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Abstract—In many scenarios it is beneficial to share
private data among parties without mutual trust. One such
scenario is the use of capture-recapture (CR) techniques to
estimate population sizes from multiple private data sources
of observed individuals. With Private Set Intersection Car-
dinality (PSIC) techniques, we can use CR with datasets
from multiple parties while ensuring the privacy of the
data of each party. However, existing PSIC techniques have
limitations, for example they only work for two parties,
and they do not scale well for large datasets. We propose
an improved technique based on commutative encryption
and deterministic hash-based sampling that is secure and
scalable, and also prevents so-called probing attacks. We
demonstrate with a prototype that our technique scales
easily to datasets of at least 1–2 billion entries at the cost
of a small sampling error.

Index Terms—Secure set intersection cardinality,
capture-recapture

I. Introduction

In many scenarios it is beneficial to share private
data among parties without mutual trust. One scenario is
the application of capture-recapture (CR) techniques. CR
techniques are used to estimate the size of populations
based on multiple incomplete data sources of observed
individuals. The population size is estimated from the
number of individuals in each source and the sizes of
intersections between all combinations of sources. CR
arose in ecology [1]–[2], but is now also widely used
in epidemiology [3]–[4], as well as in information tech-
nology [5]. A private set intersection cardinality (PSIC)
technique would allow using CR with datasets from
multiple parties while ensuring the privacy of the data
of each party.

As a concrete example, we used CR to estimate the
population of actively used IP version 4 (IPv4) addresses
in the Internet from multiple data sources, such as server
logs or traffic data [6]. Most of the IPv4 address space

has already been allocated [7], but it is unclear how
many allocated addresses are actively used. Knowing how
many IPv4 addresses are used is important to predict the
value and costs of an IPv4 address market and the timing
of the transition to IP version 6 (IPv6). A diverse set
of data sources from multiple collaborators is required
to achieve Internet-wide “coverage”. A PSIC protocol
allows collaborators to contribute to this study while
ensuring anonymity of the IP addresses each collaborator
has observed.

The PSIC approach would also be useful in other
areas where CR is used. For example, in epidemiol-
ogy CR is used to estimate populations of people with
certain illnesses or drug consumption behaviours using
data sources, such as patient records or police records.
Typically the matching of the records is based on personal
data, such as names or birth dates. With a PSIC protocol
CR could be used in epidemiology while protecting the
privacy of individuals.

Our CR-driven requirements on the PSIC protocol
are as follows. The PSIC protocol must not rely on
trusted third parties, it must work with two or more
parties (but the maximum number of parties would be
relatively small, say 10–20 parties), and it must work with
large datasets of at least up to 1–2 billion entries. The
PSIC protocol must be computationally-secure and either
must be conceptually simple or a well proven technique
to allow for easy verification of its security. Since the
number of participants is small and there would be no
anonymous parties, security under the semi-honest (also
called honest-but-curious) adversary model is sufficient.

A number of PSIC protocols have been proposed [8]–
[14], but they do not meet our requirements. Some only
work for two parties, some only work for more than
two parties, and all of them do not scale well for large
datasets. We propose an improved technique based on
commutative encryption [11] and hash-based sampling
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[15] that is computationally-secure, prevents so-called
probing attacks and works for two or more semi-honest
parties without the need for a trusted third party. Besides
CR there are other applications where our approach could
be used, such as secure customer data sharing between
multiple organisations.

Our technique is a tradeoff between performance and
precision of the estimated set intersection size. It signifi-
cantly improves the scalability of existing approaches at
the cost of a small sampling error. Based on an imple-
mented prototype we will demonstrate that our algorithm
scales well with datasets of up to at least 1–2 billion
items with acceptable sampling errors. We will also show
that the impact of the sampling on the CR estimates is
tolerable: even with sample rates as low as 0.1% the error
in the CR estimates is under 5%.

The key contributions of our work are:
1) We propose an improved secure and scalable PSIC

algorithm for two or more semi-honest parties. We
calculate the resulting sampling error.

2) We propose a novel approach to defend against
probing attacks that works if parties can agree on
the valid dataset items and this valid set is not
prohibitively large.

3) We implemented a publicly available prototype
[16], and use it to demonstrate the security, cor-
rectness and scalability of our proposed approach.

4) We analyse the impact of the proposed sampled
PSIC technique on the accuracy of the CR approach
developed in [6].

The report is organised as follows. Section II discusses
related work. Section III provides an overview of the
approach and its underlying key techniques. Section
IV describes our proposed algorithm in detail. Section
V describes our prototype implementation. Section VI
provides performance measurements obtained with our
prototype and also analyses the error introduced by the
sampling (including the impact of the sampling on CR
population estimates). Section VII concludes and outlines
future work.

II. RelatedWork

In recent years several techniques have been published
to solve the PSIC problem. PSIC algorithms fall into
three categories depending on what kind of underlying
approach they use: commutative encryption, homomor-
phic encryption, or secret sharing.

Agrawal et al. [8] proposed a PSIC technique based
on commutative encryption, such as Pohlig-Hellman (PH)

encryption or commutative RSA. Their scheme was lim-
ited to the client-server two-party scenario. Vaidya and
Clifton [11] extended the technique to more than two
parties and also proposed an optimisation that increases
the efficiency and reduces the information disclosure for
three or more parties. However, if there can be collusion
the optimised approach is not secure. De Cristofaro et
al. [14] proposed a variant of [8], which 1) adds an
authorisation for client input data by a mutually-trusted
authority and 2) combines private set intersection (PSI)
with PSIC, so that the server can decide whether the
client can learn the intersecting set. They also proved
that the protocol is secure in the presence of semi-honest
adversaries. The commutative encryption based technique
has O

(
k2N

)
total communication and computational com-

plexity given k parties and datasets of size N.
The homomorphic encryption PSI approach proposed

by Freedman et al. [9] has a communication complexity
of O (N) and a computational complexity of O (N ln ln N)
for each party and can be extended to PSIC easily.
However, it works only for two parties and a multi-
party solution based on their scheme is not obvious [10].
Hohenberger et al. [17] presented a scheme similar to the
one in [9] with the same complexities.

Kissner and Song [10], [18] proposed a PSIC protocol
for multiple parties based on Paillier’s additive homomor-
phic cryptosystem. The protocol has O

(
k2N

)
communica-

tion complexity and O
(
k2N2

)
computational complexity.

Computationally it is less efficient than [8], [11], [14]
as discussed in [19]. Also, the communication overhead
is potentially twice as high compared to [8], [11], [14],
since Paillier uses a 2048 bit modulus while PH/RSA
with 1024 bit modules is still viewed as reasonably secure
[8], [11], [14]. Sang and Shen [12] proposed a protocol
that improves [10], [18] by the security in the Universal
Composability (UC) security model.

Li and Wu [20] proposed an information-theoretically
secure PSI protocol based on secret sharing, which can
be extended to PSIC. The protocol is secure with t < k/3
malicious adversaries and the communication complexity
is O

(
k4N2

)
. Burkhart et al. [13] developed a system for

secure multi-party computation based on secret sharing
and homomorphic encryption that can be used for PSIC,
but only with more than two parties. Their approach is
resistant to t < k/2 colluding parties because it is based
on Shamir’s secret sharing [21]. However, as with [20]
the communication complexity scales with N2 [21].

Blundo et al. [19] proposed to combine sampling
and PSIC to securely and efficiently estimate the Jac-
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card index, a measure of similarity of two datasets
(J = |A ∩ B| / |A ∪ B|).1 They proposed to use MinHash
sampling [15] to sample the datasets and then use the
technique from [8], [14] for PSIC of the sampled datasets
(estimating the Jaccard index from the encrypted samples
is straight-forward). However, their approach still does
not scale well for large datasets, since MinHash sampling
requires that each dataset is hashed completely h times
and one needs h ≥ 1000 to reduce the estimation error to
a few percent [19].2 Also, with MinHash the number of
samples is independent of the dataset size, which leads to
larger relative estimation errors for larger datasets (which
is not desirable for CR).

Our solution is based on the commutative encryption
approach proposed by [8], [11], since it is the most
efficient solution, it is computationally-secure (given ap-
propriate key and modulus lengths) and it works for two
or more parties. However, the technique in [8], [11] is
still impractical with large datasets due to the encryption
overhead. For example, assuming a modulus of 1024 bits
and assuming the input items have a size of four bytes
(e.g. IPv4 addresses), an encrypted list of 1 billion items
has a size of 128 GB. Also the computational overhead
is high, since PH/RSA is much slower than symmetric
encryption schemes.

We propose to use deterministic hash-based sampling
to sample a subset of items consistent across all parties,
perform PSIC on the sampled subsets, and then estimate
the intersection cardinality of the original datasets from
the intersection cardinality of the samples. In contrast to
[19] our sampling approach only requires to hash each
input dataset once. Our approach significantly improves
the scalability and we will show that even with lower
sample rates the estimation error is tolerable.

We also address the issue of probing attacks. These
are attacks where one party creates a dataset with mostly
invalid items, to test whether one (or a few) valid items
are in other parties’ datasets. An ad-hoc solution to
this problem was presented in [11]: if the intersection
cardinality between some datasets is small, parties treat
this as probing attack. However, this approach cannot
distinguish between probe attacks and legitimate datasets
with small overlap. Our solution allows parties to detect

1Based on J the intersection cardinality is: |A ∩ B| =

J/ (J + 1) (|A| + |B|).
2There is a MinHash variant where datasets are hashed only once

and the h elements with the smallest hash values are selected [15].
However, for this variant it is not clear how to compute the unbiased
estimator of J [15] while using the PSIC technique from [8], [14].

and prevent probing attacks, if all parties can agree on the
set of valid items and this set is not prohibitively large.

We analyse the impact of the proposed sampled PSIC
technique on the accuracy of CR estimates. To the best
of our knowledge no prior work has done that.

III. Algorithm Overview

First, we provide an overview about our PSIC algo-
rithm, which is explained in more detail in Section IV.
Then we discuss the two key techniques the algorithm
is based on: commutative encryption and hash-based
sampling. Finally, we discuss our proposed approach to
prevent probing attacks.

A. Basic algorithm

Let k be the number of parties. Each party i has a
dataset Di with Ni = |Di| distinct items and a private
encryption key Ki. Our algorithm is based on the approach
proposed in [8], [11], which is based on commutative
encryption (see Section III-B). With commutative encryp-
tion different datasets can be encrypted by all parties (item
by item), and identical items in the original datasets will
always result in identical encrypted items in the datasets
encrypted by all parties (fully-encrypted datasets), re-
gardless of the order in which the parties encrypted the
datasets.

The algorithm works as follows. Each party encrypts
the items of their own dataset using their own private key,
randomly permutes the encrypted items, and then passes
the encrypted and permuted dataset to the next party –
a party that has not encrypted and permuted this dataset
before. The next party encrypts and randomly permutes
the received dataset with their own private key, passes it to
the next party that has not had this dataset and so on, until
all datasets are fully-encrypted. Finally, the parties share
the fully-encrypted datasets among each other. Since the
encryption is commutative, the set intersection cardinality
of the ciphertexts is identical to the set intersection
cardinality of the plaintexts.

The scheme is computationally secure, since no party
can decrypt any of the other parties’ datasets without
knowing the other parties’ encryption keys, and because
of the random permutations no party knows which cipher-
texts map to which plaintexts.

Since the scheme encrypts each item of a dataset
separately, the space overhead is very large if the plaintext
items are small. Also, the computational overhead is high
given the exponentiation-based commutative encryption
function (see Section III-B). For large datasets the above
scheme is impractical. To make the scheme practical
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we propose that initially each party generates a sampled
dataset of much smaller size. Hash-based sampling can
be used to sample entries consistently across all datasets
(see Section III-C). The actual intersection cardinality can
be estimated based on the intersection cardinality of the
sample datasets.

The above scheme is not resistant to probing attacks.
These are attacks where one party generates datasets with
mostly invalid items to test whether very few valid items
are in another party’s dataset. Since no party can decrypt
the fully-encrypted datasets, it is impossible to check
whether the original data were valid items. We propose
a novel approach to defend against probing attacks that
works if parties can agree on the valid set items and the
set of valid items is not prohibitively large (see Section
III-E).

B. Commutative encryption

Let E be a secure and commutative encryption function
and Ki be the secret encryption key of party i. Let EKi (m)
denote the encrypted version of plaintext m with key
Ki. Since E is commutative, it holds EKi

(
EK j (m)

)
=

EK j

(
EKi (m)

)
. Since E is secure, it is resistant to plaintext

attacks and collisions. Given m and EKi (m) it is computa-
tionally infeasible to derive Ki, for all m and Ki. Given any
two plaintexts m1 and m2 it is computationally infeasible
to find keys Ki and K j such that EKi (m1) = EK j (m2).

Two similar commutative encryption schemes are
Pohlig-Hellman (PH) [22] and commutative RSA [23].
The encryption function is:

EKi (m) = mKi (mod p) ,

where p is large safe prime number3 shared by all
parties and where gcd (Ki, p − 1) = 1. It is easy to see
that this function is commutative since

EKi

(
EK j (m)

)
= mKiK j (mod p)

= mK jKi (mod p) = EK j

(
EKi (m)

)
.

From [22], [23] we know that this function is
computationally-secure if the key size and modulus size
are appropriately chosen. Requirements from NIST [24]
state that the key size should be at least 224 bits and the
modulus size should be at least 2048 bits to be secure
until the year 2030, but many people still consider a key
size of 160 bits and a modulus size of 1024 bits (NIST
2010 [24]) as relatively secure (e.g. [8], [11], [14]).

3A safe prime is a prime of the form 2p + 1, where p is a prime.

C. Hash-based sampling

Hash-based sampling was used by Broder et al. [15]
for document comparison and Duffield et al. [25] for
analysing IP packet trajectories in the Internet. The key
idea is to randomly sample the same elements in different
lists or the same IP packets at different routers.

Let H be good hash function, i.e. a hash function
that generates different output even for very similar input
and maps the inputs as uniformly as possible over its
output range. We do not require cryptographic properties.
Let the hash function be salted so that we can obtain
different independent samples for the same input. This
can be achieved by adding the salt s to the hash input m
before applying the hash function. We can then sample
the same elements from different lists by selecting only
the elements with

H (m + s) (mod R) < r ,

where r/R is the sampling rate (r,R ∈ N). The sampling
rate can take pretty much any value, since r/R can be any
rational number in (0, 1]. Before using the PSIC protocol,
each party samples their dataset. All parties need to agree
on H, s, r and R. The salt s could be computed in a
shared fashion, e.g. each party contributes some bits, to
prevent a single party from controlling which elements
are sampled.

D. Sample size confidence intervals

We now derive confidence intervals for the sample sizes
used in the detailed algorithm description in Section IV.
We model the sampling as follows. Each item in a set of
size N is a Bernoulli experiment with success probability
equal to the sampling rate p. So the number of items n
in the sampled set follows a Binomial distribution with
a mean of n̄ = N p and a variance σ2

n̄ = N p (1 − p).
Since in our case N is typically very large (≥ 106) we
can approximate the Binomial distribution with a Normal
distribution with same mean and variance without using
the continuity correction 0.5

N [26].
We define a single-sided lower confidence interval (CI)

Pr (X ≥ n̄ − zασn̄) = 1 − α , (1)

which states that with a probability of 1 − α the size of
the sampled dataset is above the lower bound n̄ − zασn̄.
Here zα is the z-value corresponding to α.4 Similarly, we
define a double-sided CI

4A z-value indicates how many standard deviations an observation
is away from the mean of a Normal distribution.
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Pr
(
n̄ − zα/2σn̄ ≤ X ≤ n̄ + zα/2σn̄

)
= 1 − α , (2)

which states that with a probability of 1−α the size of the
sampled dataset is between the lower bound n̄ − zα/2σn̄

and upper bound n̄+zα/2σn̄. Since the CI is two-sided we
must use zα/2 (not zα) for both lower and upper bound.

E. Probing attack detection

Besides allowing an attacker to learn whether a few
probed IP addresses are in another party’s dataset, probing
may also help an attacker to obtain encryption keys.
PH/RSA is resistant to plaintext attacks, so even if an
attacker has both the plaintext and the ciphertext, the at-
tacker cannot recover the encryption key without solving
the discrete logarithm problem (DLP).5 DLP is compu-
tationally hard for large prime fields, however recently
researchers have solved the DLP with safe primes of over
500 bits [27]. Without successful probing, for a given
ciphertext an attacker never knows the corresponding
plaintext, making a DLP attack much harder even for
smaller modulus sizes.

We propose a mechanism that allows to detect and
prevent probing attacks. Our technique can be applied
to all situations where the set of permitted items (valid
items) is known and not prohibitively large. Our probing
detection technique is optional and can be omitted if not
needed.

Prior to encrypting the actual datasets, all parties agree
on the set of valid items (valid set). For example, in the
context of IPv4 addresses the valid set could be the set
of actually advertised and routed IPv4 addresses (based
on data from [28]). Then the parties essentially perform
PSIC as outlined in Section III-A with the valid sets.
All parties encrypt every party’s valid set. Note that the
parties must use the same encryption key used later to
encrypt the data. At the end each party obtains a valid
set encrypted by all parties, which can be used later to
check if a fully encrypted dataset contains mostly valid
items.

If the set intersection cardinality between an encrypted
dataset and an encrypted valid set is under some threshold
(as discussed in Section IV-B3), a probing attack is
detected. The detecting party informs all parties of the
attack and none of the parties sends a fully-encrypted
dataset to the presumed attacker. This prevents the attack

5There are more efficient attacks against RSA. However, they
assume that the attacker can get the victim to decrypt a chosen
ciphertext, and in our approach decryption is not used.

since the attacker cannot compute any intersection cardi-
nalities. The honest but curious adversary model excludes
a collusion of the detecting party with the attacker in the
form of not complying with the protocol and not reporting
the attack. Even if collusion was possible, the attack could
still be detected (but not prevented).

The valid set may be very large, but it can be hash-
sampled with a much smaller sample rate than the dataset,
making the approach feasible even with larger valid sets.
If sampling is used each party samples their valid set
using a secret salt. Since the salt is secret and the valid
sets are encrypted and permuted, no party knows which
items are in another party’s valid set. The dataset of an
honest party will produce an overlap consistent with the
valid set sampling rate, but the dataset of a probing party
will produce a near zero overlap (as discussed in Section
IV-B3).

We also propose that all parties agree on a minimum
dataset size Nmin. Any small dataset, even if completely
valid, is effectively a probing attack. If a party encounters
a dataset smaller than Nmin, it will not encrypt and
forward this dataset. Due to the time it takes to run the
algorithm, a minimum dataset size also implicitly limits
the probing rate. Furthermore, in some applications it may
be feasible to limit the rate of set intersection cardinality
computations, which would explicitly limit the probing
rate.

IV. Detailed Algorithm Description

We now describe our adversary model and the proposed
algorithm. We first describe the two-party case and then
extend the algorithm to three or more parties. Then we
discuss the security and complexity. Finally, we discuss
how to choose the sample rate.

A. Adversary model

We assume that all parties participating in the PSIC
protocol are potential honest-but-curious adversaries; they
run the protocol correctly, but they try to learn as much
information as possible. For example, they perform the
encryption and permutation correctly, but they may select
certain input data to attempt a probing attack. We assume
that one or more honest-but-curious adversaries may col-
lude in order to obtain more information. We assume that
man-in-the-middle attacks by third parties are prevented
by using secure communication, such as Secure Sockets
Layer (SSL) [29] or Transport Layer Security (TLS) [30].
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Figure 1. Protocol for two parties. Here P, E, H denote the
permutation, encryption and hash-sampling of the valid set V or
dataset D created by (A)lice or (B)ob. Alice and Bob use their private
permutation and encryption functions. Alice and Bob use different
private hash functions for valid sets, but they use the same hash
function for datasets.

B. Two parties

Let the two parties be (A)lice and (B)ob with datasets
DA and DB and valid sets VA and VB (for simplicity we
assume VA = VB). The algorithm has four main steps:

1) Configuration (agree on parameters)
2) Valid set encryption and permutation (optional)
3) Dataset encryption and permutation (main step)
4) Intersection cardinality computation

We now discuss each step. Let Ei, Hi and Pi be the
encryption, hash and permutation functions used by party
i. Since for datasets all parties use the same sampling salt
we drop the index and just use H in this case. Figure
1 shows an overview of the whole protocol (except the
configuration).

1) Configuration: In the configuration step A and B
negotiate the configuration: the modulus used for encryp-
tion, the sampling rate for the data pD, the hash function
used for sampling and the hash salt, the minimum dataset
size Nmin, and whether probing detection is used or not.
Then, A and B each generate their own secret encryption
key Ki independently. Since decryption is not required, A
and B do not generate decryption keys.

If A and B want to use probe detection they agree on
the valid set V and and the sampling rate for the valid set
pV (typically pV < pD). In this case, A and B also each
generate their secret valid set hash salt independently.

2) Valid set encryption and permutation: This step is
only needed if A and B use probing detection. In this
step A and B generate the sampled valid set, encrypt and

permute it, and send their encrypted and permuted valid
sets to each other. A sends PA (EA (HA (VA))) to B, and B
sends PB (EB (HB (VB))) to A.

A and B then encrypt and permute each others valid set
and return the double-encrypted valid sets to each other.
A sends PA (EA (PB (EB (HB (VB))))) to B, and B sends
PB (EB (PA (EA (HA (VA))))) to A. A and B may compute
the set intersection cardinality of the valid sets to check
if their view of the valid space is consistent. Without
sampling the overlap should be 100%. With sampling the
overlap should be close to 100pV pV%.

3) Dataset encryption and permutation: In this step A
and B sample, encrypt and permute their own datasets,
and send the encrypted and permuted sets to each
other. A sends PA (EA (H (DA))) to B, and B sends
PB (EB (H (DB))) to A.

Then, A and B check if each others dataset is at least
of size Nmin. If the dataset was sampled A and B estimate
the unsampled size N ≈ N̂ = n/pD. For example, NA is
estimated based on the sampled size nA to be N̂A = nA/pD.
Given N̂ and pD, A and B compute the one-sided lower
CI from Equation 1 and check if that lower bound is at
least Nmin/pD. If yes, the checking party encrypts and
permutes the received dataset. Otherwise, the checking
party aborts and does not return the double-encrypted set
to the other party.

Without probing detection the parties will then re-
turn the double-encrypted datasets to each other: A
sends PA (EA (PB (EB (H (DB))))) to B, and B sends
PB (EB (PA (EA (H (DA))))) to A. With probing detection
each party first computes the set intersection cardinality
between their double-encrypted valid set and the other
party’s double-encrypted dataset. If the valid set is not
sampled (pV = 1), all of the dataset items should be
in the valid set. If that is the case, the checking party
returns the double-encrypted dataset to the other party.
Otherwise, the checking party aborts and does not return
the double-encrypted set.

If the valid set is sampled, then each data item is
only present in the valid set with probability pV . As
above A and B can estimate the size of each others
dataset by N̂ = n/pV and compute the one-sided lower
CI with Equation 1. For an honest party that has only
valid items in the dataset, the overlap should be over
the lower bound with probability 1 − α. We can choose
a low α to minimise the false positive probability (the
probability that an honest party is incorrectly identified
as doing a probing attack). We assume that for a probing
attack the number of valid items in the prober’s dataset
has to be below some limit Nprobe � N (typically we have
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large datasets but the number of probed items is small).
Since an attacker does not know the other party’s valid
set sampling salt, an attacker’s number of sampled valid
items is on average Nprobe pV . Since Nprobe pV � N pV

with high probability even for low α, the lower bound of
the one-sided CI is higher than Nprobe pV . Hence, the false
negative probability (the probability that a probing party
is not identified as such) is also very small.

Only if a dataset is recognised as valid, A and B will
return it to the other party. Otherwise A and B will abort
the protocol, and the probing party cannot learn anything.

4) Intersection cardinality computation: Since the en-
cryption is commutative any items that are in both sets
will have the same ciphertexts in both double-encrypted
datasets. Without sampling A and B compute the in-
tersection cardinality by counting the number of equal
ciphertexts in both double-encrypted sets.

With sampled datasets A and B compute an estimate
of the intersection cardinality. Let C = |DA ∩ DB| denote
the intersection cardinality of the datasets. Since the
probability that an element of the intersection DA∩DB is
in the sample is pD, the expected value of the intersection
size of the samples

∣∣∣D̃A ∩ D̃B

∣∣∣ is:

E
(∣∣∣D̃A ∩ D̃B

∣∣∣) = C · pD ,

and hence Ĉ is an unbiased estimator for C:

E
(
Ĉ
)

= E
(∣∣∣D̃A ∩ D̃B

∣∣∣) 1
pD

= C

If Ĉ is large we can approximate it as Normal-
distributed and construct a two-sided CI around
E

(∣∣∣D̃A ∩ D̃B

∣∣∣) according to Equation 2:6

Pr
(
Ĉ·pD − zα/2σĈ ≤ C · pD ≤ Ĉ·pD + zα/2σĈ

)
= 1 − α ,

(3)
where σ2

Ĉ
= CpD (1 − pD) ≈ ĈpD (1 − pD). We can

transform Equation 3 into a CI for the actual intersection
size C:

Pr
(
Ĉ − zα/2σĈ/pD ≤ C ≤ Ĉ + zα/2σĈ/pD

)
= 1 − α . (4)

C. Multiple parties

Extending the scheme to more than two parties is rela-
tively straight-forward. We propose that the parties form a
one-directional ring topology. Figure 2 shows an example
for three parties. To counter possible collusion the ring

6Since we do not know C we must use its estimate Ĉ to get an
estimated standard deviation.

1

2

3

Figure 2. Ring topology for three parties – encrypted and permuted
datasets are only passed in one direction

topology could be generated randomly, for example using
a secure multi-party computation for random ordering
[31]. We assume that each party knows the complete
topology, which means it also knows all other parties.

During steps 2 and 3 each party receives valid sets or
datasets from their right neighbour, encrypts and permutes
the sets and forwards them to their left neighbour. Without
probing detection, after all encryption is done in step 3
each party will have their own dataset encrypted by all
parties. Each party then sends their own fully-encrypted
dataset to all other parties (or a subset of parties inter-
ested in the intersection). Then all interested parties can
perform the intersection cardinality computation.

With probing detection, each party checks for probing
before returning a fully-encrypted dataset to the origi-
nal owner (each party knows when a dataset is fully-
encrypted since the number of parties is known). Each
party broadcasts the result of the probing detection to all
other parties, i.e. whether it detected a probing attack or
not. After the broadcasts are received, all parties send
the fully-encrypted datasets to all interested parties not
identified as probers. This means probers will never get
any fully-encrypted datasets (not even their own) and the
probing attack fails. However, all interested honest par-
ties can perform the intersection cardinality computation
(extending the approach described in Section IV-B4 to
multiple sources is straightforward).

Vaidya et al. [11] proposed an optimisation of the
protocol for three or more parties. Instead of a ring
the parties form a binary tree, and the intersections are
carried out in hierarchical fashion. The technique is a
significant performance improvement, especially if any
two-party intersections are much smaller then the sizes
of the datasets, and also reduces information disclosure,
as not all parties can learn the intersection sizes of all
combinations of datasets. Vaidya’s optimised approach
works with our proposed dataset sampling. Unfortunately,
it does not work in the case of population estimation with
CR, which requires that the interested parties must learn
the intersection sizes of all combinations of datasets.
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D. Complexity

Since every party needs to encrypt and permute the
datasets of all parties (and possibly the valid sets of
all parties) the total computational complexity of the
scheme is O

(
k2N

)
overall, where where k is the number

of parties and N is the size of the datasets. However,
for a single party the complexity is linear O (kN). Since
every party has to forward every other parties dataset, the
communication complexity is also O

(
k2N

)
overall and

O (kN) for each party.
The sampling of the data only requires one hash

function computation, one modulo operation and one
comparison per dataset item (neglecting the addition
with the salt).7 Fast hash functions only require few
multiplication operations (plus some add, shift and logical
operations which are much faster than multiplications).
For example, the Murmur hash function [32] performs
only three multiplications plus three multiplications per
4 bytes of input data (a total of six multiplications in
the case of 4-byte input data, such as IPv4 addresses).
The encryption requires one modular exponentiation per
dataset (or valid set) item. Raising a number to an
exponent of K bits requires K–2K multiplications and
typically K is a few hundred bits.8

E. Security

The two-party scheme is computationally-secure in the
presence of semi-honest adversaries [14] and it is easy to
see that the security extends to the multi-party case. To
protect against third parties, we propose to use properly
configured SSL/TLS [29], [30] for all communication.

There are no security issues in step 1. In step 2 only
the valid space is exchanged. No party can learn anything
about another party’s IP addresses. An attacker could
mount a probing attack in this phase, and if successful
could then perform a known plaintext attack to recover
another party’s secret encryption key. However, the en-
cryption is resistant to known plaintext attacks, provided
a secure key size and modulus are used. Without probing
an attacker cannot perform a known plaintext attack due
to the random permutation of items performed with each
encryption.

In step 3 all parties exchange the encrypted and per-
muted item lists. Since the encryption is secure, no party
can decrypt another party’s dataset. Since all datasets are

7If we restrict the sample rates to 1
2e with e = [0, 1, . . . ,N] we

could replace the slower modulo operation with a much faster shift
operation.

8Usually Montgomery multiplication [33] is used to implement
xy mod M , which requires K–2K plus 2 Montgomery steps.

permuted by each party, no party knows the mapping
between data items and ciphertexts for any encrypted
dataset. Again, plaintext attacks are only possible if
probing can be performed. If probing is prevented the
only information the parties can learn are the sizes of
the intersections of the different datasets and the sizes of
the datasets. All encrypted datasets and keys used could
be deleted after the set intersection cardinality has been
computed. This helps to prevent potential attacks later on,
e.g. if at some stage an attacker somehow gains access
to keys and encrypted datasets.

The sampling we propose increases the practical secu-
rity of the approach. Even if an attacker could somehow
steal the encryption keys, the attacker would only get
access to subsets of sampled items and not whole datasets.

F. Minimum sample rate

We can determine the minimum sample rate needed,
so that the relative error of the intersection cardinality
estimate is not higher than a target maximum relative
error ∆εmax with a given confidence level 1 − α if we
have an estimate of the intersection cardinality. Based on
Equation 4 we define:

∆εmax =
Ĉ −C

C
≥
−zα/2 · σ

CpD
=
−zα/2 ·

√
CpD(1 − pD)
CpD

,

which we can rewrite as:

∆ε2
max ≥

z2
α/2 · pD(1 − pD)

Cp2
D

.

Solving the quadratic equation for pD yields:

pD ≥
2z2

α/2

2
(
∆ε2

maxC + z2
α/2

) .
Then r and R must be chosen so that r/R ≥ pD. In

practice we do not know C, but we may have a rough
idea of its expected value. If we use a lower bound for
C then the computed pD will be sufficient to keep the
relative error below ∆εmax. If multiple different intersec-
tion cardinalities shall be computed from more than two
datasets, we need to use the minimum of all expected
intersection cardinalities to determine the sample rate.

If we cannot predict C, a possible strategy would be to
compute the intersection size(s) with a low sample rate to
obtain an estimate of C and then if necessary recompute
the intersection size(s) with a sample rate adjusted to
achieve the desired precision. This is still more efficient
than computing the intersection sizes(s) without sampling,
assuming the adjusted sample rate is small.
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V. Prototype Implementation

First we present an overview of our prototype imple-
mentation. Then we present some examples demonstrat-
ing the use of the prototype.

A. Overview

We implemented a prototype in Python, which we
named SeFaSI (Secure Fast Set Intersection) [16]. The
encryption is based on the RSA functions of the PyCrypto
library [34]. As hash function for sampling we use the
Murmur hash [32] Python library. The Murmur hash
function is very fast and has a good distribution that
passes all the usual tests [32]. Note, that both libraries are
based on underlying C/C++ libraries. Using Python has
the advantage of enabling fast prototyping and keeping
the source code small and readable. The last point is
very important, as it allows all parties to easily verify
the security of the implementation, i.e. the encryption
and permutation code.9 Our implementation consists of
several tools that implement the basic functions, such as
sampling, encryption, set intersection cardinality compu-
tation, and an “umbrella” tool that implements the PSIC
protocol steps based on the basic tools.

The disadvantage of a Python implementation is slower
execution speed compared to compiled languages, such as
C/C++. Even if a library is coded in C/C++, such as the
used encryption/hash libraries, the Python to C/C++ call
conversion adds significant overhead in case a function
executes relatively fast and is called many times (which
is the case for the sampling). We also implemented a fast
version of the sampling, encryption, and set intersection
cardinality computation tools in C. The C tools use the
modular exponentiation function of libopenssl and the C
version of the Murmur hash.

The random permutation is implemented based on
GNU sort, which is used after the encryption. A lex-
icographical sort of the ciphertexts is equivalent to a
random permutation of the plaintexts, since the cipher-
texts are essentially random bit strings. Performance-wise
this approach is not ideal since sorting has complexity
O (Nlog (N)), while shuffling (e.g. Fisher–Yates) has com-
plexity O (N). However, the sorting with GNU sort is still
almost two magnitudes faster than the encryption, GNU
sort is readily available and it performs external sorting (it
uses constant memory regardless of the size of the input
data).

Also, having sorted ciphertexts has the advantage that
the computation of the intersection size of two or more

9Assuming there is trust in the used libraries.

encrypted and permuted datasets can be done with O (N)
complexity (assuming N � k). Our intersection algorithm
moves k pointers through the k datasets. In each step
the algorithm checks whether the current k ciphertext
values of items are the same. If yes, then the size of the
intersection is increased by one. Then, the pointers for
the datasets with the currently smallest ciphertext values
are advanced and so on.

With the “umbrella” tool the parties have to perform the
process manually. For example, each time a party receives
an encrypted dataset, it must run the tool to encrypt and
permute the dataset, and and then it must pass on the
dataset to the next party. The prototype also includes a
tool that performs the set intersection cardinality com-
putation with multiple geographically-distributed parties
almost automatically (but currently only without probing
detection).

The results we will present in Section VI show that the
performance of our prototype is sufficient for practical
use, even if the datasets contain up to 1–2 billion entries.
However, further improvements are future work, such as
a scalable shuffling implementation or multi-threading
support that would allow to parallelise the sampling or
encryption on CPUs with multiple cores.

B. Example use

SeFaSI consists of a number of separate tools. The
README file in the distribution [16] provides many
examples on how to use the different tools. Here we
illustrate the use of SeFaSI in the scenario where multiple
geographically-distributed parties want to compute the
intersection cardinality without using probing detection.

SeFaSI uses two configuration files. The public config-
uration file specifies the sampling parameters, the probing
detection parameters and public encryption parameters
(the modulus). The private configuration file contains the
private key and the private sampling salt for the sampling
of the valid set.

1) Step 1: SeFaSI configuration: All parties need to
agree on the public configuration. One approach is to use
SeFaSI to generate a default public configuration file with
the command:

sefasi_main.py -a config -n test

This command will generate the two files test.pub.cfg
(public configuration) and test.priv.cfg (private configura-
tion). The public configuration file can be modified based
on the requirements and distributed to all parties. Then all
parties need to generate a private configuration file with
the following command:
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sefasi_main.py -a config -c test.pub.cfg -n
test

2) Step 2: Host setup: All parties need to agree on the
list of participating hosts (peers) and their host names or
IP addresses. Each party must create two accounts on
their host:
• A “main” account that is used to run SeFaSI and has

access to the public and private configuration.
• A “sefasi” account that other parties can access to

upload data files (acting as “inbox”) and has no
access to the private configuration.

Each party must generate a key pair for the "main"
account for use with SSH. For example, by running the
following command an RSA key pair is created:

ssh-keygen -t rsa

Each party must add all parties’ public RSA keys to the
.ssh/authorized_keys file of the “sefasi” user (including
their own public RSA key). Each party can access each
other party’s “sefasi” user, hence the “sefasi” user must
not have access to the SeFaSI private configuration or any
other private data, such as the unencrypted data files.

3) Step 3: Initial encryption and permutation: Each
party must perform the initial sampling and encryption
of their dataset. For example, if the dataset is data.txt
the following command can be used:

sefasi_main.py -f -a init_enc -c
test.pub.cfg -p test.priv.cfg data.txt

This command will generate the files data.txt.encperm
(encrypted and permuted dataset) and data.txt.size (con-
tains the true size of the dataset as number).

4) Step 4: Run the PSIC protocol: Each party then
can start the PSIC protocol. In the following command
we assume the list of participating hosts is "192.168.1.1
192.168.1.2 192.168.1.3" (host names can be specified
instead of IP addresses), the IP address of the local host is
192.168.1.2, and the PREFIX directory /home/main/sefasi
is used to store temporary files and the results in different
sub directories:

sefasi_peer.sh test.pub.cfg test.priv.cfg
"192.168.1.1 192.168.1.2 192.168.1.3"
192.168.1.2 /home/main/sefasi

sefasi_peer.sh will check the reachability of all peers
with SSH, create working directories below PREFIX and
then wait for the user to put the .encperm and .size files
generated in step 3 into the appropriate directory (by
default PREFIX/own). The files can also be copied into
this directory before starting the process.

Table I
Speed of item sampling depending on sample rate with 4-byte items

Sample rate [%] Items/second

1 5,450,000

5 5,300,000

10 5,200,000

50 4,350,000

sefasi_peer.sh will pass the encrypted and permuted
local dataset to the left neighbour.10 Once an en-
crypted dataset is received from the right neighbour,
sefasi_peer.sh will encrypt and permute the dataset and
pass it to the left neighbour. The process will continue
until all datasets have been encrypted by all peers.
Fully-encrypted datasets will then be sent to all peers.
After all fully-encrypted datasets have been received,
sefasi_peer.sh will compute the intersection cardinalities
between all datasets.

VI. Performance

This section describes the performance evaluation of
our prototype system. Our performance measurements
were done on a PC with Intel i7 2.8 GHz CPU and 24 GB
RAM running FreeBSD 9.0 and Python 2.7.3. Note that
in all experiments we used a single CPU core only.11

A. Sampling speed

Table I shows the number of 4-byte item values (e.g.
IPv4 addresses) sampled per second depending on the
sample rate (the higher the sample rate is the higher the
file write overhead) measured for the C implementation
(the average of 10 runs). Even with 50% sample rate
our prototype can sample about 4,35 million items per
second, so it would take about 4 minutes to sample a
dataset with 1 billion 4-byte items. The Python sampling
implementation is roughly one magnitude slower, for
example at 50% sample rate the Python tool can only
sample 420,000 items per second.

B. Encryption and permutation speed

Table II shows the encryption and permutation speed
depending on the key size and the modulus size for

10The list of hosts is viewed as ring. Datasets other than the fully-
encrypted datasets are only passed to the left neighbour, which is
the host in the list before the local host. For example, here the
left neighbour of 192.168.1.1 is 192.168.1.3, the left neighbour of
192.168.1.2 is 192.168.1.1 and so on.

11We attached each tested process to a particular CPU core with the
tool cpuset.
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Table II
Speed of encryption and permutation depending on key size and
modulus size with 4-byte items and encrypted 4-byte items

Key/Modulus size [bits] Items/second Encr. items/second

128/128 29,000 28,000

160/256 19,000 18,500

160/512 10,000 10,000

160/1024a 3,600 3,500

224/2048b 1,100 1,000

aNIST 2010 (Legacy) [24]
bNIST secure until 2030 [24]

both 4-byte input items (e.g. IPv4 addresses) and already
encrypted items (encrypted with the same key and mod-
ulus size) for the C implementation (the average of 10
runs). As expected, the rate decreases with increasing key
and modulus lengths. While it takes longer to encrypt
larger input (e.g. ciphertexts of already encrypted IPv4
addresses), the difference is relatively small. Note that
the rates are dominated by the encryption, which takes
97–98% of the time. Only 2–3% of the time is used by
the permutation (GNU sort). The Python implementation
actually has a very similar performance. The encryption
function is very slow, so the Python call overhead is
negligible.

With an insecure 64 bit key and 64 bit modulus it
would take 9–10 hours to encrypt end permute 1 billion
items. With 160 bit key and 1024 bit modulus (NIST
2010 Legacy [24]) it would take over 3 days to encrypt
and permute 1 billion items; however, with a sample rate
of 10% the time reduces to only 8 hours (including the
sampling).

C. Set intersection cardinality speed

Table III shows the set intersection cardinality speed
depending on the number of datasets and the overlap
(the average of 10 runs). All datasets have roughly the
same size. An overlap of 100% represents the best case
(highest performance) and an overlap of 0% represents
the worst case (lowest performance). Computing the
set intersection cardinality of five sets with roughly 1
billion items each would take between 18 minutes and
50 minutes depending on the overlap. However, with a
sample rate of 10% the time would reduce to between 2
and 5 minutes. The C implementation is roughly 20 times
faster than the Python implementation, for example the
Python implementation only achieves 110,000 items per
second for two datasets and 100% overlap.

Table III
Speed of set intersection cardinality computation depending on key

size and modulus size with encrypted items

Datasets Overlap [%] Items/second

2 100 2,180,000

3 100 1,500,000

4 100 1,150,000

5 100 950,000

2 0 1,650,000

3 0 880,000

4 0 540,000

5 0 360,000

D. Dataset size exchanged

If the items are 4 bytes long, such as for IPv4 addresses,
then each unencrypted set is of size 4Ni bytes (uncom-
pressed). With our sampled PSIC approach the dataset
size depends on the encryption modulus and the sample
rate. Table IV illustrates the sizes for different example
dataset sizes, encryption moduli and sample rates.

E. Cardinality estimate sampling error

We now analyse the error caused by sampling and in-
vestigate whether the empirical error is consistent with the
theoretical predictions. Figure 3 shows the relative errors
of the estimates depending on different true cardinality
and different sample rates as boxplots (100 runs for each
setting). The relative error decreases with increasing sam-
ple rate and increasing true cardinality. In Section VI-F
we analyse in more detail how the error affects actual
CR population estimates. Here we only note that with
the datasets used for CR in [6] the smallest cardinality
of all combinations of datasets is larger than 2,000 with
all sources or larger than 55,000 if the smallest source is
removed (or pooled with a larger source).

We also analysed the percentage of experiments where
the true value lies within the 95% confidence interval (CI)
estimated with Equation 4. If our derived CI is correct,
then for a large number of runs the measured percentages
should always approach 95%. For the settings in Figure 3
in almost all cases the measurements are within ±3% of
the correct 95% value, and some noise is expected since
we only carried out 100 runs per setting. We conclude
that our derived CI appears to be correct.

F. CR estimate sampling errors

We also evaluated the impact of the sampling on the
pooled Lincoln-Petersen (L-P) approach and log-linear
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Table IV
Sizes of encrypted and sampled datasets for example values of number of 4-byte items, encryption moduli and sample rates

Number of 4-byte items [M] Encryption modulus [bits] Sample rate [%] Size [GB]

100 128 100 1.6

100 512 100 6.4

100 1024 100 12.8

1000 128 100 16

1000 512 100 64

1000 1024 100 128

100 128 10 0.16

100 512 10 0.64

100 1024 10 1.28

1000 128 10 1.6

1000 512 10 6.4

1000 1024 10 12.8
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Figure 3. Relative error of cardinality estimates depending on true cardinality size and sample rate

models (LLMs) used to estimate the actively used IPv4
space based on several IPv4 address data sources in [6].
We repeatedly sampled all data sources from [6], each
time with a different sample salt, and then computed
the CR estimates from the sampled data sources. Note
that for LLMs we did not identify the “best” model
from the unsampled data and then consistently used this
best model. Instead the best model is selected each time
from the sampled data. This results in larger errors but
reflects the more realistic case where we never have the
unsampled data and hence do not know the best model
based on the unsampled data.

Figure 4 shows the relative errors for lower and upper
bounds of L-P and LLM estimates depending on different
sample rates, treating the estimates for the unsampled data

sources as true values.12 For each sample rate we carried
out 100 runs (with different sample salts). The results
show that the relative errors are very small for pooled
L-P even with sample rates as low as 0.1%. The relative
errors for LLMs are much larger, but still do not exceed
5%. Also, with LLMs for sample rates of 1% or higher
the error is usually no more than 1–2%.

For pooled L-P the datasets are always aggregated into
two sets and all intersection cardinalities between any two
pooled datasets are relatively large, so the relative errors
caused by sampling are small. For LLMs the intersection
cardinality for any combination of datasets can be used
potentially depending on which model is selected [6]. If
some cardinalities used by the selected model are small
their relative error due to the sampling is large, and this

12The lower and upper bounds for pooled L-P are the minimum and
maximum estimates over all combinations of pooling all data sources
into two sets [6]. The lower and upper bounds for LLMs are based
on the profile likelihood “confidence interval” [6].
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Figure 4. Relative error of (L)ower and (U)pper bound of CR estimates depending on the sample rate for pooled L-P (left) and LLMs (right)

can significantly increase the error of the CR estimate.
As mentioned before, with all the data sources from [6],
the smallest cardinality is larger than 2,000.

We could restrict the LLM to not use cardinalities that
are very small and unreliable. However, the larger errors
for LLMs are mainly caused by model inconsistencies,
since the model is selected independently for each set of
sampled datasets. For sample rates of 5% and 10% the
different selected models are quite consistent; there are
only a few small differences in the selected parameters
that represent higher level data source interactions (e.g.
interactions between four or more data sources). For a
sample rate of 1% models for different samples start
to diverge. For a sample rate of 0.1% different models
sometimes even differ in a few two-source interactions.
However, even with a sample rate of 0.1% the relative
error is no larger than 5%.

Compared to the “true” LLM based on the com-
plete/unsampled data, the LLMs based on the sampled
data are biased towards a larger number of model pa-
rameters. Since we have mainly (apparently) positively
correlated data sources in [6], increasing the number of
model parameters usually results in higher population
estimates.13 Hence the error is biased towards overesti-
mating the “true” population, which is clearly visible in
Figure 4(right).

VII. Conclusions and FutureWork

A private set intersection cardinality (PSIC) protocol
allows using capture-recapture (CR) techniques to esti-
mate population sizes with datasets from multiple parties
while ensuring the privacy of the data of each party.

13Positively correlated data sources lead to population underesti-
mates with L-P. LLMs correct for this with positive model parameters
(coefficients) that increase the estimate. The more positive parameters
are present in the selected “best” model, the higher is the estimate.

Previously proposed PSIC protocols are not well suited
for the use with CR, some only work for two parties,
others work only for more than two parties, and all of
them do not scale well for large datasets.

We developed a new PSIC technique that is a tradeoff

between performance and precision of the estimated set
intersection size. It significantly improves the scalability
of existing approaches at the cost of a small sampling er-
ror. Based on an implemented prototype we demonstrated
that our algorithm scales well with datasets of up to at
least 1–2 billion items with acceptable sampling errors.
We also showed that the impact of the sampling on the
CR estimates is tolerable. Even with sample rates as low
as 0.1% the relative error in the CR estimates is under 5%,
and with sample rates of 1% or higher the relative error in
the CR estimates is not over 1–2%. Our PSIC technique
also includes a novel approach to reliably prevent probing
attacks – attacks where one party creates a dataset with
mostly invalid items, to test whether one (or a few) valid
items are in other parties’ datasets.
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