
Minimally-Intrusive Frequent Round Trip Time
Measurements Using Synthetic Packet-Pairs –

Extended Report∗

Sebastian Zander, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 130730A

Swinburne University of Technology
Melbourne, Australia

szander@swin.edu.au, garmitage@swin.edu.au

Abstract—Accurate and frequent round trip time (RTT)
measurements are important in both testbeds and opera-
tional networks. Active measurement techniques, such as
“ping”, inject probe packets that can modify the behaviour
of the observed network and may produce misleading RTT
estimates if the network handles probe packets differ-
ently to regular packets. Previous passive measurement
techniques address these issues, but require precise time
synchronisation or are limited to certain traffic types, such
as TCP flows. We introduce a passive technique for RTT
measurement called Synthetic Packet-Pairs (SPP). SPP
provides frequently updated RTT measurements using any
network traffic already present in the network without the
need for time synchronisation. SPP accurately measures
the RTT experienced by any application’s traffic, even
applications that do not exhibit symmetric client-server
packet exchanges. We experimentally demonstrate the
advantages of SPP in different scenarios.

Index Terms—Passive measurement, Round Trip Time,
RTT.

I. INTRODUCTION

The measurement of a path’s round trip time (RTT)
is often crucial when evaluating and improving the
performance of application protocols, transport protocols
or network equipment. Also, for service providers it is
becoming increasingly important to monitor and manage
the RTT experienced by highly interactive applications,
such as voice over IP, latency-sensitive first person
shooter (FPS) multiplayer online games [1] or mission-
critical business applications. Existing RTT measurement
techniques differ in whether they are active (injecting
additional traffic into the network) or passive (using traf-
fic already in the network), their achievable sample rate

*This report is an extended version of “Minimally-Intrusive Fre-
quent Round Trip Time Measurements Using Synthetic Packet-Pairs”
accepted as a short paper in IEEE LCN 2013, October 2013.

(how many RTT measurements per time unit), the degree
to which they rely on synchronised clocks at different
measurement points and their ability to determine the
RTT experienced by flows from different applications.

High rate sampling of a path’s RTT is important for
detailed observation of RTT versus time (such as watch-
ing bottleneck queues filling and draining, or the rise and
fall of contention-induced transmission delays). Active
measurements find this problematic, as the additional
probe traffic (proportional to the desired sample rate)
can interfere with the characteristics of the path being
probed and skew the measured RTTs. Passive techniques
can potentially sample at close to the existing traffic rate
with no new load on the path.

Active measurements may also experience misleading
RTTs across network paths that differently prioritise the
forwarding of IP packets according to their higher-layer
protocol and/or port numbers. It is hard to measure the
RTT an application flow sees when the active probe
packets experience different forwarding delays [2]. These
problems do not affect passive measurements based on
an application flow’s own traffic.

Passive measurement techniques have their own chal-
lenges. One way delay (OWD) measurements require
observation points with precisely synchronised clocks.
Other previously proposed passive techniques require the
enhancement of routers along a path or manipulation of
packet contents in flight. Some RTT measurements rely
on symmetric request-response patterns from the traffic
under observation.

We introduce a novel passive RTT measurement tech-
nique that:

• Calculates RTT of a network path between two
measurement points based on existing traffic.

CAIA Technical Report 130730A July 2013 page 1 of 12

mailto:szander@swin.edu.au
mailto:garmitage@swin.edu.au


• Does not require clock synchronisation of measure-
ment points.

• Is protocol-agnostic and works with asymmetric
traffic flows (flows without request-response be-
haviour).

• Provides accurate RTT samples at a rate propor-
tional to the slowest traffic rate in either direction.

• Does not require changes on network routers or
modifications of packet contents.

We call our technique “synthetic packet-pairs” (SPP)1,
and have publicly released an open-source prototype
implementation [4].

SPP is beneficial in scenarios where the path under
test is sensitive to the additional load of active probing,
frequent sampling of the path is desired (at sample
rates approaching the packet rates of existing traffic),
tightly synchronised measurement point clocks are un-
available (for cost or deployment reasons), or probe
traffic is treated differently from the application traffic
under study. SPP is also advantageous where detailed
RTT estimates are desired for delay or jitter estimation,
particularly for interactive applications that do not have
symmetric request-response packet pairs.

We consider SPP to be non-intrusive in scenarios
where RTT is measured in real-time and a (logically)
separate communication path exists between the mea-
surement points, or where RTTs can be computed offline
(e.g. testbed measurements). Otherwise, it is minimally
intrusive, since the packet timestamp data that needs to
be transmitted uses relatively little bandwidth.

The report is organised as follows. Section II outlines
the challenges and requirements for RTT measurement
schemes. Section III describes our proposed SPP algo-
rithm. Section IV describes our prototype implemen-
tation. Section V experimentally demonstrates the ad-
vantages of SPP over load-sensitive paths, where paths
differentially forward different packet types, or where
traffic flow is asymmetric. Section VI concludes and
outlines future work.

II. BACKGROUND AND MOTIVATION

Here we briefly review some of the key the issues
around active and passive measurement of RTT.

1SPP is unrelated to packet-pair available bandwidth probing
techniques like [3]. For SPP a packet pair consists of one packet going
from point A to point B followed by a ‘reverse’ packet going from
point B to point A. For bandwidth probing techniques a packet pair is
two subsequent closely-spaced packets going in the same direction.

A. Sample rate

Building up a broad sense of RTT variations over
long periods of time may require sampling a path’s RTT
only a few times a minute. However, capturing detailed
insights into rapid (yet infrequent) RTT transitions may
need a sample rate approaching the packet rate of the
traffic flowing across the path. Examples of this lat-
ter case include capturing the impact of one or more
TCP flows congesting a bottleneck queue, observing
the impact of TCP cross-traffic on time-sensitive flows
through shared bottlenecks, identifying the short and
long term impacts of route changes on path length,
and capturing the packet-by-packet impact of contention-
induced transmission delays over wireless links.

B. Active RTT measurement

Active measurement techniques inject extra packets
(probes) across a network path and use their transit times
to measure the path’s delay at the instant each probe
was sent. This approach is useful for infrequent delay
measurements, or measurements across otherwise idle
paths. A common example is ping, which transmits a
probe (ICMP Echo-request) packet towards a target host
and elicits an (almost) immediate reply (ICMP Echo-
reply) packet. The time between query and response
packets is taken to be the path’s RTT.

1) Differentiated forwarding of probe packets: Un-
fortunately, forwarding elements (such as routers or
switches) along the path may handle active probe packets
differently to regular traffic, resulting in unrepresentative
RTT measurements. For example, when routers handle
ICMP packets in their slow path ping can overestimate
a path’s RTT [2]. Bottleneck routers may also have rules
to prioritise specific application flows during times of
congestion. Active probe packets that do not match the
rules (such as ICMP ping, or UDP or TCP probes from
echoping [5]) will generate RTTs that do not reflect
the RTTs experienced by prioritised traffic.

2) Sample rate and network load: Active measure-
ment schemes add network load proportional to the
desired RTT sample rate, which can noticeably alter
the network’s behaviour and performance. This is par-
ticularly problematic over link technologies, such as
802.11 Wireless LANs, where modest loads in packets
per second are known to cause noticeable degradation of
service even when the additional active probing load is
low when measured in bits/second [6].

CAIA Technical Report 130730A July 2013 page 2 of 12



C. Passive RTT measurement

By measuring the delays experienced by existing traf-
fic, passive measurement techniques avoid adding load
to a network path and can identify the RTTs experienced
by application flows subject to different forwarding pri-
orities.

1) Clock synchronisation: Some techniques measure
one-way delay (OWD) by noting the time it takes an IP
packet to transit between two measurement points having
precisely synchronised clocks [7]–[9] and RTT can be
calculated by adding OWD in each direction.

Synchronisation using the network time protocol
(NTP) is often not adequate due to varying network
conditions and NTP server outages [10]. Global posi-
tioning system (GPS) timing signals can be used instead,
but associated infrastructure (such as roof-mounted GPS
antennas) is often complex and costly. RADclock [11] is
a low-cost alternative to GPS-based synchronisation, but
it is not widely deployed yet. Also, while RADclock
is more robust than NTP, its accuracy can still be
inadequate in adverse conditions, such as when there are
time server outages.

Other OWD techniques require modifications to ex-
isting routers [12], [13] or manipulate the content of
existing packets [14]. A few proposed OWD techniques
do not require clock synchronisation, but their accuracy
remains unclear [15]. RTT can be calculated by adding
OWD in each direction.

2) Symmetric traffic flows: Some techniques directly
estimate RTT at a single measurement point (usually
close to the traffic’s origin) from the time it takes for
an application request packet in one direction to be
answered by a matching response packet in the return di-
rection [16]–[20].2 They require symmetric client-server
traffic with enough information in each packet header
or payload to match request-response pairs. However,
the resulting RTT can be misleadingly inflated if the
‘server’ does not send response packets immediately and
the estimation technique does not correct for this.

Such techniques fail when traffic in each direction
has no predictable timing or semantic relationship. For
example, many client-server FPS online games emit
packets in each direction asynchronously and at different
rates [1]. Presuming that packets in each direction are
request-response “pairs” would result in unpredictable
intervals (of up to tens of milliseconds) added to the
path’s actual RTT.

2The TCP protocol’s timestamp option also allows to measure RTT.

��
���

��
���

������	

�
�	���

�
�����

�������� ��������

�
�	���

�
�����

	



���

��������������������� ������������������

Figure 1: SPP overview: packet capturing, packet match-
ing and packet-pair identification

3) Sample rates: Passive schemes cannot sample idle
paths, as the sample rate depends on the rate at which
traffic traverses the path. However, test traffic can be gen-
erated to achieve continuous monitoring. Furthermore,
well trafficked paths can be observed in detail without
adverse impact on the path’s characteristics.

III. SPP MEASUREMENT TECHNIQUE

SPP fills a gap in the existing set of RTT measurement
techniques, and was initially documented in a technical
report [21]. No new traffic is injected, no modifications
are required to existing infrastructure, and traffic in
each direction may be asymmetric and from unrelated
application flows.

Figure 1 illustrates the three stages of SPP – capturing
packets at two measurement points (MPs)3, matching
packets seen at both measurement points, and identifying
packet-pairs from which to calculate RTTs.

A. Measurement points and Packet IDs

We will describe SPP in terms of two MPs, MPref

(reference) and MPmon (monitor), located so that the
network traffic of interest traverses both points. MPref

passively records the passing of packets heading towards
MPmon (for example, by monitoring traffic using in-line
network taps or mirrored ports on a switch). MPmon

performs the same action for packets heading towards
MPref .

For every recorded packet both MPref and MPmon

log a timestamp (ts) representing when the packet was
seen, and a short ‘packet ID’ (PID) calculated from a
suitable hash function (e.g. CRC32 or other suitable hash
functions in [8], [22], [23]) over key bytes within the

3In principle SPP can be used with multiple MPs. Consider
measuring RTTs of packets traversing multiple ingress points and/or
multiple egress points. Packet matching can be performed between
each pair of MPs.

CAIA Technical Report 130730A July 2013 page 3 of 12



packet. To uniquely identify the same packet passing
MPref and MPmon the PID is based on portions of a
packet that are invariant during transit between MPref

and MPmon but vary between different packets (cf. [7]–
[9]). We describe which portions of packets are used in
Section IV-B. Each MP accumulates a list of [PID,ts]
pairs based on the captured packets. These two lists are
then combined to create packet-matched lists used for
packet-pair identification and RTT calculation.

B. Packet Matching

Figure 1 shows the [PID,ts] lists being combined at a
third location, but they can also be combined at MPref

or MPmon. If the link used to transmit [PID,ts] pairs
is a physical out-of-band link or a logically isolated
channel sharing the same underlying infrastructure as
the monitored path, the [PID,ts] pairs may be combined
in real-time without affecting the observed network. If
no separate channel is available, [PID,ts] pairs may be
stored at each MP for later transfer across the measured
network (e.g. during non-measurement or off-peak peri-
ods). In these cases SPP is non-intrusive. If a channel
along the same infrastructure being measured is used
during the measurement, SPP is minimally intrusive in
the sense that transmitting the [PID,ts] list uses relatively
little bandwidth (see Section IV-A2).

Two input streams Imon and Iref represent [PID,ts]
pairs from packets captured at MPmon and MPref respec-
tively. A queue Qref is used to buffer [PID,ts] pairs from
Iref not yet detected in Imon. The algorithm processes
packets from Imon in the order of their arrival at MPmon.

For each packet Pcur captured at MPmon we search
for a packet with the same PID captured at MPref .
The algorithm first checks if the packet is found in
Qref . If not, new packets are read from Iref into Qref

until a packet matches, the maximum queue length is
reached or a packet’s timestamp differs by more than a
pre-defined Tdelta from the timestamp of Pcur (the use
of Tdelta is discussed further in Section IV-C). Before
the next packet of Imon is processed, all packets in
Qref whose timestamps differ by more than Tdelta from
the timestamp of Pcur are considered lost packets and
removed from Qref .4

The result of the packet matching algorithm is a
list of [PID1,tsref ,tsmon] tuples, representing the time
potential first (1) packets of pairs were seen at MPref

and MPmon respectively. The same algorithm is also
run with the directions reversed to construct a list of

4The loss calculation does not start before the first packet matches.

��
���

��
���

��,�
��,�

��,�

��,�

Figure 2: Packet pair and corresponding timestamps

��
���

��
���

��,�

��,�

��,�

��,�

(a) Finding a packet pair

��,�
∗

��
���

��
���

��,�
��,�

��,�

��,�

(b) Finding the closest
pair

Figure 3: SPP packet pairing approach

[PID2,tsmon,tsref ] tuples, representing potential second
(2) packets of pairs that were seen flowing from MPmon

to MPref .

C. Packet Pair Identification and RTT Computation

To explain our packet-pairing algorithm we first define
a short-hand notation for the timestamp ti,j , where i
indicates MPref (r) or MPmon (m) and j indicates
whether it is the first (1) or second (2) packet of a packet
pair. For example, in Figure 2 tr,1 is the timestamp of
the first packet at MPref and tm,1 is the timestamp of
the first packet at MPmon.

1) Packet pairs: SPP makes the key assumption that
each packet is used in at most one pair. Otherwise, dif-
ferent RTT estimates would be dependent. Furthermore,
SPP ensures that the two packets of a pair are as close
together as possible. Packet pairs can overlap in time,
since otherwise the measurement frequency would be
limited by the RTT of the path.

SPP starts with the first packet from the list of packets
going from MPref to MPmon. It then searches in the
second packet list (packets going from MPmon to MPref )
for the first packet where the condition tm,2 > tm,1 is
true. A packet pair has now been identified (Figure 3a)
but this pair is not necessarily the closest pair.

To find the closest pair, t∗m,1 is set to tm,1 and the
algorithm traverses further through the first list in search
for any packets where tm,1 > t∗m,1 and tm,1 < tm,2. As
long as such packets are found the algorithm advances

CAIA Technical Report 130730A July 2013 page 4 of 12



in the first list. This ensures there are no other packets
between the two packets of a pair (Figure 3b).

2) Computing RTT: Once a packet-pair has been
identified the RTT computation is straightforward:

RTT = (tr,2 − tr,1)− (tm,2 − tm,1) . (1)

The packet pairing algorithm then continues with the
next packet in the first list (packets from MPref to
MPmon). Note that the two directions could be reversed
and the RTTs could be computed in the other direction
if desired.

3) Clock synchronisation and skew: Equation 1 is
based on time differences of the same clocks, so there
is no need for the clocks at MPref and MPmon to
be synchronised over long time frames. However, error
may be introduced by short-term clock skew during
the intervals (tr,2 − tr,1) at MPref and (tm,2 − tm,1) at
MPmon. Regular PC clocks typically skew5 no more
than a few 100 ppm [24]. Even if both skews are highly
negatively correlated, we expect the error is well under
1000 ppm (an error below 0.1 ms for an RTT of 100 ms).

4) Independent pairing and achievable sample rate:
A key benefit of SPP is that the packets making up
each pair in Equation 1 need not be generated by the
same application or hosts. That allows SPP to estimate
RTT from any packet flows regardless of whether or not
there is symmetric request-response behaviour. SPP can
even create RTT measurements from two unrelated uni-
directional flows in different directions. RTT samples are
generated at the rate SPP finds packet pairs, determined
by the slower of the packet rates in each direction.

IV. PRACTICAL IMPLEMENTATION

In this section we briefly6 describe our open-source
implementation of SPP that runs under FreeBSD7 and
Linux [4], including its two RTT calculation modes (of-
fline and real-time), PID generation, and an optimisation
of the packet matching algorithm. The acronym ‘SPP’
may now refer to our implementation or the algorithm
depending on context.

A. Offline and real-time modes

SPP can calculate RTTs from previously captured
tcpdump files (offline mode) or live capture (real-time
mode).

5Due to ambient temperature/humidity affecting the clock crystal.
6Appendix A describes the overall software design in more detail.
7Also in the Ports collection, http://www.freshports.org/

benchmarks/spp/

Reference Point Monitor Point

bge0

10.0.0.1

Large Network em0

10.0.0.2

Capture with tcpdump Capture with tcpdump

Figure 4: Using SPP with tcpdump files assuming the
reference point and monitor point are located on the end
hosts of a path to be measured

Reference Point Monitor Point

bge0

10.0.0.1

Large Network em0

10.0.0.2

SPP Master SPP Slave
SPP Sample Frames (SSF)

em0

192.168.0.1

em1

192.168.0.2

Figure 5: Using SPP with live interface monitoring as-
suming the reference point and monitor point are located
on the end hosts of a path to be measured

1) Offline mode: In this mode we capture packets in
tcpdump format at MPref and MPmon, then run SPP
on these two tcpdump files (potentially at an entirely
separate location) to extract RTT samples. Figure 4
shows a simple example where MPref and MPmon are
located on the end hosts of a path to be measured and
tcpdump files ref.cap and mon.cap are captured
at MPref and MPmon respectively.8 Traffic of interest
is presumed to run between IP addresses 10.0.0.1 and
10.0.0.2. RTTs are computed with this command:

spp -f ref.cap -a 10.0.0.1 -F mon.cap -A

10.0.0.2

Offline mode is non-intrusive in that no data needs to
be transferred while the network path is being measured.
Furthermore, tcpdump’s powerful filter language can be
used to select only certain application-specific traffic
flows from which to calculate RTTs.

2) Real-time mode: SPP can also monitor live net-
work interfaces and calculate RTT samples ‘on the fly’.
Figure 5 illustrates a simple real-time mode configura-
tion, with two instances of SPP configured as ‘SPP Mas-
ter’ and ‘SPP Slave’. Again, for simplicity we assume
MPref and MPmon are located on the end hosts of a path
to be measured.

8In practice, MPref and MPmon could be dedicated measurement
hosts connected to selected points of a network path via in-line
network taps, such as optical or electrical splitters, or mirroring ports
on switches. An example of such a setup is shown in [4].

CAIA Technical Report 130730A July 2013 page 5 of 12

http://www.freshports.org/benchmarks/spp/
http://www.freshports.org/benchmarks/spp/


As MPmon the SPP Slave sends to the SPP Master
UDP-based SPP Sample Frames (SSF) carrying [PID,ts]
information about traffic it sees. The SPP Master (as
MPref ) also observes traffic and combines this knowl-
edge with SSFs from the SPP Slave to calculate RTTs
in (near) real-time.9

We use delta encoding of ts values, so each SSF/UDP
packet can carry 248 [PID,ts] pairs (assuming an MTU
of 1500 bytes) [4]. For example, an SPP Slave observing
two hundred packets per second would send less than one
SSF/UDP packet per second. SSFs over UDP provide
timely delivery with minimal overhead, but packets can
be lost. We plan to add sequence numbers to SSFs to
detect loss and to support SCTP or TCP as alternative
reliable SSF transport in the future.

Figure 5 actually shows the SPP Master and Slave
having two network interfaces each. The network un-
der observation is between the Master’s bge0 inter-
face (10.0.0.1) and Slave’s em0 interface (10.0.0.2). A
separate network path from 192.168.0.2 to 192.168.0.1
is available to carry the SSFs. We use the following
command to configure the SPP Master to calculate RTTs
using traffic seen on bge0 between 10.0.0.1 and 10.0.0.2
and SSFs received from the Slave (192.168.0.2):

spp -i bge0 -a 10.0.0.1 -A 10.0.0.2 -R

192.168.0.2

We configure the slave to observe traffic on em0
between 10.0.0.1 and 10.0.0.2 and send SSFs to the
Master (192.168.0.1) with:

spp -I em0 -a 10.0.0.1 -A 10.0.0.2 -s

192.168.0.1

SPP can also be used for real-time processing on
a single PC with two (or more) network interfaces,
assuming two interfaces can be connected to the points of
interest via electrical/optical splitters or mirroring ports
on switches [4].

B. Packet ID generation

By default SPP calculates a CRC32 hash across
unvarying fields in the IP packet header (source and
destination address, protocol and IP identification)10, the
TCP header (sequence number, ACK number) or UDP

9SPP’s real-time mode currently only filters on source and desti-
nation IP addresses; the support of tcpdump filter strings is planned.

10We do not use the IP length field, since it changes if IP packets
are fragmented between MPref and MPmon. If fragmentation occurs,
SPP will always match on a packet’s first fragment.

header (length, checksum), as well as across the first 12
bytes of UDP payload [4]. We chose CRC32 because
it is widely implemented, has low collision probability
(less than 1−9 for more than 20 bytes input [22]), and
is efficiently computed in hardware and software (300 ns
on a 1.7 GHz Pentium 4m [22]). CRC32 is also one of
the functions currently recommended by the IETF packet
sampling work group for packet digests [25].

SPP allows the user to alter which IP and TCP/UDP
header fields are used as hash input, and to tell SPP about
any network address translation (NAT) along the path.
This allows handling situations where MPref and MPmon

are placed at either side of a middlebox performing NAT,
NAT with port translation or acting as a firewall (which
may manipulate TCP header fields, such as the TCP
sequence number).

C. Packet matching optimisation

Although SPP does not require time synchronisation,
we use Tdelta (see Section III-B) to drastically improve
the performance of the packet-matching process. For
each packet observed at MPmon only a Tdelta time
window of packets from MPref needs to be searched.

Tdelta is configurable on the command line, and must
be larger than the expected network delay plus time
synchronisation error. It defaults to 60 seconds – suf-
ficient for situations where MPref and MPmon are built
on common PC hardware with clocks synchronised once
a day (as this would normally keep the clocks within a
few seconds of each other). Using NTP continuously is
not required. SPP can also be told to apply a correction
to the timestamps of MPref with respect to MPmon if
the clock offset is known. Then SPP can be used with
a small Tdelta value even if the actual clock offset was
very large.

V. EXPERIMENTAL EVALUATION

This section describes a number of scenarios where
SPP proves to be valuable. We cover the use of unsyn-
chronised clocks, measuring RTT using asymmetric or
unrelated traffic in each direction, the benefits of high
passive sample rates for observing rapid RTT transitions
and the use of SPP in networks where traffic prioriti-
sation or load-balancing prevents active probing from
measuring application-specific RTTs.

A. No time synchronisation needed

To verify that SPP works without clock synchronisa-
tion and is unaffected by a significant clock offset, we
generated UDP and TCP test traffic and captured it with

CAIA Technical Report 130730A July 2013 page 6 of 12



●
●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●● ●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

Server Processing Time (ms)

R
T

T
 (

m
s
)

●
●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●● ●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●
● ● ●

● ●
● ●

●
●

●

●

●

●

RTT values

Mean RTT

Figure 6: Path RTT versus hypothetical ‘server process-
ing time’ (FPS game traffic on a LAN)

tcpdump at both MPs. We then changed the timestamps
in one of the traces to simulate various clock offsets
between both MPs ranging from 5 seconds to 1000
seconds. SPP computed exactly the same RTT values
regardless of the actual clock offset.

B. RTT measurements using asymmetric traffic

With symmetric, request-response traffic Equation 1’s
(tm,2 − tm,1) term represents a notional ‘server process-
ing time’ (SPT) – the time between a request packet elic-
iting a response packet from the ‘server’ near MPmon.
Asymmetric traffic provides no such relationship, and the
SPT can vary widely from one sample pair to the next.
Here we show that SPP provides useful RTT samples
even as SPT varies widely.

We chose to use an FPS game, as they tend to use a
client-server communication model but do not generate
strict request-response traffic patterns [1]. Traffic was
captured from a five minute game of ‘Return to Castle
Wolfenstein: Enemy Territory’ (ET) over an Ethernet
LAN; MPref was located at one client and MPmon was
located at the server.

Server-to-client game state update packets (snapshots)
are sent at fixed 50 ms intervals. Client-to-server com-
mand packets are sent at uncorrelated and variable in-
tervals from 10 to 100 ms depending on the client and
the game settings. During our measurement the client-
to-server packets were spaced roughly 33 ms apart. Here
SPT reflects the time between the game server receiving
a command packet and sending the next snapshot.

Figure 6 is a scatter-plot of RTT versus SPT for each
packet-pair found by SPP. The line indicates the mean
RTT (0.6–0.7 ms). The RTTs are small, and with modest
jitter (consistent with traffic on a LAN). It is clear the
RTT distribution is consistent across the much larger

SPP sam ples

Ping sam ples
0.10

0.15

0.20

0.25

0.30

0.35

50 51 52 53 54 55 56 57 58

Tim e (seconds)

R
T

T
 (

m
s
)

Figure 7: High sampling frequency provides detailed
insights into rapid RTT variations over a consumer
ADSL link

range of SPTs from 0 ms to 33 ms (SPTs were bounded
by the client-to-server packet interval).

C. High sample rates (frequent measurements)

SPP’s ability to provide frequent RTT measurements
is especially useful if one is interested in time series
measurements (such as investigating TCP congestion
control behaviour). Low rate probing (such as ping)
undersamples a path and misses sharp transitions in RTT
(cf. Nyquist theorem).

1) Bulk TCP transfers over ADSL broadband links:
Our first example is from a TCP connection taking
roughly 200 seconds to push 13 MB of data out a
653 kbps home broadband Internet connection (the bot-
tleneck in this case). SPP extracted approximately 6300
RTT samples from tcpdump files captured at both ends
of the connection.

The value of SPP’s high sample rate can be seen in
Figure 7. A mere eight seconds of captured traffic reveals
detailed RTT fluctuations driven by TCP’s congestion
control behaviour, which is not visible to the one-per-
second ping samples.

SPP’s sampling of every suitable packet pair also
allows visibility into queuing behaviour along a path.
Figure 8 shows a histogram of all the RTT samples taken
during the transfer, revealing distinct bands roughly
20 ms apart. This reflects detailed evidence of quanti-
sation caused by queuing and de-queuing of full-sized
TCP/IP frames in the ADSL modem’s upstream buffer.11

11Common ADSL-based Internet service overheads turn each 1416
byte IP frame into a 1456 byte ATM Adaptation Layer 5 (AAL5)
frame. This requires 31 x 53-byte ATM cells to transmit, or very
close to 20 ms at 653 kbps.

CAIA Technical Report 130730A July 2013 page 7 of 12



0

20

40

60

80

100

120

140

160

180

200

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

RTT (m s)

C
o

u
n

t

Figure 8: SPP reveals RTT bands due to upstream
queuing over a consumer ADSL link

●●●●●●● ●●●
●
●

●

●●● ●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●

●
●
●●●●●●●

●
●
●●●●●●●●●●●●●●● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●
●●●●●●●●

●●
●●●●●●●

●
●
●●●●●●●●●●●●●●●●●● ●●●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●●●

●
●

●

●

●

●●

●●●●

●

●
●

●

●●●●●●●●

●
●
●

●

●

●●●
●●●●
●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●●

●

●●

●

●●
●●●

●

●●●●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●

●
●

●

●●●
●

●

●

●●●●●
●●●

●

●●●●●●
●●●●
●

●

●●
●

●

●
●●●●

●

●●

●●
●

●

●●●
●●●●

●●
●

●

●●
●●●●●●
●●●
●●●●●●
●●
●
●
●

●

●

●●●
●●●●●●
●●●
●●

●

●●●●●●●

●

●
●●●
●

●

●●●●
●●●
●●●●●●●

●

●

●●
●●●
●●●●●●●
●●●
●●●●
●

●

●

●●●●
●●
●●

●

●●●●●
●●
●●●
●

●

●

●●●●●
●●

●
●●●

●

●●●
●●
●●
●

●

●●●●●●●●
●
●●●●●●●●

●
●
●

●

●

●
●●●●●●●●

●
●●●●●●●●●

●

●

●

●
●
●●●●●●●●

●
●●●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●
●●●
●

●

●●

●

●
●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●
●●
●●●●

●

●

●●●

●●●●●●●●●●●

●

●●●●●●
●●

●

●●

●

●●●●
●
●●●●●

●

●●

●

●●●●
●●●
●●
●

●

●●●

●●●
●●
●●●●●●

●

●
●

●

●●●●●●
●●

●

●●●●●●●
●●
●●●●●●●
●●
●

●●●●●●

●

●
●●●●

●●●
●●
●●●●●●●

●

●
●●●●●

●

●

●
●

●

●

●●●●●

●

●●●●
●●●●●●

●●●

●

●

●

●

●

●

●
●●

●

●
●
●

●●

●
●

●
●

●

●●

●
●

●

●

●

●●
●●●●
●

●●●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●
●
●●

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time (s)

R
T

T
 (

s
)

●●●●●●● ●●●●●
●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●●●

●●

●

●

●

●●

●●●●

●

●●
●

●●●●●●●●

●●●

●
●
●●●●●●●●●●●

●

●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●●

●

●●

●

●●●●●

●

●●●●●●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●●●●●●●●●●●●●●●●●

●●
●
●●●●

●

●
●●●●●●●●

●

●●●●●●●●●●●
●
●●●

●

●●●●●

●

●●

●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●

●

●
●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●
●●

●

●●●●●●●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●

●●●●●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●
●
●●●

●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●

●●●●●●●●●●●

●

●●

●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●●●●●

●●●●●●●●●●●●

●

●●●●●●●

●●●
●

●

●●●●●

●

●●●●●●●●●●
●●●
●

●●●

●
●
●●●

●

●●
●
●●
●●
●●●
●●
●●
●
●
●●●●●●●●

●●●
●
●●●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

● SSH

ping

Figure 9: RTTs of interactive SSH session measured by
SPP and path RTT measured by ping

2) SSH terminal sessions over ADSL broadband links:
Figure 9 shows an example, where we ran an SSH
interactive session and concurrent once-per-second ping
over an ADSL link. We can see that SPP provides a
much more detailed picture compared to ping. Also, we
can see that SPP only measures the RTTs experienced
by SSH and does not provide RTTs if there is no traffic
(e.g. the SSH session was idle between 75 and 125
seconds) whereas ping regularly samples the path. A
CDF of the SPP measurements characterises the RTTs
experienced by the application whereas a CDF of the
ping measurements characterises the RTTs of the path
over time. For applications that do not continuously send
traffic SPP provides a more accurate picture. Note that
SPP can always be used for regular measurement simply
by generating test traffic.

3) Challenges with active probing: Detailed insights
can also be obtained using high probe rate active mea-

surements, but to the potential detriment of the path
under observation.

Consider the example in subsection V-C1. Active
probing at a similar rate would require 30 pings/second.
Each 64-byte ICMP Echo request becomes an 84-byte
IP packet. After the usual ADSL-based Internet service
overheads this becomes three 53-byte ATM cells. Send-
ing 90 x 53-byte ATM cells per second is 38 kbps, or
6% of the 653 kbps upstream capacity.

Paths with 802.11 wireless LAN links are also chal-
lenging, as such links are sensitive to both the bit-rate
and packet-rate of any active probe traffic. For exam-
ple, [6] showed how TCP over 802.11b links networks
could lose roughly 25% of achievable throughput (4 Mps
to 3 Mps) in the presence of 100 pings/second (under
70 Kbps of regular ping traffic), and 50% of achievable
throughput (down to 2 Mbps) in the presence of 333
pings/second (under 200 Kbps of regular ping traffic).

D. Measuring the RTT experienced by traffic of interest

It is becoming common for networks to apply different
traffic prioritisation or routing (load-balancing) rules to
packets belonging to different application flows. This can
prevent active probing from ‘seeing’ application-specific
RTTs. In contrast, SPP will calculate the actual RTT
experienced by the traffic observed at each MP.

1) Observing the RTT of different traffic classes:
Traffic prioritisation is increasingly used to minimise
the latency for specific traffic through bottleneck routers.
The actual classification and differentiation of flows may
occur using IP addresses, TCP/UDP port numbers, direct
payload inspection or the traffic’s statistical properties
(such as packet length distributions and inter-packet
intervals [26]). Active probes will be unable to measure
the RTT experienced by the prioritised traffic, since the
active probe packets are unlikely to meet the classifiers
rules for header fields (addresses and ports) let alone sta-
tistical properties. On the other hand, SPP can measure
the prioritised traffic’s RTT directly.

As an example, we classified traffic through an
OpenWRT-based home router into interactive and non-
interactive classes based on packet length statistics [27]
and prioritised the interactive traffic on an emulated
1 Mbps ADSL upstream link (using Dummynet). We
simultaneously generated FPS game traffic with ET,
TCP cross-traffic with Iperf (to congest the router), and
actively measured RTT with ping. Figure 10 shows a
20-second time window of game and TCP flow RTTs
(measured with SPP) and ping’s RTT measurements.

CAIA Technical Report 130730A July 2013 page 8 of 12



●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●●●

●

●

●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●

●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

10 15 20 25 30

0

50

100

150

200

250

Time (s)

R
T

T
 (

m
s
)

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●●●

●

●

●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●

●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●Game TCP ping

Figure 10: RTT of prioritised FPS online game traffic and
TCP cross traffic measured by SPP, and RTT measured
by ping (not classified as interactive traffic)

Ping sees the cyclical high RTT caused by the TCP cross-
traffic, but misses both the detailed RTT fluctuations
induced by TCP and the low RTT experienced by the
prioritised game traffic.

2) Impact of load-balancing: Active probing can also
miss the impact of router load-balancing. By way of
example, we simultaneously generated a single bidirec-
tional UDP flow (60 byte packets, 10 packets/second)
and ran regular ping (one packet/second) between a host
in Canberra, Australia (MPref ) and a host in Berlin,
Germany (MPmon). SPP revealed that the UDP traf-
fic experienced an almost constant RTT of 318 ms. In
contrast, 25% of ping’s RTTs were 313 ms, 50% were
318 ms, and 25% were 323 ms.

At the time traffic from Australia to Europe traversed
one of two undersea cables of different lengths linking
Australia to Singapore. The routers at either end used a
load-balancing algorithm, which distributed ICMP ping
packets randomly on both links on a per-packet basis in
either direction. Ping’s three different latencies reflected
the three possible path combinations and their 2:1:1
relative frequencies. In contrast, the load-balancing al-
gorithm chose one link in each direction for the duration
of UDP or TCP flows, giving a more stable RTT.

E. RTT measurements using unrelated traffic

To demonstrate that SPP can measure RTT using
unrelated traffic in each direction we recreated the exper-
iment in Section V-D1 but this time without prioritising
the game traffic. We then generated two sets of MPref

and MPmon traces that contain unrelated traffic: one
set consisting of only the TCP data traffic and game
server-to-client traffic (TCPData+GameS2C), and one

●● ● ● ●●●
●●
●●
●
●
●●●
●●
● ●●●

●●
●
●
●●
●
●
●●●
●●
●●●
●●●
●● ●●●

●
●●
●
●●
●●
●●
●
●●
●
●●●
●●●
●●
●●●
●●
●●
●●
●●●
● ●●

●●●
●●●
●●
●
●●
●●
●
●●
●●
●●
●●●
●●
●●●
●●
●●●
●
●●●
●●●
●● ●●●

●●●
●●
●●
●●●
●●●
●
●
●

●

●●
●●
●
●●
●●●
●●
●●●
●●●
●●
●
●●
●●
●●
●●
●●●
●
●●
●
●● ●●●

●●●
●●●
●
●●
●
●
●
●

●

●

●●
●●●
●●
●
●

●
●

●
●●

●

●
●
●●
●●●

●●
●●●
●●●
●
●●●
●
●
●●
●

●
●
●
●
●

●

●
●
●
●

●
●

●
●
●●●
●●
●
●●
●●

●
●
●

●
●
●
●

●

●
●

●
●●

●

●
●●
●●
●●●
●●●

●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●●
●●●

●●●
●●●
●●
●●●
●●
●●
●●●
●●
● ●●●

●●●

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

RTT (ms)

C
D

F

●

●

●

●

●

●

●

●

●

●

● TCP flow

Game flow

TCPData+GameS2C

GameC2S+TCPACK

Figure 11: CDFs of RTTs measured by SPP of TCP flow,
game flow, TCP data and game server-to-client traffic,
TCP ACK and game client-to-server traffic

set consisting of only the TCP ACK traffic and game
client-to-server traffic (GameC2S+TCPACK).

Figure 11 shows CDFs of the RTTs derived by SPP
from the TCP traffic alone (TCP flow), the bidirectional
game traffic alone (game flow), the TCPData+GameS2C
traffic, and the GameC2S+TCPACK traffic. The RTT
distributions of the game flow and GameC2S+TCPACK
traffic are identical. The RTT distributions of the TCP
flow and TCPData+GameS2C traffic are almost identi-
cal. Both game traffic packets and TCP ACKs are much
smaller than TCP data packets, thus RTTs measured
using the TCP flow or TCPData+GameS2C traffic are
higher on average. The RTTs with TCP data packets are
quantised on 10 ms intervals, since TCP data packets
were always queued at least until the next timer tick
due to the 1 Mbps upstream link and the underlying
OpenWRT operating system’s packet queueing using
10 ms time slices.

The difference between the game flow and TCP flow
RTT distributions in Figure 11 also highlights that RTTs
can depend on packet size, especially on low-capacity
links with high serialisation delays and/or (wireless)
shared links with high contention delays. Active probes
will not measure the RTT experienced by application
flows, unless the probe packets are of similar sizes to
the application’s packets.

VI. CONCLUSIONS AND FUTURE WORK

Evaluating the performance of application protocols,
transport protocols or network equipment often requires
accurate RTT measurements, both for researchers and
service providers. Active measurement techniques are
useful within limits – they add traffic in proportion to

CAIA Technical Report 130730A July 2013 page 9 of 12



their sample (probe) rate, and probe packets may expe-
rience different RTTs to regular traffic. Previous passive
measurement techniques require precisely synchronised
clocks at different measurement points or application
traffic having symmetric request-response behaviour.

We proposed and demonstrated a novel passive tech-
nique called ‘synthetic packet-pairs’ (SPP) that measures
the RTT of a network path using whatever symmetric or
asymmetric two-way flow of traffic exists between two
unsynchronised measurement points (MPs). We intro-
duced an open-source implementation of SPP, which can
combine traffic observations from measurement points
in near real-time or offline (using traffic captured at an
earlier time).

We showed that SPP provides accurate RTT measure-
ments at a rate proportional to the two-way traffic being
observed. This enables tracking RTT fluctuations over
link technologies that are sensitive to excess traffic loads,
measuring latency on paths where active probe packets
are otherwise treated differently to regular traffic, and
seeing short-term RTT transients that are invisible to
low-rate active probing.

SPP does have limitations. It may not be possible to
place MPs at either end of the entire path to be measured.
Also, SPP alone cannot sample idle paths. Nevertheless,
it provides many benefits for measuring RTTs when two
or more MPs can be placed at useful locations in the
network.

In future work we plan to investigate if comparing
RTT estimates from multiple packet-pairs that have an
initial packet in common will allow inferring one-way
delay trends.

ACKNOWLEDGEMENTS

We thank Thuy Nguyen, Lutz Mark and Brandon Tyo
for contributing to the initial SPP development, Amiel
Heyde for implementing the public SPP prototype and
carrying out the SSH experiments, David Hayes, Atwin
Calchand and Chris Holman for subsequent bug fixes to
SPP, and Nigel Williams for helping with the OpenWRT
traffic prioritisation experiments.

REFERENCES

[1] G. Armitage, M. Claypool, P. Branch, Networking and Online
Games – Understanding and Engineering Multiplayer Internet
Games. John Wiley & Sons, April 2006.

[2] K. Auerbach, “Limitations of ICMP Echo
for network measurement.” InterWorking Labs,
April 2004. http://iwl.com/white-papers/
75-limitations-of-icmp-echo-for-network-measurement.

[3] S. Keshav, “Packet pair flow control,” 1995. http://blizzard.cs.
uwaterloo.ca/keshav/home/Papers/data/95/pp.pdf.

[4] A. Heyde, “SPP Implementation.” http://caia.swin.edu.au/tools/
spp/.

[5] S. Bortzmeyer, “echoping Home Page.” http://echoping.
sourceforge.net/.

[6] T. Nguyen and G. Armitage, “Quantitative Assessment of IP
Service Quality in 802.11b Networks and DOCSIS networks,”
in Australian Telecommunications Networks & Applications
Conference (ATNAC), pp. 121–128, December 2004.

[7] I. D. Graham, S. F. Donnelly, S. Martin, J. Martens, J. G. Cleary,
“Nonintrusive and Accurate Measurement of Unidirectional
Delay and Delay Variation on the Internet,” in Internet Summit
(INET), July 1998.

[8] T. Zseby, S. Zander, G. Carle, “Evaluation of Building Blocks
for Passive One-way-delay Measurement,” in Passive and Active
Measurement Workshop, April 2001.

[9] S. Niccolini, M. Molina, F. Raspall, S. Tartarelli, “Design and
Implementation of a One Way Delay Passive Measurement Sys-
tem,” in 9th IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 2004.

[10] V. Paxson, “On Calibrating Measurements of Packet Transit
Times,” in ACM SIGMETRICS, pp. 11–21, June 1998.

[11] M. Davis, B. Villain, J. Ridoux, A.-C. Orgerie, D. Veitch., “An
IEEE-1588 Compatible RADclock,” in International IEEE Sym-
posium on Precision Clock Synchronization for Measurement,
Control and Communication (ISPCS), pp. 7–12, 2012.

[12] M. Hassan, J. Wu, “APM: Asynchronous Performance Mea-
surement for the Internet,” in 6th Asia-Pacific Conference on
Communications (APCC), 2000.

[13] R. R. Kompella, K. Levchenko, A. C. Snoeren, G. Varghese,
“Every Microsecond Counts: Tracking Fine-grain Latencies
with a Lossy Difference Aggregator,” in ACM SIGCOMM
Conference on Data Communication, pp. 255–266, 2009.

[14] M. Cola, G. De Lucia, D. Mazza, M. Patrignani, M. Rimon-
dini, “Covert Channel for One-Way Delay Measurements,” in
International Conference on Computer Communications and
Networks, August 2009.

[15] L. D. Vito, S. Rapuano, L. Tomaciello, “One-Way Delay
Measurement: State of the Art,” IEEE Transactions in Instru-
mentation and Measurement, vol. 57, pp. 2742–2750, December
2008.

[16] J. Jiang, C. Dovrolis, “Passive Estimation of TCP Round-trip
Times,” ACM Computer Communication Review (CCR), vol. 32,
pp. 75–88, 2002.

[17] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, D. Towsley,
“Inferring TCP Connection Characteristics Through Passive
Measurements,” in IEEE INFOCOM, March 2004.

[18] B. Veal, K. Li, D. Lowenthal, “New Methods for Passive
Estimation of TCP Round-Trip Times,” in Passive and Active
Measurement Workshop, March/April 2005.

[19] J. But, U. Keller, D. Kennedy, G. Armitage, “Passive TCP
Stream Estimation of RTT and Jitter Parameters,” in IEEE 30th
Conference on Local Computer Networks (LCN), November
2005.

[20] D. Carra, K. Avrachenkov, S. Alouf, A. Blanc, P. Nain, G. Post,
“Passive Online RTT Estimation for Flow-Aware Routers Using
One-Way Traffic,” in NETWORKING 2010, pp. 109–121, 2010.

[21] S. Zander, G. Armitage, T. Nguyen, L. Mark, B. Tyo, “Min-
imally Intrusive Round Trip Time Measurements Using Syn-
thetic Packet-pairs,” Tech. Rep. 060707A, Centre for Advanced
Internet Architectures, Swinburne University of Technology,
2006.

[22] M. Molina, S. Niccolini and N.G. Duffield, “A Comparative
Experimental Study of Hash Functions Applied to Packet Sam-

CAIA Technical Report 130730A July 2013 page 10 of 12

http://iwl.com/white-papers/75-limitations-of-icmp-echo-for-network-measurement
http://iwl.com/white-papers/75-limitations-of-icmp-echo-for-network-measurement
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/95/pp.pdf
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/95/pp.pdf
http://caia.swin.edu.au/tools/spp/
http://caia.swin.edu.au/tools/spp/
http://echoping.sourceforge.net/
http://echoping.sourceforge.net/


pling,” in International Teletraffic Congress (ITC-19), August
2005.

[23] C. Henke, C. Schmoll, T. Zseby, “Empirical Evaluation of
Hash Functions for PacketID Generation in Sampled Multipoint
Measurements,” in Passive and Active Measurement Conference
(PAM), pp. 197–206, 2009.

[24] T. Kohno, A. Broido, kc claffy, “Remote Physical Device
Fingerprinting,” in Proceedings of IEEE Symposium on Security
and Privacy, pp. 211–225, May 2005.

[25] T. Zseby, M. Molina, N. Duffield, S. Niccolini, F. Raspall,
“Sampling and Filtering Techniques for IP Packet Selection.”
RFC 5475 (Proposed Standard), March 2009.

[26] T. Nguyen, G. Armitage, “A Survey of Techniques for Internet
Traffic Classification using Machine Learning,” IEEE Commu-
nications Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[27] S. Zander, G. Armitage, “DIstributed Firewall and Flow-shaper
Using Statistical Evidence (DIFFUSE).” http://caia.swin.edu.
au/urp/diffuse.

APPENDIX

In this appendix we describe in more detail the overall
design of the SPP prototype and the format of the SPP
Sample Frames (SSF) protocol.

A. Overall Design

Figure 12 shows the block diagram of the SPP pro-
totype. The overall SPP Tool block is responsible for
the command line argument processing, the creation
of threads and the main loop. The Packet Processing
block reads packets from a network interface and gen-
erates the [PID,ts] pairs. The Packet Matching block
matches the packet lists from MPref and MPmon. The
Packet Pairing block identifies the packet pairs based on
the [PID1,tsref ,tsmon] and [PID2,tsmon,tsref ] lists. The
Slave block exports the generated [PID,ts] pairs to the
SPP Master. The Master block receives the [PID,ts] pairs
send by the slave and passes them to the Packet Matching
block.

The CRC32, Timeval and SSF Protocol blocks contain
support functionality used by the other building blocks.
CRC32 is used by the Packet Processing to compute the
packet IDs, Timeval is mainly used by Packet Pairing
to compute the RTTs, and SSF Protocol implements the
SSF protocol (described in Appendix B) used by the
Slave and Master blocks.

The SPP implementation makes use of pthreads
(POSIX.1c, Threads extensions (IEEE Std 1003.1c-
1995)) for concurrent processing, which is especially
useful if SPP runs on multi-core CPUs. The thread
configuration depends on the mode SPP is running in.

An SPP Slave uses two threads. The first thread runs
the Packet Processing, and the second thread sends the
SSF protocol messages to the SPP Master (Slave block).
An SPP Master uses three threads. The first thread runs

��������

���������	��

��

��������������

�������������

�����

����	
�

����������������

��
���

�������

Figure 12: Block diagram of SPP prototype

the Packet Processing, the second thread receives and
processes the SSF protocol messages from the SPP Slave
(Master block), and the third thread runs the Packet
Matching and Packet Pairing. If SPP is used in offline
mode it uses three threads. The first two threads run the
Packet Processing for MPref and MPmon respectively,
while the third thread runs the Packet Matching and
Packet Pairing.

B. SSF Protocol

The SSF protocol is a simple protocol to transport the
[PID,ts] pairs from the SPP Slave to the SPP Master. SSF
uses UDP as underlying transport protocol. Currently,
SSF does not provide a reliable data transport and does
not perform congestion control. We plan to support
SCTP or TCP as alternative for reliable congestion-
controlled SSF transport in the future.

The design of the SSF protocol is based on the Real-
Time Transport Protocol (RTP) specified in IETF RFC
3550. Using the RTP protocol as basis provides some
advantages. For example, the SSF traffic could be pri-
oritised in the network similar to traffic prioritisation for
audio/video RTP flows and for debugging we can utilise
existing RTP decoders, such as the one implemented by
Wireshark (http://www.wireshark.org).

Each SSF/UDP packet has a 12-byte fixed header
shown in Figure 13. The first two bits of the header
are the version number (V). The current SSF version
is 3. The following 7 bits are reserved for future use.
The next 7 bit are the Format Code, which specifies the
length of the delta timestamps in bytes including the D
bit (see below). The default size of the delta timestamps
including the D bit is 16 bits, so the default value of
the Format Code is 2. The next 16 bit are the Sequence
Number. The SPP Slave increments the sequence number
for each SSF packet sent. The sequence number allows
the SPP Master to detect lost [PID,ts] pairs. Note that
although the protocol has a sequence number field, the

CAIA Technical Report 130730A July 2013 page 11 of 12

http://caia.swin.edu.au/urp/diffuse
http://caia.swin.edu.au/urp/diffuse


� �����������	
��

�	����	���������

�	����	�������������

� � �� �� ��

�	
����	����������

Figure 13: SSF protocol header

��������	

� 
��������	����������������������

� � �� �� ��

�

Figure 14: Packet ID, timestamp pair entries

current prototype version 0.3.4 does not use it. Finally,
the header contains two 32-bit fields that represent the
base time for all [PID,ts] pairs in the SSF packet. The
first 32 bit are the number of seconds since epoch, and
the second 32 bit contain the number of microseconds.

The rest of a SSF/UDP packet is used by the [PID,ts]
pairs (Figure 14). The 32-bit packet ID field acts as
“unique” identifier for packets. The direction bit (D)
specifies whether a packet went from MPref to MPmon

(D set to 0) or from MPmon to MPref (D set to 1).
The Timestamp Delta specifies the time offset relative
to the base timestamp defined in the header of when
a packet was observed. Adding the offset to the base
time gives the time the packet was observed. By default
the Timestamp Delta granularity is 100 microseconds,

but this can be configured. The size of the Timestamp
Delta is also configurable and can be set to 7, 15 or 31
bits (default is 15 bits). This means depending on the
size of the Timestamp Delta and the selected granularity
one SSF packet can cover different time periods. For
example, with the default 100 microsecond granularity,
one SSF packet covers periods of ~13 ms, ~3.2 seconds
or ~59.6 hours for Timestamp Delta’s of 7, 15 and 31
bits respectively.

The variable Timestamp Delta allows to tune the trade-
off between the number of packets sent (the overhead of
the SSF/UDP/IP headers) and the size of [PID,ts] pair
entries. For example, if the rate of observed packets is
high, at a given granularity we can choose a smaller
Timestamp Delta and SSF packets still contain the
maximum number of [PID,ts] pairs (given the maximum
packet size), and thus we can minimise the header
overhead. However, if the rate of observed packets is low,
a larger Timestamp Delta would help to avoid sending
half-empty SSF packets. The granularity can be used
to tune the tradeoff between the bandwidth required by
SSF and the required timestamp/RTT precision. For a
given Timestamp Delta size, we can choose the low-
est acceptable timestamp precision, which increases the
time coverage of SSF packets and ensures SSF packets
contain as many [PID,ts] pairs as possible (given the
maximum packet length).

Note that independent of the Timestamp Delta settings
an SPP Slave will send an SSF packet at least every t
seconds, where t is configurable (default is 10 seconds).

CAIA Technical Report 130730A July 2013 page 12 of 12


	Introduction
	Background and motivation
	Sample rate
	Active RTT measurement
	Differentiated forwarding of probe packets
	Sample rate and network load

	Passive RTT measurement
	Clock synchronisation
	Symmetric traffic flows
	Sample rates


	SPP Measurement Technique
	Measurement points and Packet IDs
	Packet Matching
	Packet Pair Identification and RTT Computation
	Packet pairs
	Computing RTT
	Clock synchronisation and skew
	Independent pairing and achievable sample rate


	Practical Implementation
	Offline and real-time modes
	Offline mode
	Real-time mode

	Packet ID generation
	Packet matching optimisation

	Experimental Evaluation
	No time synchronisation needed
	RTT measurements using asymmetric traffic
	High sample rates (frequent measurements)
	Bulk TCP transfers over ADSL broadband links
	SSH terminal sessions over ADSL broadband links
	Challenges with active probing

	Measuring the RTT experienced by traffic of interest
	Observing the RTT of different traffic classes
	Impact of load-balancing

	RTT measurements using unrelated traffic

	Conclusions and Future Work
	References
	Appendix
	Overall Design
	SSF Protocol


