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Abstract—In order to better understand how the tran-
sition from IPv4 to IPv6 will play out, we need to know
how much of the allocated IPv4 space is actively used and
how many hosts actually use IPv6. This report describes
a collaborative, secure, anonymised scheme for estimating
IPv4 and IPv6 address space utilisation based on private
datasets of locally observed IP addresses, such as server logs
or traffic traces. We are looking for collaborators willing
to participate.

1. INTRODUCTION

We are looking for collaborators willing to participate
in a secure, anonymised scheme for estimating IPv4 and
IPv6 address space utilisation based on private datasets of
locally observed IP addresses (e.g. server logs or traffic
traces) and the capture-recapture (CR) approach [1]. Our
efficient private set intersection cardinality (PSIC) proto-
col allows collaborators to contribute to this Internet-wide
study while ensuring anonymity of the IP addresses each
collaborator has observed [2], [3].

As of mid 2013 more than 95% of the usable IPv4
address space has been allocated and according to pre-
dictions, the Regional Internet Registrars (RIRs), except
AfriNIC, will run out of IPv4 addresses by the end of
2014 [4]. However, the transition to IPv6 is still relatively
slow. Some larger service providers support IPv6, but
many smaller service providers do not support IPv6 yet
[5]. Also, only a few percent of clients are capable of
using IPv6 without 6to4 or Teredo tunelling [6].

While most of the IPv4 address space has been al-
located, it is unclear how many allocated addresses are
actively used (simply referred to as used). Knowing how
many addresses are used is important to predict the
value and costs of an IPv4 address market. Over 30
IPv4 address sales have been reported already [7]. Also,
once the IPv4 space is fully allocated, its progressive
exhaustion can only be measured through tracking the
usage. Furthermore, tracking the used IPv4 address space
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provides insights into the IPv6 deployment time frame:
the fewer unused IPv4 addresses remain, the higher the
pressure is to adopt IPv6. On the other hand, tracking the
used IPv6 addresses provides important insights into how
many hosts actually use IPv6.

Until recently little research was published on identi-
fying how much of the IPv4 space is used. The previous
studies were based mostly on active probing (“pinging”)
of the IPv4 address space, so they likely underestimated
the actually used space [8]-[11]. Furthermore, the ex-
isting studies are outdated, with the exception of [11],
which is based on pinging alone. More research exists
on the deployment progress of IPv6 as outlined in [1],
[5], [12], but many studies only analysed certain sub
populations, e.g. their analysis is based on a few particular
server/traffic logs, or they analysed the IPv6 capabilities
of either public servers or clients.

We developed a technique [1] that combines several
different data sources of observed used IPv4 addresses
(e.g. server logs or traffic traces) and uses CR [13]-[16] to
estimate the total population of used addresses, including
the unobserved used addresses. The same technique could
be applied to estimate the used IPv6 space. However,
a diverse set of data sources is required to get a good
“coverage” of the IP address space and produce a good
CR estimate. For CR we need to know the number of
used IP addresses observed 1) by each data source and
2) by all combinations of set intersections of all sources.

Many data sources of used IP addresses exist. The
challenge is to efficiently combine the data sources of
multiple collaborators in a secure manner. We assume
the number of addresses observed by one source is not
sensitive information, but the observed IP addresses must
be kept confidential. We developed an efficient and secure
PSIC protocol that computes the intersection cardinalities
between data sources needed for CR while ensuring the
anonymity of the IP addresses observed.

page 1 of 5


mailto:szander@swin.edu.au
mailto:landrew@swin.edu.au
mailto:garmitage@swin.edu.au

Capture N Capture- :
Histories Recapture Population
Estimates
Private Set
Intersection
Cardlnallty

Figure 1. Different data sources sample different partially-overlapping
parts of the Internet; with a private set intersection cardinality protocol
we can securely compute how many addresses each combination of
sources captured (capture histories), and then use a capture-recapture
method to estimate the population.

We are looking for more collaborators willing to
participate in our scheme summarised in Figure 1. Collab-
orators can contribute unanonymised or anonymised data
and work with us on refining the estimation method. Par-
ticipating in this effort has the benefits of getting timely
information about the state of the IPv4 and IPv6 address
utilisation of the Internet, publishing joint research, and
making a meaningful and positive impact by supporting
the whole Internet community.

In Section II we describe our overall approach in more
detail. In Section III we discuss how to estimate the popu-
lation with CR. In Section IV we discuss how to compute
the input data for CR while ensuring the anonymity of
addresses with PSIC. A prototype implementation of our
proposed PSIC protocol is publicly available [3].

II. OVERALL APPROACH

Our efficient PSIC protocol allows collaborators to
contribute observed IP address data while ensuring
anonymity of the IP addresses each collaborator has ob-
served. The CR approach [1] allows to estimate the [Pv4
and IPv6 address space utilisation based on address data
samples. Figure 1 shows an overview of the PSIC+CR
approach. We now explain this approach in more detail.

Several collaborators have access to data sources of
observed used IPv4 or IPv6 addresses. Data sources can
be server logs, traffic traces, or data from active probing.
Each data source is an incomplete sample of the whole
used space (total population). The different samples may
be “biased”, e.g. towards certain geographical areas or
certain types of hosts. However, with a possibly very
small but non-zero probability one IP address will appear
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Figure 2. Different addresses have different visibility depending on
the types of hosts

in any of the data sources. We assume that the IP
addresses collected were actually used. This is usually
the case if addresses are collected from server logs (where
the application is TCP-based, such as web traffic) or via
active probing. In other cases (e.g. for traffic traces) it may
be necessary to filter out potentially spoofed IP addresses.

Different types of hosts have different chances of
appearing in a data source (see Figure 2). We differentiate
between the following types: routers, servers/proxies,
general-purpose clients (e.g. PCs, mobile devices), and
specialised devices (e.g. printers, IP phones, cameras).
Many routers or public servers respond to active probing.
Server logs are a good source of addresses of certain
sets of clients, but possible also log specialised devices
or servers (e.g. operating system update servers). Traffic
traces may contain addresses of all host types. Devices
that only communicate in private networks are effectively
invisible. However, we assume such devices are relatively
rare, as most devices use at least some communication,
e.g. to update their software or their clocks.

The heterogeneity of the observed IP addresses due
to different factors, such as hosts types or geographic
dependencies, is the reason we need diverse data sources
from multiple collaborators. Only then can we achieve
sufficient “coverage”. We assume the collaborators are
willing to share the sizes of their data sources, i.e. how
many [P addresses each data source contains. However,
many collaborators may not want to share their observed
IP addresses. Hence, all collaborators run the PSIC pro-
tocol to securely compute the intersection cardinalities
between all combinations of data sources.

With the sizes of the data sources and the sizes of
all combinations of intersections between datasets we
can compute the table of “capture histories”. This table
contains the number of addresses observed by each com-
bination of sources, for example the number of addresses
observed only by source 1, the number of addresses
observed only by source 2, the number of addresses
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observed by source 1 and source 2, and so on (see Table
I). Based on the capture histories CR techniques can
estimate the number of addresses not observed by any
of the sources and hence the total population.

The PSIC+CR scheme can be run periodically, each
time with data from the last time window, to estimate
the population trend over time. Furthermore, the data
sources can be stratified by all collaborators and pop-
ulation estimates can be computed separately for each
stratum. For example, IP addresses can be grouped by
the RIR responsible for their allocation to detect broad
geographical trends. Using PSIC+CR with stratified data
leaks information about the datasets, but the leakage may
be tolerable if there are only a few coarse strata.

III. CAPTURE-RECAPTURE METHOD

The simplest CR model is the two-sample Lincoln-
Petersen (L-P) method [13]-[14], which works as follows.
Given a first sample, of M individuals, the size of the
population would be known if we knew what fraction
of the population had been sampled. To estimate this,
L-P takes a second sample of C individuals, of which
R individuals occur in both samples. If the fraction of
“recaptured” individuals in the second sample equals
the fraction of the total population captured in the first
sample, then the population N can be estimated by [13]-
[14]:

McC

R/IC=MIN, N=—.
/ / R

In the context of Internet address estimation, the sam-
ples or “sources” are different active and passive measure-
ments and the individuals are IPv4 or IPv6 addresses. For
concreteness, consider one source to be all addresses that
responded to pinging of the entire IPv4 space and another
to be all addresses in a traffic trace.

The L-P estimate assumes that the probability of an
individual being captured in one source does not depend
on the probability of being captured in a different source
(independent sources). It also assumes that, within a
sample, each individual has an equal chance of being
sampled (homogenous population), specifically that the
probability is not zero for any individual. Individuals with
zero sample probability are not part of the estimated
population. Furthermore, the L-P estimate assumes that
during measurement no individuals enter or leave the
population (closed population), but a violation of this
assumption is simply another form of heterogeneity.

However, there are CR models that can cope with
heterogeneity and/or source dependence, for example log-
linear models [15]-[17]. These methods require more than
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Table 1
EXAMPLE THREE-SOURCE CAPTURE HISTORY TABLE

Source 1  Source 2 Source 3  Count
0 0 0 Zooo =?
0 0 1 Zooi
0 1 0 Zo10
0 1 1 Zon
1 0 0 Z100
1 0 1 Zi01
1 1 0 Zio
1 1 1 Zin

two data sources and knowledge of the “capture histories”
of individuals.

Let N be the unknown number of distinct individuals
of the population. Let ¢ denote the number of sources
indexed by 1,2,...,¢. For each individual, let s; to s, be
defined such that s; = 1 if the individual occurs in sample
i and s; = 0 otherwise. Then the string 555 ... s; is called
the “capture history” of the individual. The observed
outcome of all measurements can then be represented
by variables of the form z;, which are the numbers of
individuals with each capture history s = s15; ... s,. These
are assumed to be instances of random variables Z;.

Note that individuals with the capture history 00...0
are unobserved, and our goal is to estimate Zyy_o. If
M = }s\00.0;Zs 18 the total number of observeq in-
dividuals, then the estimated population size is Np =
M + Zy_o. While collaborators often cannot share the
lists of individuals for privacy reasons, we assume they
can share the number of individuals in a source N;. Then
our PSIC protocol described in Section IV can be used to
compute all Z; other than Zy,_( based on the intersection
cardinalities of combinations of sources and the known
N;.

For + = 3 there are seven known capture counts
Zoo15 20105 - - -»Z111 as shown in Table I. For example,
Z111 is the number of individuals captured by source 1,
source 2 and source 3, so Zj;; is computed as intersection
cardinality of source 1, source 2 and source 3. To compute
the counts of individuals in only one source i we need
N;. For example, Zy; is the number of individuals only in
source 3 and is computed as Zyy, = N3 —Zo11 —Z101 —Z111-

We now briefly explain how to use log-linear models
to estimate Zyy_o (for details see [1]). For each history
s, let h(s) be the set of samples in which the individual
occurs; for example, £(101) = {1, 3}. Define the indicator
function 14, = 1 if statement A is true and O otherwise.
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We can now write the following system of equations in

2! variables u, uy,uo, ..., U2, ..., U3, ... up to upp 4
log(E (Zy)) = Z up = Z upLpcn(s) -
hCh(s) h

For example, for ¢ = 3, the system is
log (]E (Zijk)) =u + uy 1,‘:1 + u21j=1 + uglkzl
+uplizinj=1 + uzliziak=1
+upsljipk=1 + u123liz1nj=1n0=1 -

The estimate of Zyo o is then Zyy o = exp(u). If we
take E[Z;] = z, then this system has 2’ unknowns but
only 2" — 1 equations, as Zy_o is unknown. Hence it is
customary to assume ujp_, = 0 [15]. Using all u;, usually
results in over-fitting. Model selection techniques are used
to select the least complex model with “adequate” fit;
effectively some u;, are forced to 0O, to reflect assumed
independence between certain combinations of sources
[1].

Note that with the capture counts Z; estimates for
Zoo.o and Np can be computed using many existing CR
methods, not only log-linear models.

IV. Private SET INTERSECTION CARDINALITY PROTOCOL

We assume that all collaborators participating in the
PSIC protocol are potential honest-but-curious adver-
saries; they run the protocol correctly, but try to learn
as much information as possible. We assume that man-
in-the-middle attacks by third parties are prevented with
properly configured SSL/TLS connections. Our protocol
works with two or more parties (but we expect no more
than 10-20 parties), and it does not need trusted third
parties. Our protocol is based on well proven techniques
and is reasonably efficient.

Let k be the number of parties. Each party i has a
dataset D; with N; = |D;| distinct addresses and a private
encryption key K;. Our protocol is based on the approach
proposed in [18], [19], which is based on commutative en-
cryption. With commutative encryption different datasets
can be encrypted IP address by IP address, and identical
addresses in the original datasets will always result in
identical encrypted addresses (ciphertexts) in datasets en-
crypted by all parties (fully-encrypted datasets), regardless
of the order in which the parties encrypted the datasets.

Pohlig-Hellman (PH) encryption is a secure commu-
tative encryption scheme [20]. The encryption function
is:

Ex, (m) = m" (mod p) , (1)

CAIA Technical Report 130930B

September 2013

where m is the plaintext message (an IP address), p
is a large safe prime number' shared by all parties and
gcd (K;, p—1) = 1. It is easy to see that this function is
commutative since

Ex (Ex,(m) = mK&

= m"% (mod p) = Ex, (Ex, (m)) .

(mod p)

The protocol works as follows (for a detailed descrip-
tion see [2]). Each party encrypts the IP addresses of
their own dataset using their own private key, randomly
permutes the encrypted addresses, and then passes the
encrypted and permuted dataset to the next party — a
party that has not encrypted and permuted this dataset
before. The next party encrypts and randomly permutes
the received dataset with their own private key, passes it to
the next party that has not had this dataset and so on, until
all datasets are fully-encrypted. Finally, the parties share
the fully-encrypted datasets among each other. Since the
encryption is commutative, the set intersection cardinality
of the ciphertexts is identical to the set intersection
cardinality of the plaintexts.

The scheme is computationally secure, since no party
can decrypt any of the other parties’ datasets without
knowing the other parties’ encryption keys and because
of the random permutations no party knows which cipher-
texts map to which plaintexts.

Since the scheme encrypts each IP address of a dataset
separately, the space overhead is very large. For example,
with a modulus of 1024 bits (NIST 2010 Legacy [21])
each encrypted 4-byte IPv4 address results in a 128 bytes
long ciphertext. Also, the computational overhead is high
given the exponentiation-based commutative encryption
function (Equation 1). For large datasets the scheme is
impractical.

To make the scheme practical we propose that prior to
running the PSIC protocol all parties generate sampled
IP address datasets of much smaller size. Hash-based
sampling can be used to sample addresses consistently
across all parties. We can sample the same IP addresses
from different data sources by selecting only the addresses
with

H(m+s)y(modR) <r,

where m is the hash input (an IP address), s is a
sampling salt and r/R is the sampling rate (r,R € N).
The sampling rate can take any value, since r/R can be

'A safe prime is a prime of the form 2p + 1, where p is a prime.
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any rational number in (0, 1]. All parties need to agree on
H, s, r and R. The salt s randomises the choice of sample
and could be computed in a shared fashion, e.g. each party
contributes some bits. The actual intersection cardinality
can be estimated based on the intersection cardinality of
the sampled datasets [2].

The above scheme is not resistant to probing attacks
— attacks where one party generates datasets with mostly
invalid addresses to test whether a few valid addresses are
in another party’s dataset. Since no party can decrypt the
fully-encrypted datasets it is impossible to check whether
an original dataset contained only valid addresses. We
developed a novel, optional mechanism that allows to
detect and prevent probing attacks.

Prior to encrypting the actual datasets, all parties agree
on the set of valid addresses (valid set). For example,
in the context of IPv4 addresses the valid set could be
the set of advertised and routed IPv4 addresses (e.g.
based on Routeviews [22]). Then the parties essentially
perform PSIC as outlined above with the valid sets. Each
party encrypts each other party’s valid set using the same
encryption key used later to encrypt the datasets. By doing
this each party obtains a fully-encrypted valid set, which
can be used later to check if a fully-encrypted dataset
contains mostly valid addresses.

If the set intersection cardinality between a fully-
encrypted dataset and a fully-encrypted valid set is under
some threshold, a probing attack is detected [2]. Not
returning the fully-encrypted probe dataset to the prober
prevents the attack. To make the probing prevention
scalable the valid sets can be sampled with a low sampling
rate using hash-based sampling [2].
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