall_enable="YES"
firewall_type="OPEN"

• Edit /etc/resolv.conf (added a search entry for the
domain and the name servers)

• Edit /etc/ntp.conf (setup the local NTP servers)

G. Traffic generators

This section has more detailed information on how we
installed the modified iperf, httperf and nttcp we use as
traffic generators.

1) iperf: This sub section explains how to compile and
install iperf with the latest CAIA patch.

Download and unpack iperf source 2.0.5 from [11].
Install gcc, make, automake and patch (if not installed).

CAIA Technical Report 140314B March 2014 page 7 of 13

Download the CAIA patch for iperf 2.0.4 from [12] and
patch the iperf 2.0.5 sources:

> cd <iperf_source_directory>
> patch -p0 < <path_to_caia_iperf_patch>

Configure iperf (set the prefix to /usr so iperf executable
is installed in /usr/bin/, because Cygwin does not have
/usr/local in the PATH by default). Note that on Cygwin
we need to replace the config.guess from the iperf source
with the config.guess installed on the system under /us-
r/share (check with automake --version which automake
version is used). Then we built iperf as follows:

copy config.guess necessary on Cygwin
> cp /usr/share/automake-1.9/config.guess
> ./configure --prefix=/usr
> make
> make install

2) httperf: This sub section explains how to compile and
install the modified httperf. Our modified httperf is based
on the already modified httperf 0.8 (DASH-like traffic
generation and statistics output extension) source from
[13]. We added further statistics output and modified the
source so that statistics are always printed when httperf
is terminated with a SIGTERM signal.

First, check out the modified httperf 0.8 source from
our repository. Install automake, gcc, and make (if not
installed). On FreeBSD or Cygwin edit Makefile.in to
disable (comment out) sched functions that only work on
Linux: #DEFS += -DHAVE_SCHED_AFFINITY

Configure httperf (set the prefix to /usr so httperf ex-
ecutable is installed in /usr/bin/, because Cygwin does
not have /usr/local in the PATH by default). Note that
on Cygwin we need to replace the config.guess from
the httperf source with the config.guess installed on
the system under /usr/share (check with automake

--version which automake version is used by default).
Build httperf as follows:

copy config.guess necessary on Cygwin
> cp /usr/share/automake-1.9/config.guess
> ./configure --prefix=/usr
> make
> make install

3) nttcp: This sub section explains how to compile and
install nttcp. Note that we have modified nttcp slightly
to avoid a long delay after starting nttcp. Build nttcp
as follows. First, get the modified nttcp 1.47 from our
repository. The nttcp Makefile has different settings for
different OS, but the default settings (for FreeBSD) work
not only on FreeBSD but also on Linux and Cygwin.
Then run:

> make

Finally, copy the nttcp executable to /bin.

H. TCP logging

1) Linux: We explained how to install web10g for Linux
in Section IV-E.

2) Windows: The tool win-estats-logger is the TCP
EStats logger for Windows implemented by us. The
source code and Visual Studio project files are in the
code repository. The repository also contains 32bit and
64bit binaries. We installed win-estats-logger by sim-
ply copying the 64bit binary win-estats-logger.exe to
c:/windows/system32. Note that win-estats-logger needs
the 64bit MS Visual C++ 2010 Redistributable, but this
was installed on our freshly installed 64bit Windows 7.
If you want to install the 32bit version of win-estats-
logger then you first need to install the 32bit MS Visual
C++ 2010 Redistributable from [14].

I. Virtual image to physical machine

This section explains how we cloned the single testbed
host image to multiple physical machines.

1) Sysprep Windows: Windows cannot simply be moved
onto a new machine if the hardware is different. It needs
to be sysprepped before moving, using the following
steps:

• Start a command shell as administrator
• Use regedit to edit registry
• Set HKEY_LOCAL_MACHINE\Software\

Microsoft\Windows NT\CurrentVersion\
SoftwareProtectionPlatform\SkipRearm to 1

• Set HKEY_LOCAL_MACHINE\SYSTEM\Setup\
Status\SysprepStatus to 7

• Set HKEY_LOCAL_MACHINE\SYSTEM\Setup\
Status\CleanupState to 2

• Optionally deinstall IE10 (this was suggested by
somebody in case sysprep does not work, but it was
not necessary on our installation)

• Make the Windows partition the active partition
using Linux fdisk (VERY important)

• Start sysprep as admin:
.

c:\windows\system32\sysprep\sysprep
. .

• Select OOB and check generalize, select reboot
• Turn off the machine after Windows has shut down

completely

CAIA Technical Report 140314B March 2014 page 8 of 13

2) Convert VB disk image to raw image: Ideally we
would have created a virtual disk size of exactly the right
size given the physical disk we want to move the virtual
disk to. However, when creating a disk with virtual box
we can only chose its size, but not the number of sectors!
There are two possibilities:

• Choose exactly the right size based on the size of
the physical disk (unclear if this works)

• Choose a larger size in Virtual Box and adjust the
size later (this is the approach we took)

Our approach for resizing the disk assumes that the last
partition on the disk can be resized such that the target
disk size can be achieved by shrinking the last partition.
In our case the last partition is the extended partition
containing only the swap partitions and the empty data
partition. We can set the virtual disk size to exactly the
size of a target physical disk as follows:

• With Linux fdisk remove the last three partition,
resize the extended partition to the exact size given
the number of sectors of the physical disk (the
extended partition can only extend until the last
sector of the physical disk).

• Recreate both swap partitions and the data partition.
Given our layout the location and size of the swap
partitions should not change. The location of the
data partition is also the same but its size has
reduced.

• Reboot into Linux and adjust the file system on the
resized data partition:
.

> umount /dev/sda7
> mkfs.vfat /dev/sda7

.

• Convert the VDI file to a VMDK file:
.

> VBoxManage clonehd --format VMDK
<inputfile>.vdi <output_file>.vmdk

.

• Use an editor that can handle very large files3 to
edit the VMDK file and set the number of sectors
to the correct value. At the start of the VMDK
file there is a line RW xxxxxxxx SPARSE "name",
where xxxxxxxx are the number of sectors. Change
xxxxxxxx to the number of sectors required.

• Export the VMDK image to a raw format image:
.

> VBoxManage internalcommands
converttoraw <disk>.vmdk <disk>.raw

.

3For example, lfhex (http://stoopidsimple.com/lfhex).

3) Copy raw image to physical machine: We copied the
raw image to a physical hard disk as follows. First, we
booted the openSUSE DVD in Rescue mode on the target
machine. Then we configured the network interface with
DHCP (IPv4) and used dd to copy the remote image onto
the machine’s hard disk:

> dhcpd eth0
> ssh user@remote "dd if=/path/image.raw" |
dd of=/dev/sda -

One can check the progress by switching to a second
console, running kill -USR1 <dd_pid> and switch-
ing back to the console running dd.

4) Post-install tasks: In general on all OS we need to
do the following steps:

• Change host name;
• Change NIC config;
• Regenerate SSH host key;
• Make sure we set the right static route depending

on testbed network a machine is connected to.

For Linux we first removed the ex-
isting NICs in Yast and then edited
/etc/udev/rules.d/70-persistent-net.rules

(changing the NIC names to eth0 and eth1). This is
to ensure that we do not have any non-existing NICs
and the first usable NIC is eth0. After a reboot, we
configured the NICs and host name with Yast and
created SSH keys:

> ssh-keygen -t rsa1 -f /etc/ssh/ssh_host_key
> ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key
> ssh-keygen -t dsa -f /etc/ssh/ssh_host_dsa_key
> ssh-keygen -t ecdsa -f /etc/ssh/ssh_host_ecdsa_key

We copied the new keys to /data/ssh, so we can use the
same host keys for all other OS as well.

For FreeBSD 9.2 we edited /etc/rc.conf and changed the
NIC configuration, the testbed static route, and the host
name. Finally, we copied the SSH keys from /data/ssh
to /etc/ssh.

For Windows 7 because of the sysprep we needed to run
the initial setup. First, we specified the region/keyboard,
created a dummy user without password (because a
user must be created during setup), set the computer
name, skipped the security configuration (select “Ask me
later”), and set the network to “Work network”. Then
after a reboot we removed the dummy user, configured
the NICs (disabled IPv6, Windows discovery and Net-
BIOS), set a suffix for DNS, and set the static routes

CAIA Technical Report 140314B March 2014 page 9 of 13

for the testbed. Finally, we copied the SSH keys from
/data/ssh to /etc.

It may be necessary to fix the root password for SSH
logins. This can be done by starting a Cygwin shell as
administrator and running:

> mkpasswd -l -u root >> /etc/passwd
remove old entries for root from
/etc/passwd
> vi /etc/passwd

J. Physical machine to VB image

We can also convert the hard disk of a physical machine
back to a virtual machine. This works as follows:

• Sysprep Windows 7 as explained in Section IV-I1
• Boot the machine from a DVD, e.g. openSUSE in

rescue mode, and enable a network interface
• Copy the entire hard disk to the remote machine

running Virtual Box:
.

> dd if=/dev/sda | ssh user@remote “dd
of=/path/image.raw”

.

• Convert the raw image into a Virtual Box VDI file:
.

> VBoxManage convertfromraw
/path/image.raw /path/image.vdi --format
vdi

.

• Compact the VDI file:
.

> VBoxManage modifyhd --compact
<name>.vdi

.

• Create a new virtual machine in Virtual Box for
Windows 7 64bit with 1.5 GB of RAM and two
Ethernet cards (Intel PRO/1000 MT Desktop)

• Set the hard disk of the new virtual machine to be
the created VDI file

• Boot and install the sysprepped Windows 7
• Change the NIC configuration for all OS
• Change the SSH host keys

V. ROUTER SETUP

This section explains the setup of the testbed router.
Although there is only one router in the testbed we again
installed and configured the router in a virtual machine
and then moved the hard disk partitions of the virtual
machine onto the physical machine’s hard disk.

Table II
ROUTER PARTITION LAYOUT

Type Size Purpose
Prim 4GB Linux Swap
Prim 100GB Linux
Prim 100GB FreeBSD

A. BIOS

PXE boot needs to be enabled. The option is called
“Enable Option ROM” or “LAN boot”. After enabling
PXE we needed to reboot once before we can select the
network card connected to the control network as first
boot device. Then under “Boot devices selection” we
moved the network interface to the first position. We
also made sure the router starts automatically after a
power outage or power cycle. This could be enabled
under “Power options” (enable “Turn on after power
outage”).

B. Hard disk partitioning

On the router we have a 1 TB hard disk, but we only
use part of this space. We created relatively small
FreeBSD and Linux partitions to make it possible to
image these (in hindsight we should have chosen even
smaller partitions). Again, we use MBR because our
PXE boot solution only works with MBR partitions. The
partitioning is simple and shown in Table II. We made
the Linux swap partition the first partition so the Linux
and FreeBSD partitions have the same numbers as on
the testbed hosts.

First, we used Linux fdisk to create the Linux swap and
Linux partitions. Then after installing Linux we used the
FreeBSD installer to create the FreeBSD partition.

C. Boot manager

We use the GRUB2 boot manager from open-
SUSE 12.3 (installed into the MBR). To get a boot
menu entry for FreeBSD we added the following to
/etc/grub.d/40_custom (same approach as in Sec-
tion IV-C):
menuentry "FreeBSD 9.2" {
insmod ufs2
set root=(hd0,msdos3)
chainloader +1
}

Then to update the boot configuration we ran:

CAIA Technical Report 140314B March 2014 page 10 of 13

> grub2-mkconfig -o /boot/grub2/grub.cfg

D. Linux openSUSE 12.3 64bit

We used the openSUSE installer to create Linux swap
and root partitions. We selected the software pattern:
“Minimal Server Selection (Text Mode)”. In the software
selection screen, besides the already selected patterns we
also selected the “Enhanced Base System”, “Network
Administration” and “Base Development” patterns. We
then followed the openSUSE installer instructions to set
up the language, time zone, root user etc.

For the router we installed Linux kernel 3.10.18 as
default, because this was almost the latest kernel version
available at the time and 3.10 is a long-term support
kernel (Linux kernel 3.7, is also installed, as it is the
openSUSE 12.3 default kernel). To get high timer preci-
sion for queuing and delay emulation we recompiled the
kernel with 10000 Hz. By default for Linux the highest
frequency is 1000 Hz. To be able to run with 10000 Hz
we need to patch the kernel.

We download the CK patches from [15] (make sure to
get the right version, i.e. in our case the version for
Linux 3.10). Then we applied the hz-raise_max.patch as
follows:

> cd /usr/src/linux-3.10.18
> patch -p1 < hz-raise_max.patch

Rebuild kernel as usual

We configured the Linux router as follows:

• Run: zypper update

• Turn off firewall (in Yast)
• Turn on sshd (in Yast)
• Add "PermitRootLogin yes" to
/etc/ssh/sshd_config (restart as necessary)

• Set host name (in Yast)
• Configure primary NIC (in Yast)
• Configure secondary NIC (in Yast)
• Set up default route and static routes for testbed

networks (in Yast)
• Set up DNS servers (in Yast)
• Disable boot splash: edit /etc/default/grub

and change splash=silent to splash=0 in
GRUB_CMDLINE_LINUX_DEFAULT

• Turn automatic updates off (should not be on by
default)

• Enable NTP with local NTP servers (in Yast)
• Install the latest Intel NIC driver for e1000e (see

Section IV-E2)

• Add GRUB2 FreeBSD entry (see above)

1) Install PIE: The PIE AQM module is not present
by default in Linux 3.10. To install it we needed to
install the kernel module and a modified version of
iproute2. We download the PIE source code from [16].
We downloaded the iproute2-3.9 source code from [17].
We extracted both packages in the same directory, e.g.
in /home/‘echo $USER‘/src. Then we compiled and
installed the PIE kernel module as usual:

> cd src/pie_code
> make
> make -C /lib/modules/$(shell uname -r)/build
M=‘pwd‘ modules_install

Note, to build the PIE module against a specific Linux
kernel <kernel> used the following commands:

> cd pie_code
> make -C /lib/modules/<kernel>/build M=‘pwd‘
modules
> make -C /lib/modules/<kernel>/build M=‘pwd‘
modules_install

We built the modified iproute2 (tc tool) as follows:

> cd src/iproute2-3.9.0
> patch -p1 < ../pie_code/iproute2/
iproute2-3.9-pie.diff
> make
> make install

The kernel module and the tc executable can be build
on another machine and copied assuming the target
machine runs the same Linux kernel version. In this case
remember to run depmod -a after copying the kernel
module.

E. FreeBSD

We booted the FreeBSD DVD and started the FreeBSD
installer. Then we created a FreeBSD partition with
swap and data slices and selected the data slice as
install target. We installed FreeBSD as usual (see Section
IV-F). We updated the ports tree, installed portmaster
as well as other tools (see Section IV-F). We added the
search domain and name servers in resolv.conf and edited
rc.conf as follows:
hostname="testrouter"
ifconfig_em1="inet 192.168.1.4/24"
defaultrouter="192.168.1.1"
ifconfig_igb0="inet 172.16.10.1/24"
ifconfig_igb1="inet 172.16.11.1/24"
gateway_enable="YES"
sshd_enable="YES"
ntpd_enable="YES"

CAIA Technical Report 140314B March 2014 page 11 of 13

dumpdev="NO"
firewall_enable="YES"
firewall_type="OPEN"

Because our primary focus is a Linux router we did not
recompile the kernel with custom settings (e.g. to set HZ
to 10000).

VI. OTHER HARDWARE SETUP

Here we describe the setup of other hardware, such as
the switch, the power controllers and the KVM.

A. Switch

We use a Gigabit Ethernet switch to connect the hosts
to the control network (192.168.1) and the two data
networks (172.16.10 and 172.16.11). A separate VLAN
is configured for each of the three networks and switch
ports are allocated to the VLANs. The switch is also
connected to the Internet.

B. Power Controller

The main leads of all testbed hosts (including the
router) are connected to one of two AVIOSYS 9258HP
power controllers. This allows to control the power,
e.g. perform power cycling, via a web interface. We
configured the access permissions, network interface,
time synchronisation and email alerts on each power
controller.

C. KVM

All testbed hosts (including the router) are connected
to an 8-port IP-KVM via VGA and USB. This allows
using the console of each host using a monitor and
keyboard in the server room or from a remote machine.
We configured the access permissions and the network
interface of the KVM.

VII. KNOWN ISSUES

FreeBSD 9.2 occasionally coredumps after a ‘shutdown’
command when the machine was running an experi-
ment.

The console on the Linux router behaves abnormally
with a kernel with 10000 Hz. Sometimes it does not
update, but switching between different consoles with
CTRL+ALT+<number> solves this.

On one host the Intel 82547L NIC on the motherboard
does not work on Linux. The NIC does not establish a
link properly based on the output of ethtool, which
shows “Speed: Unknown”. Sometimes we were able to
receive packets (observed with tcpdump), but we could
never sent any packets. There are no error messages in
the kernel log. Strangely the same NIC appears to work
fine on FreeBSD. Also, the same type of NIC in the other
machines works fine with Linux. We experimented with
a number of different settings, but were unable to fix the
problem. The solution was to add another NIC.

VIII. CONCLUSIONS AND FUTURE WORK

In this report we described the design and setup of the
CAIA TCP testbed.

ACKNOWLEDGEMENTS

TEACUP v0.4 was developed as part of a project funded
by Cisco Systems and titled “Study in TCP Congestion
Control Performance In A Data Centre”. This is a
collaborative effort between CAIA and Mr Fred Baker
of Cisco Systems.

REFERENCES

[1] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G.
Rao, “Youtube everywhere: Impact of device and infrastructure
synergies on user experience,” in Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference,
ser. IMC ’11, 2011, pp. 345–360.

[2] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and
W. Dabbous, “Network characteristics of video streaming traf-
fic,” in Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’11,
2011, pp. 25:1–25:12.

[3] “Dynamic adaptive streaming over HTTP (DASH) – Part 1: Me-
dia presentation description and segment formats,” ISO, 2012,
iSO/IEC 23009-1:2012. http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=57623.

[4] S. Zander, G. Armitage, “TEACUP v0.4 – A System for
Automated TCP Testbed Experiments,” Centre for Advanced
Internet Architectures, Swinburne University of Technology,
Tech. Rep. 140314A, 2014. [Online]. Available: http://caia.
swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf

[5] C. Holman, “Netbooting Microsoft Windows 7 and XP,”
Centre for Advanced Internet Architectures, Swinburne
University of Technology, Tech. Rep. 130226A, 2013.
[Online]. Available: http://caia.swin.edu.au/reports/130226A/
CAIA-TR-130226A.pdf

[6] “iPXE – Open Source Boot Firmware.” [Online]. Available:
http://ipxe.org/

CAIA Technical Report 140314B March 2014 page 12 of 13

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623
http://caia.swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf
http://caia.swin.edu.au/reports/140314A/CAIA-TR-140314A.pdf
http://caia.swin.edu.au/reports/130226A/CAIA-TR-130226A.pdf
http://caia.swin.edu.au/reports/130226A/CAIA-TR-130226A.pdf
http://ipxe.org/

[7] “GRUB for DOS.” [Online]. Available: https://gna.org/projects/
grub4dos/

[8] “Cygwin SSHD HowTo – How to run the OpenSSH SSHD
server on Windows using Cygwin.” [Online]. Available:
http://www.noah.org/ssh/cygwin-sshd.html

[9] “The Web10G Project.” [Online]. Available: http://web10g.org

[10] D. Hayes, “Timing enhancements to the FreeBSD kernel
to support delay and rate based TCP mechanisms,” Centre
for Advanced Internet Architectures, Swinburne University
of Technology, Melbourne, Australia, Tech. Rep. 100219A,
19 February 2010. [Online]. Available: http://caia.swin.edu.au/
reports/100219A/CAIA-TR-100219A.pdf

[11] “iperf Web Page.” [Online]. Available: http://iperf.fr/

[12] “NEWTCP Project Tools.” [Online]. Available: http://caia.swin.
edu.au/urp/newtcp/tools.html

[13] J. Summers, T. Brecht, D. Eager, B. Wong, “Modified version
of httperf,” 2012. [Online]. Available: https://cs.uwaterloo.ca/
~brecht/papers/nossdav-2012/httperf.tgz

[14] “Microsoft Visual C++ 2010 Redistributable Package
(x86).” [Online]. Available: http://www.microsoft.com/en-au/
download/details.aspx?id=5555

[15] “Kernel patch homepage of Con Kolivas.” [Online]. Available:
http://users.on.net/~ckolivas/kernel/

[16] “PIE AQM source code.” [Online]. Available: ftp://ftpeng.
cisco.com/pie/linux_code/pie_code

[17] “iproute2 source code.” [Online]. Available: http://www.kernel.
org/pub/linux/utils/net/iproute2

CAIA Technical Report 140314B March 2014 page 13 of 13

https://gna.org/projects/grub4dos/
https://gna.org/projects/grub4dos/
http://www.noah.org/ssh/cygwin-sshd.html
http://web10g.org
http://caia.swin.edu.au/reports/100219A/CAIA-TR-100219A.pdf
http://caia.swin.edu.au/reports/100219A/CAIA-TR-100219A.pdf
http://iperf.fr/
 http://caia.swin.edu.au/urp/newtcp/tools.html
 http://caia.swin.edu.au/urp/newtcp/tools.html
https://cs.uwaterloo.ca/~brecht/papers/nossdav-2012/httperf.tgz
https://cs.uwaterloo.ca/~brecht/papers/nossdav-2012/httperf.tgz
http://www.microsoft.com/en-au/download/details.aspx?id=5555
http://www.microsoft.com/en-au/download/details.aspx?id=5555
http://users.on.net/~ckolivas/kernel/
 ftp://ftpeng.cisco.com/pie/linux_code/pie_code
 ftp://ftpeng.cisco.com/pie/linux_code/pie_code
http://www.kernel.org/pub/linux/utils/net/iproute2
http://www.kernel.org/pub/linux/utils/net/iproute2

	Introduction
	Overall Testbed Design
	PXE Boot Setup
	DHCP server
	TFTP server
	Clients
	Boot process

	Host Setup
	BIOS
	Hard disk partitioning
	Boot manager
	Windows 7 64bit
	Linux openSUSE 12.3 64bit
	web10g patch
	NIC driver update

	FreeBSD 9.2 64bit
	Traffic generators
	iperf
	httperf
	nttcp

	TCP logging
	Linux
	Windows

	Virtual image to physical machine
	Sysprep Windows
	Convert VB disk image to raw image
	Copy raw image to physical machine
	Post-install tasks

	Physical machine to VB image

	Router Setup
	BIOS
	Hard disk partitioning
	Boot manager
	Linux openSUSE 12.3 64bit
	Install PIE

	FreeBSD

	Other Hardware Setup
	Switch
	Power Controller
	KVM

	Known Issues
	Conclusions and Future Work
	References

