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Abstract—Network traffic classification is important in
modern computer networks, for example for quality of
service management systems that prioritise traffic depend-
ing on its class. Using only UDP/TCP port numbers for
traffic classification is unreliable. Using payload inspec-
tion provides good accuracy if payload can be accessed,
however payload-based classification is often slow and
the update of signatures is cumbersome. In recent years
researchers have focused on developing classifiers that
use Machine Learning (ML) techniques to classify traffic
based on features, such as packet length statistics. This
report explores the use of raw packet payload data as
features in ML based network traffic classification. We
describe the implementation of payload based features for
an existing ML-based network traffic classifier [1], and the
experimentation performed to evaluate their performance.
Preliminary results show that the new payload-based
features or a combination of payload and packet-length
features performs better than using packet-length features
alone.

Index Terms—Network Traffic Classification, Machine
Learning, Payload

I. INTRODUCTION

Network traffic classification is important in modern
computer networks for network security monitoring,
lawful interception, and quality of service management
systems. In the past dedicated port numbers were used to
identify network traffic, for example port 80 for HTTP.
Today many applications use dynamic port numbers,
since they either do not require a dedicated port, or they
are trying to avoid classification by using randomised
port numbers. Because of this, using only port numbers
for network traffic classification is unreliable for many
new applications.

∗The work described in this report was done during the author’s
winter internship at CAIA in 2013.

Using payload inspection provides good accuracy if
payload can be accessed, however payload-based clas-
sification is often slow and the update of signatures is
cumbersome. Some researchers proposed to use automat-
ically derived packet-payload-based features and showed
promising results [2]–[4], but the previous approaches
still have limitations. The approaches in [2], [3] require
a significant amount of memory and processing time
per network traffic flow, which makes them impractical
to implement on real routers, especially low-cost home
routers with small memory. The approach in [4] limits
its memory footprint by inspecting the first 12 payload
bytes of packets only, which effectively limits the dis-
criminative power of the classifier.

In recent years researchers have focused on developing
classifiers that use Machine Learning (ML) techniques
to classify traffic based on features [5], [6]. ML uses
large sets of calculated feature statistics to create a
classification model based on those feature statistics. For
example, an already implemented feature for ML-based
network traffic classification is packet length statistics
for a network traffic flow, for example the minimum,
mean, maximum, standard deviation of the packet sizes.
Given the characteristics of these calculated statistics,
ML techniques can create a model that can classify
traffic into a particular class. For example, traffic flows
with short packet lengths can be classified as real-time
traffic, and traffic flows with long packet lengths can
be classified as file-transfers. While ML classifiers have
shown good efficiency and promising accuracy, accuracy
is often lower than that of payload-based classifiers (for
traffic for which payload signatures exist).

A classifier that uses both statistical features and pay-
load features may yield the best accuracy (if payload can
be accessed), however the payload-feature implementa-
tion must be more efficient than previous approaches
to be practical. Our motivation for this work was to
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develop efficient payload-based features and investigate
the accuracy and complexity of payload-based features
alone, statistical features alone, and of a combination of
payload-based features and statistical features.

Rather than calculating complex features based on
payload data, we focus on using the raw payload bytes
as features for the ML algorithm. This approach is very
efficient and has the potential to yield good results, since
any application-layer protocol has very characteristic
header structures. For example, the HyperText Transfer
Protocol (HTTP), an ASCII based protocol, sends very
particularly formatted text strings, for instance GET,
POST request headers in the HTTP requests or the status
line of the HTTP response [7].

Initially we extract a larger number of payload bytes
as features from the traffic, and then an ML technique
can be used to automatically reduce the number of
features based on the applications to be classified. In
particular, we use the C4.5 decision tree classifier [8]
because it previously performed well for network traffic
classification [9], in terms of accuracy and speed, and it
automatically selects the “best” features.

We first implemented payload-based features for the
existing DIFFUSE ML-based network traffic classifier
[1]. Then we conducted experiments with the C4.5
classifier [10] comparing the accuracy (based on class
precision and recall) and classifier complexity (resulting
model tree size) of the new payload features, existing
packet length features, and the combination of both types
of features used together. Our preliminary results are
based on a small set of trace files from actual network
traffic. A more comprehensive analysis based on a larger
set of traces remains future work.

Our findings show that overall the payload features
outperform the packet length features in both accuracy,
by up to 11%, and classifier complexity, which was
approximately halved. The accuracy and classifier com-
plexity with the combined features is very similar to the
performance of the payload feature alone.

The report is organised as follows. In Section II we
first describe the implementation of the payload-based
features and how they are integrated into the existing
DIFFUSE ML network traffic classifier. In Section III
we describe the details of the experiments conducted, and
in Section IV we present the results of the experiments.
Section V concludes and outlines future work.

II. PAYLOAD FEATURE IMPLEMENTATION

In this section we will briefly describe the design of
DIFFUSE relative to our purposes, and then continue

window 

packet flow 

Figure 1. Packet flow window

to describe in more detail our implementation of the
payload feature. DIFFUSE was developed as a very
modular application, allowing extensions for it to be
added with relative ease. DIFFUSE’s code base is made
up of two major parts: the kernel part and the userspace
part. The kernel part of a feature module contains
the actual logical implementation of the feature, which
extracts the feature statistics from the network traffic.
The userspace part is for the interaction between user
and the application, which allows the user to configure
which feature modules to use, and their options (e.g.
window-size, partial-windows, etc). Full details of the
design of DIFFUSE can be found in the technical report
[11].

We now briefly explain the concept of packet windows
for ML traffic classification, introduced by Nguyen and
Armitage [12]. Traffic flows can be very long and it
would be impossible to calculate statistics for all packets
in a flow for flows that need to be classified timely. For
this reason, we use a moving window of packets within
a flow, as shown in Figure 1. Such a window is also
called a sub-flow [6], [12]. In DIFFUSE, the window
size setting determines the amount of packets we use
per window. By default statistics are not calculated until
a window is completely filled with packets. But this then
means that packet flows that are less than the size of the
window will not have any statistics calculated for them
(e.g. if the window size is 15, flows of 14 packets or
less cannot be classified). For this reason, DIFUSE has
a partial-windows option, which enables statistics to be
calculated for flows shorter than the window size.

While DIFFUSE was developed for real time traffic
classification, it also includes an offline testing userspace
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tool, ipfw_fstats, which implements the feature extrac-
tion functionality for previously captured network traf-
fic traces (currently only for tcpdump capture format).
ipfw_stats uses the same feature modules from the kernel
code that are used for online classification, and the same
userspace code for configuring the feature modules.

The implemented payload based feature (pldbd) for
DIFFUSE is based on the existing packet length feature
plenbd. The goal of the pldbd feature’s implementation
is to capture the first 20 payload bytes in each direction
for each traffic flow, where a flow is a single bidirectional
communication between two end nodes characterised by
a 5-tuple (source IP, source port, destination IP, desti-
nation port and protocol). For TCP the feature currently
collects statistics on a per flow basis (once per flow from
the start of the flow), whereas for UDP traffic it collects
statistics on a sub-flow basis. We capture the payload in
this way because at this stage we are mainly interested
in the application protocol header information for the
flow. For TCP, a connection-oriented protocol, we expect
that information to be transferred at the very start of a
flow, whereas for UDP, a connectionless protocol, that
information needs to be transmitted in every packet at
the beginning of the payload.

A. Initial setup

To add a new feature to DIFFUSE, first it has to be
installed. DIFFUSE is available for download from the
CAIA website [1]. DIFFUSE is available for FreeBSD
and Linux systems, and the installation requires kernel
source code to be available. The new feature was devel-
oped on the PC-BSD 9.1 (FreeBSD 9.1-RELEASE-p4)
operating system. DIFFUSE is not currently available
for that version of the FreeBSD, so the source code for
the latest available version of DIFFUSE was obtained
(FreeBSD-9.0_CURRENT_r223644), and only the user-
space tools were installed, without recompiling the ker-
nel. Since we were only performing offline experiments
on captured trace files, not live traffic classification,
we did not need DIFFUSE compiled into the kernel.
However, since the offline user-space tools use the same
kernel feature implementation code, the new feature
should work for live classification as well, but testing
this was beyond the scope of the experiments.

B. diffuse_feature_pldbd.h

The diffuse feature header file is used to define con-
figuration options used specifically by the feature. These
include default window size, a structure to store user con-
figurable options, such as window size and types (partial

and/or jumping). The file also includes definitions of the
main properties of the feature, such as feature name,
feature direction and feature statistics information. The
payload feature is a bi-directional feature, which means
it calculates statistics in both the forward and backward
direction of a flow. The direction of the first packet of a
flow is considered to be the forward direction, and the
opposite direction is the backward direction. The payload
feature contains a total of 40 statistics. Each statistic
is the integer representation of a packet payload byte,
for the first 20 bytes in the forward direction (fbyte1,
fbyte2, fbyte3, ..., fbyte20) and the first 20 bytes in the
backward direction (bbyte1, etc). We keep track of the
total number of statistics, and the number of forward and
backward bytes separately to allow for future extensions
of the feature module, such as statistics on the entropy
and byte ranges of the payload data.

C. diffuse_feature_pldbd.c

The pldbd implementation is based on the existing
plenbd implementation. The main difference is in the im-
plementation of the pldbd_update_stats function, where
the forward and backward bytes are stored for flows.
Some minor differences are present due to the different
storage data structure; we are now capturing payload
bytes, and not packet length statistics, which in turn has
required small modifications to the initialisation, destruc-
tion, resetting, and obtaining of the payload statistics.

Storing the payload bytes occurs differently for TCP
and UDP flows. For a TCP flow in the forward direction,
we first identify the first packet in the TCP flow by
checking if a packet’s TCP flags are set to SYN only. We
store the SYN packet’s TCP sequence number, because
we know that the packet with the next sequence number
(incremented by one) will contain some payload data.1

Similarly, for the backwards direction we identify the
packet with the SYN and ACK TCP flags set, and
we store its acknowledgment sequence number. This
SYN/ACK packet does not contain any payload data, but
the next packet that has an acknowledgment sequence
number incremented by one, will be the first backward
packet from which we capture the payload.

Capturing the application header data for UDP flows
is much simpler. Because UDP is a connectionless pro-

1Currently, the very first forward packet for which payload is
captured is the last packet of the TCP handshake (ACK packet), which
has the same sequence number as the SYN packet and typically has
no payload. This is not a major issue, since statistics for packets
without payload default to -1. However, in the future this could be
improved by ensuring the first forward packet for which we capture
payload has the correct sequence number and is not an ACK packet.
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tocol, application header information is usually sent in
the payload of every packet in a flow. This means that
we do not need to identify the first payload packet for a
flow (as we did for TCP), rather we can simply capture
the payload for every packet in a sub-flow.

D. Additional Changes

In order for the new feature to compile, several files
needed minor changes that included references to the
new pldbd feature. In addition a user-space implementa-
tion of the pldbd feature needed to be created (to parse
configuration options). Below is a complete summary of
all files created and modified for the implementation of
the pldbd feature into DIFFUSE:

• Created: sys/netinet/ipfw/diffuse_feature_pldbd.h
• Created: sys/netinet/ipfw/diffuse_feature_pldbd.c
• Modified: sys/modules/Makefile
• Created: sbin/ipfw/feature_pldbd.h
• Created: sbin/ipfw/feature_pldbd.c
• Modified: sbin/ipfw/diffuse.c
• Modified: sbin/ipfw/Makefile
• Modified: sbin/ipfw/ipfw_fstat/ipfw_fstat.h
• Modified: sbin/ipfw/ipfw_fstat/ipfw_fstat.c
• Modified: sbin/ipfw/ipfw_fstat/Makefile

III. EXPERIMENTAL SETUP

We now describe how the experiments were carried
out. In addition to DIFFUSE, we installed WEKA 3:
Data Mining Software in Java [10] to conduct the
experiments.2 We used DIFFUSE to generate Attribute-
Relation File Format (ARFF) files, which include all the
feature statistics for the traffic from the trace data, and
then used WEKA to generate ML models from the ARFF
files and perform cross-validation testing.

A. Trace Files

An issue with any network classification experiment
is obtaining representative network traffic data. This is
even more difficult when the payload of the traffic data
is also required. We captured all traffic from a single
desktop computer over 19 days of regular use. From
those captured trace files, 8 different classes of traffic
were observed to be most common. The capture traces
had very little FTP traffic, and no long UDP flows (only
short DNS and NTP flows), so in addition we used the
publicly available traces listed below:

2We did not apply the DIFFUSE patch to WEKA, because it is
only required when DIFFUSE is used for online traffic classification
or for cross-validation in user-space. However, we used WEKA for
cross-validation.

Table I
CLASS INSTANCES (SUB-FLOWS)

Class No. of Instances

DNS 18,305

FTP 13,946

HTTP 17,485

IPP 15,892

NTP 17,703

Other 30,619

Quake3 11,163

Skype 10,008

SSH 9,358

HTTPS 16,839

Total 161,325

• FTP: Lawrence Berkeley National Laboratory [13],
[14];

• Skype: Polytechnic University of Turin [15], [16];
• Quake 3: Centre for Advanced Internet Architec-

tures [17].
The class instances represent sub-flows for each protocol.
The traffic classes we set out to identify were Domain
Name System protocol (DNS, UDP port 53), File Trans-
fer Protocol (FTP, TCP port 23), HyperText Transfer
Protocol (HTTP, TCP port 80), Internet Printing Protocol
(IPP, TCP port 631), Network Time Protocol (NTP,
UDP port 123), Quake3 online game traffic (UDP port
27960), Skype traffic (UDP ports: 24762, 42467), Secure
Shell protocol (SSH, TCP port 22), HyperText Transfer
Protocol Secure (HTTPS, TCP port 443) and Other. The
Other class represents sub-flows of other traffic that was
captured, excluding the specific traffic classes mentioned
before. This small data set is a limitation of this work,
and further experiments will be needed with larger, more
representative data sets to verify the results. Table I
shows the classes and number of instances used for
training and testing.

B. DIFFUSE Options

We ran experiments for the following feature sets:
• pldbd only,
• plenbd only,
• pldbd and plenbd together.

For each feature set, we ran multiple experiments for
different sliding window sizes (5, 10, ... ,30), with and
without partial windows, to verify that results obtained
are consistent.
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Figure 2. Commands to run experiments

C. WEKA Options

For generating the model and results with WEKA, the
C4.5 ML algorithm was used (named J48 under WEKA).
We set the minimum number of instances per leaf (option
-M) to 100, which resulted in tree sizes of less than
100 nodes, as opposed to trees with thousands of nodes
with the default settings. Using more aggressive tree
pruning avoids over-fitting the classifier model and also
makes the resulting trees more easy to interpret. The
experiment conducted was a two-fold cross-validation
experiment (option -x), where half the number of the
instances of each class are taken to train (create a model),
and the other half of the instances is used to test the
generated model. Additionally, the option -i was used
to automatically generate per class statistics, including
precision and recall.

Figure 2 shows the commands used to extract the
features from the traffic data and perform the cross-
validation testing with WEKA.

IV. RESULTS

Overall, using the packet payload bytes directly as
features for ML classification shows promising results in
comparison to using only the existing packet length fea-
tures. The presented results are for a single experiment
(with window-size set to 15), but they are representative
of the results seen in the other experiments. We show
the results for a partial-window experiment specifically,
because without that option set, we do not get any
results for DNS, and NTP classes, because of their very
short flow lengths (usually two packets). In Figure 3
and Figure 4 we see that in almost every case, packet
payload features outperform packet length features in
terms of precision and recall. Overall we observed an
increase of up to 11% in precision and recall. Only in the
case of the precision of the IPP protocol, we find packet
length performs better. This could be due to a number
of factors, such as a non-representative data-set (our IPP
data includes traffic to only one printer connected to one

print server) or the similarities between IPP and HTTP
payload data. A more thorough analysis remains future
work.

In Figure 5 we see that payload features produce a
smaller tree size than packet length features, in terms
of the number of nodes and leaves. The decision tree
for payload features is only half the size of the cor-
responding packet length tree. With a less complex
decision tree, the classification of network traffic flows
can be completed in fewer steps. Furthermore, with a
less complex decision tree packet payload based features
produce higher precision and recall overall than packet
length features achieve with a more complex decision
tree.

It is important to investigate which payload bytes
the C4.5 classifier selected to make its classification
decisions. We will only briefly examine the case for the
HTTP protocol and leave a more thorough investigation
as future work. For the payload-only experiment, we find
the decisions for HTTP are primarily based on two tests
in the decision tree, summarised in Figure 6. The feature
test using bbyte16 classifies the majority of instances;
it decides that the flow is a HTTP flow if the 16th
byte in the backwards direction has an integer value
higher than 12. The ASCII character 13 is a “Carriage
Return” character. If no error occurred a typical HTTP
server response starts with the characters “HTTP/1.1 200
OK”, which is 15 characters (or bytes) long, at the end
of which a Carriage Return (the 16th byte) is present,
followed by a Line Feed (the 17th byte). Similarly, for
the feature test using bbyte9 we find ASCII character
32 to be a “Space” character, which also fits the typical
response. Of course HTTP server responses differ, which
is why we see that the bbyte9 test has 28 misclassified
occurrences (the number after the dash). Overall, we
find the classifier’s decisions based on which bytes to
decide are logical and relate to the formats of application
protocol headers of the various classes.

The findings of the comparison of packet payload
features against the combined packet payload and length
features are inconclusive. We find the accuracy, in terms
of precision and recall, is generally within 1% of each
other, and the tree sizes are also relatively similar.
Further experimentation and a larger, more representative
data set would be required to identify if there is any real
benefit of using the combined features.

V. CONCLUSIONS

We implemented payload-based features for the ex-
isting DIFFUSE ML-based network traffic classifier [1].
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Figure 3. Class precision (window-size=15, partial-windows=yes)
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Figure 4. Class recall (window-size=15, partial-windows=yes)

The performance of using raw payload data as features
for an ML classifier shows promising preliminary results.
The newly implemented payload-based features outper-
formed the existing packet-length features by up to 11%
in terms of class accuracy, with only half the classifier
complexity. The combined payload and packet length
features resulted in an accuracy that was similar (within
1%) to using only the payload features, and the tree sizes
were also relatively similar.

While these preliminary findings show promising re-
sults, further experiments with larger, more representa-
tive data sets are required to confirm the current findings.
We also aim to increase the number of classes in the
future. Our current payload features are based on payload

from the start of flows (e.g. the start of TCP sessions).
In the future we will extend our implementation, so that
not only payload from the flow start is considered, but
also payload from the last few observed packets can be
used.
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