
Establishing a multi-hop network testbed with
802.11 end-nodes using FreeBSD on Emulab

Naeem Khademi∗

Centre for Advanced Internet Architectures, Technical Report 130618A
Swinburne University of Technology

Melbourne, Australia
naeemk@ifi.uio.no

Abstract—This technical report provides detailed infor-
mation on establishing a multi-hop network testbed using
FreeBSD nodes provided by Emulab project. Emulab is
a networking testbed that provides researchers with a
wide range of environments in which to develop, debug,
and evaluate their proposed protocols and systems based
on their desired topology. In this paper our aim is to
introduce a generic method to create multi-hop networks
potentially with 802.11 capability on the end-nodes. We
provide details on establishing three different architectures
as: 1) multi-hop wired; 2) multi-hop with wireless nodes on
the edge LANs; and 3) multi-hop cascading (a.k.a parking
lot) architecture suitable for multi-bottleneck scenarios.

I. INTRODUCTION

Establishing network testbeds with different topolo-
gies, architectures and in various sizes has always been
a major challenge for networking researchers. Ability
to create and customize such testbeds, enables the re-
searchers to develop, test and validate a wide range of
networking protocols and measure their performance un-
der different scenarios. Setting up a customized testbed
for examining a certain protocol can be time-consuming
and expensive due to the cost of hardware. Several
low-cost methodologies are being used by networking
researchers to get around issue, among them virtual-
ization and emulation techniques. For instance network
stack virtualization is provided by FreeBSD jails. While
virtualization techniques can be seen as a suitable option
for testing different networking protocols, their perfor-
mance is subjected to the load on the host node and
one virtual nodes’ resource consumption may possibly
affect the others’ performance. Moreover, virtualization
techniques lead to ignorance the complexities at network
device’s hardware level (e.g. such as physical buffers at

∗The author performed this work while visiting from the Networks
and Distributed Systems Group, Department of Informatics, Univer-
sity of Oslo, Norway.

transmitter chipsets) while emulation techniques often
lack interactivity and mask probabilistic randomness in
realistic networking scenarios.

On the other hand, another alternative is to employ
platforms with actual networking infrastructure such as
in Emulab [1] that is publicly available to the researchers.
Emulab provides physical access to the actual hard-
ware and facilitate building up medium-size network
topologies. The results obtained from Emulab can be
highly reliable compared to virtualization techniques as
it relies on the physical hardware setup. In this paper, we
have taken the latter approach to establish a multi-hop
networking testbed. We explain this in detail in the rest
of this paper, and provide complete versions of all code
discussed in this paper in [2].

A. Emulab

Creating different topologies in Emulab is achieved
using its ns-like code format. An associated “experi-
ment” for the desired topology should be created using
Tcl code in a similar way to ns-2 [3]. However, instead
of simulation, Emulab interprets and translates the Tcl
code to hardware-related commands and configurations.
Although not all ns-2 functionalities are implemented
in Emulab, the ns-like code gives the flexibility for
establishing different types of topologies by masking
the hardware-related complexities and providing a level
of abstraction. In addition we have implemented an
additional set of standard shell scripts that facilitate the
testbed configuration.

Emulab’s users and project folders are accessible via
users.emulab.net host. Emulab uses a variety of hardware
suitable for different experimental purposes. In our ex-
periments and also within the scope of this document, we
use two types of Emulab’s PC nodes namely pc600wifi
nodes, for the experiments requiring 802.11 capability,

CAIA Technical Report 130618A June 2013 page 1 of 8

mailto:naeemk@ifi.uio.no


and pc850 nodes for the wired-only experiments. Table I
summarizes the hardware setup of each type.

TABLE I
EMULAB’S HARDWARE SETUP

PC types pc850 pc600wifi
CPU Intel PIII 850 MHz Intel PIII 600 MHz
RAM 512 MB

Exp. Interface(s) 4×Intel 82557/8/9/0/1 Ethernet Pro 100
802.11 NIC chipset None AR5413

B. Network topologies

Three different network topologies are of our interest.
In the rest of this paper, we firstly explain how to create
a simple dumbbell topology with FreeBSD 9.0 nodes in
which the number of intermediate hops (e.g. routers) on
the main path can be pre-assigned. Later, we extend this
to enable the 802.11 capability on one or both edges of
the networks and finally we provide further extensions
to the code, to create a cascade topology which is a
suitable topology for studying scenarios with multiple
bottlenecks along the path.

II. A BASIC TOPOLOGY: DUMBBELL WIRED

NETWORK

We initially start with a simple topology such as a
dumbbell wired network as follows. First, create a ns
file and edit it with a command to create a ns instance.
set ns [new Simulator]
source tb_compat.tcl

Then, define several important variables which iden-
tify the topology such as what type of OS image should
be loaded to the nodes upon assignment, how many
nodes should exists in either of the two LANs on the
both edges of the dumbbell topology (a.k.a peers), how
many routers should be between the two LANs (e.g.
number of desired hops + 1) and the links’ initial PHY
bandwidth. While the required bandwidth can be set
using the ns node, it is recommended to always set the
link bandwidth to 100 Mbps in the ns code and adjust
the required bandwidth using ipfw and dummynet later
from the experiment script if necessary.
set os_image "FBSD9-WITHSRC"
set max_peers 4
set router_no 2
set link_bw "100Mb"

Also define where the initial configuration files
are stored on the Emulab’s NFS shared folder.
In this case config.sh script, which is stored on

/proj/project folder/XXX will be later used to establish a
customized initial configuration.
set project_folder "/proj/project_folder/XXX"
set config_file "config.sh"

Now, create the instances the PC nodes which will
represent the actual physical nodes. In this example,
we identify the nodes based on their hostnames (which
is identical to the node names) and allow Emulab to
automatically assign them with their IP addresses. Based
on this, each node may take different role in our future
experiments such as being a sender, receiver, router or
a control box 1. We add each node’s name to a string
so that it can be later used to be assigned to a specific
LAN. In this example, each sender and receiver node
will be added to lanstr(1) and lanstr(router no) strings
respectively where router no is the total number of
routers in the topology.
set ctlbox [$ns node]
for {set i 1} {$i<=$router_no} {incr i} {

set router($i) [$ns node]
set lanstr($i) ""
append lanstr($i) "$router($i) "

}
for {set i 1} {$i<=$max_peers} {incr i} {

set send($i) [$ns node]
set recv($i) [$ns node]
append lanstr(1) "$send($i) "
append lanstr($router_no) "$recv($i) "

}

In the above code we have also created a “control box”
so that it can be used to take the role of swapping
in and out the experiments. Now we can assign the
desired OS image to be loaded on each of the nodes
at startup. A list of available OS images on Emulab can
be found on Emulab’s web interface. In our example, all
available nodes will have the same OS e.g. FreeBSD 9.0
with source code (FBSD9-WITHSRC). Alternatively, a
custom OS image can also be created by the user. The
in-depth detail of custom OS image creation is explained
in Emulab’s tutorial[4].
tb-set-node-os $ctlbox $os_image
for {set i 1} {$i<=$router_no} {incr i} {

tb-set-node-os $router($i) $os_image
}
for {set i 1} {$i<=$max_peers} {incr i} {

tb-set-node-os $send($i) $os_image
tb-set-node-os $recv($i) $os_image

}

In this scenario, we need two LANs at the edges of the
network namely lan(1) and lan(2); lan(1) for the senders

1We can use control box node to run the experiments from.

CAIA Technical Report 130618A June 2013 page 2 of 8



and lan(2) for the receivers. These two LANs can be
created using the below commands with the desired PHY
link bandwidth and delay e.g. 100 Mbps and 0 ms delay
respectively. All nodes within the same LAN will be
connected via a network switch.
set lan(1) [$ns make-lan "$lanstr(1)"
$link_bw 0ms]
set lan(2) [$ns make-lan
"$lanstr($router_no)" $link_bw 0ms]

Once LANs at the both sides of the path are created,
proceed to create the connectivity between the routers
using PHY links as
set link_no [expr {$router_no - 1}]
for {set i 1} {$i<=$link_no} {incr i} {

set next_router_idx [expr {$i + 1}]
set link($i) [$ns duplex-link
$router($i) $router($next_router_idx)
$link_bw 0ms DropTail]

}

which connects each router to its subsequent router. It
is also possible to create a separated network than the
experimental network for contol box to be connected
to every other node. Extra care should be taken so that
the control traffic does not affect the experimental data
flow and necessity of a separated control network will
be dependant on the scenario. Separating the control
network from the experimental network requires every
other node to have an available network interface for
control traffic. However in this example, we have chosen
to connect the control box to one of the routers for
the sake of simplicity and the control link is created as
below.
set ctllink [$ns duplex-link $router(1)
$ctlbox 100Mb 0ms DropTail]

Routing between the nodes and the routers is con-
figured using the next command; in this case we have
chosen to use static routing.
$ns rtproto Static

Once the topology is generated, the initial config-
uration script can be executed as a startup command
on every node. tb-set-node-startcmd nodeX “command”
runs a command on startup.
tb-set-node-startcmd $ctlbox
"$project_folder/$config_file"
for {set i 1} {$i<=$router_no} {incr i} {

tb-set-node-startcmd $router($i)
"$project_folder/$config_file"

}
for {set i 1} {$i<=$max_peers} {incr i} {

tb-set-node-startcmd $send($i)
"$project_folder/$config_file"

tb-set-node-startcmd $recv($i)
"$project_folder/$config_file"

}

The executed script identifies type of the node (e.g.
sender, receiver or a router) and makes additional con-
figurations on it accordingly. Additional configurations
can include for instance, installing a traffic generator
e.g. iperf, setting ipfw rules on the router(s) or installing
a specific kernel patch on the senders. Figure 1 shows
a schematic example of a dumbbell network topology
created by this method when router no = 2 and
max peers = 4. Finally, the below command runs the
ns instance and should be always put at the end of the
ns script.
$ns run

It is now easy to extend this to a wired multi-hop
network by simply changing the value of router no.
Next section provides more details on adding 802.11
functionality to the end-nodes.

III. A MULTI-HOP NETWORK WITH 802.11 NODES ON

THE EDGE LANS

We can now extend the script in previous section to
provide 802.11 functionality to the end-nodes on lan(1)
and lan(2). Define a “wireless flag”” for each of the
LANs so that if it is set to true, the LAN will be
configured as an 802.11 network, otherwise as a wired
network.
set send_mac_80211 1
set recv_mac_80211 1

Bear in mind that since Emulab’s 802.11 support is
limited to FC4 (Fedora Core 4) and RHL90 (RedHat 9.0)
Linux distributions only, extra configurations is needed
to configure 802.11 nodes running FreeBSD 9.0 kernels.
This for instance includes loading the driver modules,
creating a wlanX interface, assigning IP addresses, etc.
Here, define few parameters which later will be used
for setting the IP addresses, switching to the desired
802.11 PHY/MAC mode (e.g. 11a or 11g), enabling or
disabling the default “Rate Adaptation” mechanism 2,
setting the frequency channels and SSIDs for both LANs.
Also define a new config file for 802.11 nodes for the
sake of clarity.
set send_80211_ipaddr_domain "10.1.4"
set recv_80211_ipaddr_domain "10.1.5"
set netmask "24"
set mode_80211 "11g"

2Rate Adaptation (RA) mechanism’s aim is to choose the most
appropriate modulation and coding scheme (bit-rate) depending on
the channel conditions such as noise and interference.

CAIA Technical Report 130618A June 2013 page 3 of 8



Fig. 1. A dumbbell network topology created in Emulab

set rate "fixed"
set send_channel_80211 6
set recv_channel_80211 11
set send_ssid_80211 "example1"
set recv_ssid_80211 "example2"
set config_file_wifi "config_wifi.sh"

If the wireless flag is set for any of the LANs, an
Access Point (AP) node should be created for that LAN
(e.g. APsend or APrecv) and it will be connected to
the next immediate router.

if {$send_mac_80211 == 1} {
set APsend [$ns node]
append lanstr($1) "$APsend "

}
if {$recv_mac_80211 == 1} {

set APrecv [$ns node]
append lanstr($router_no) "$APrecv "

}

Emulab provides 802.11 NICs on certain PC nodes
that should be explicitly requested using the below
syntax for all nodes in WiFi-flagged LANs and APs
using loops. In this example pc600wifi nodes are being
requested.

for {set i 1} {$i<=$max_peers} {incr i} {
if {$send_mac_80211 == 1 } {

$send($i) add-desire pc600wifi 1.0
}
if {$recv_mac_80211 == 1 } {

$recv($i) add-desire pc600wifi 1.0
}

}
if {$send_mac_80211 == 1} {

$APsend add-desire pc600wifi 1.0
}
if {$recv_mac_80211 == 1} {

$APrecv add-desire pc600wifi 1.0
}

802.11 LANs can be created in similar way to below.
For this example, this is achieved for the senders’ LAN
by assigning the LAN protocol, the AP node and creating
a link to the next router which in this case is router(1).
In similar way, if receivers’ LAN is flagged as wireless,
APrecv should be linked to router($router no).
if {$send_mac_80211 == 1 } {

set lan(1) [$ns make-lan
"$lanstr(1)" 54Mb 0ms]
tb-set-lan-protocol $lan(1) "80211g"

CAIA Technical Report 130618A June 2013 page 4 of 8



tb-set-lan-accesspoint $lan(1) $APsend
set linkAPsend [$ns duplex-link $router(1)
$APsend $link_bw 0ms DropTail]

}
...

Since Emulab does not support 802.11 on FreeBSD
9.0, an additional script is required for 802.11 setup
(a.k.a config wifi.sh). This shell script receives the
802.11 variables defined eariler as command-line argu-
ments.
if {$send_mac_80211 == 1 } {

tb-set-node-startcmd $APsend
"$project_folder/$config_file_wifi
$send_ssid_80211
$send_80211_ipaddr_domain.2/$netmask
$mode_80211 $send_channel_80211
$rate"

}
...

We conventioanlly decide to assign one above the
smallest available IP address in the subnet to the AP
and the IP addresses of the other nodes will be assigned
incrementally based on their index.
for {set i 1} {$i<=$max_peers} {incr i} {

set ipaddr_offset [expr {$i + 2}]
if {$send_mac_80211 == 1 } {

tb-set-node-startcmd $send($i)
"$project_folder/$config_file_wifi
$send_ssid_80211
$send_80211_ipaddr_domain
.$ipaddr_offset/$netmask $mode_80211
$send_channel_80211 $rate"

}
...

}

The configuration script consists of two main func-
tions namely LoadWifiModules() and SetupWifi().
LoadWifiModules() loads the wlan and atheros-
based driver modules into the kernel (e.g. if ath pci
and if ath). List of the required kernel mod-
ules for a specific 802.11 NIC can be edited in
wifi kernel modules string variable depending on
the chipset family used in the hadrware. In our
case, pc600wifi nodes are equipped with Atheros-based
AR5413 802.11abg NICs. SetupWifi() function re-
ceives the network parameters as arguments and creates
and configures wlan0 interface using the ifconfig com-
mand. The below is an example of this function’s usage
for the APsend access point which is being invoked in the
script if the node’s hostname contains “ap”. The below
command disables the rate adaptation mechanism (by
default SampleRate in the current ath driver in FreeBSD

9.0) and sets the bit-rate to fixed 54 Mbps which is the
maximum bit-rate supported in 802.11g. The details of
LoadWifiModules() and SetupWifi() functions are
presented in following Section V.
#SetupWifi {ath_interface}
#{wifi_interface} {ssid} {ipaddr/netmask}
#{mode: 11a or 11g} {channel}
#{sta_mode: ap or sta} {sleep_time in sec}
#{rate}

SetupWifi ath0 wlan0 example1
10.1.4.2/24 11g 6 ap 1 fixed

IV. A MULTI-HOP NETWORK WITH CASCADE

ARCHITECTURE

In this section, we aim to establish a multi-hop
network that can be used for scenarios where several
bottleneck links can exists concurrently or the main
bottleneck of the end-to-end path can be moved from
a certain link (or queue) to another. For this purpose
we are using a cascade architecture (a.k.a “parking-lot”
topology in TCP evaluation suite [5]). Such topology
consists of a path between sender(s) and receiver(s)
which traverses from several links (bottleneck links).
This can be achieved using several routers PCs con-
nected in sequence. Moreover, the topology consists of
an “access link” per each router. The access link can
be connected to several nodes called “cascade nodes”
hereafter. These cascade nodes are operating in the same
LAN and connected together via a switch. Different
types of traffic flows can be generated from the cascade
nodes in the same LAN to other nodes in other LAN(s)
sharing one or more bottleneck links on their path. By
doing so, the router(s) in which the cascade flows are
being shared with the other flows traversing on the main
path, becomes a bottleneck. Having more cascade flows
on different LANs creates multiple bottlenecks on the
path. Figure 2 depicts an example of a cascade topology
when router no = 10, cascade node no = 1 and
max peers = 1.

To establish such topology the ns code in Section II
should be extended. We call the cascade nodes as cnodes
for the sake of brevity hereafter. The number of cnode
LANs will be equal to the number of routers as each
router will be associated to one LAN. it is possible to
develop a more complex topology where routers can be
connected to multiple LANs, however it requires the
routers to have more Ethernet NICs than available in
Emulab. The number of cascade nodes in each LAN can
be defined as below
set cascade_node_no 1

CAIA Technical Report 130618A June 2013 page 5 of 8



A string variable for each cascade LAN should be
defined to hold the name of each node in the LAN.
for {set i 1} {$i<=$router_no} {incr i} {

set cascadelanstr($i) ""
}

Now each cascade node can be created and added to
the defined string as below
for {set i 1} {$i<=$router_no} {incr i} {

for {set j 1} {$j<= $cascade_node_no}
{incr j} {

set cnode($j-$i) [$ns node]
append cascadelanstr($i) "$cnode($j-$i) "

}
append cascadelanstr($i) "$router($i) "

}

Similar to the senders and receivers in previous sec-
tions, the relevant OS image should also be requested
for cnodes.
for {set i 1} {$i<=$router_no} {incr i} {

for {set j 1} {$j<= $cascade_node_no}
{incr j} {

tb-set-node-os $cnode($j-$i) $os_image
}

}

Each cascade LAN can be created as
for {set i 1} {$i<=$router_no} {incr i} {

set cascadelan($i) [$ns make-lan
"$cascadelanstr($i)" $link_bw 0ms]

}

The cascade nodes can be configured similarly to the
senders by invoking the startup configuration script.
For this reason, the shell script should be modified to
configure the cnodes similar to senders. A sample start-
up script is presented in Section V.
for {set i 1} {$i<=$router_no} {incr i} {

for {set j 1} {$j<= $cascade_node_no}
{incr j} {

tb-set-node-startcmd $cnode($j-$i)
"$project_folder/$config_file"

}
}

Now, by swapping-in this code using the Emulab’s
web-interface [6], a cascade topology can be established.

V. CUSTOMIZING START-UP CONFIGURATION SCRIPT

In previous sections, we mentioned and briefly ex-
plained the additional configuration script for setting
up the required configuration on FreeBSD nodes. We
mentioned that Emulab’s ns-like command does not
support 802.11 capability on FreeBSD images and the
configuration has to be done manually and therefore use

of this script is compulsory for 802.11 functionality. On
the other hand, the use of configuration script is optional
on wired nodes depending on what packages are required
for the experiments. For instance a TCP traffic generator
such as iperf might be needed on senders, receivers
and cnodes. Another example is an experimental delay-
based TCP congestion control mechanism called CDG
[7]. Since CDG isn’t included in the main FreeBSD 9.0
kernel, it should be patched to the kernel source and
installed. This operation is done on the sender nodes
and cnodes only as it is only needed on the sender sides.
These operations can be put in the relevant locations in
the main structure of the script. An example is presented
in below
#!/bin/sh

install_cdg() {
cp cdg_patch /usr/src
cd /usr/src
patch -p1 < cdg_patch
cd /sys/modules/cc/cc_cdg
make;make install;;

}

host=‘hostname‘
case $host in

*router*)
kldload ipfw dummynet;;

*send*)
pkg_add -r iperf
install_cdg;;

*recv*)
pkg_add -r iperf;;

*ctl*)
pkg_add -r screen;;

*cnode*)
pkg_add -r iperf
install_cdg;;

esac

The above code comprises the basic structure of the
configuration script for both wired and wireless con-
figurations. However two other functions are mentioned
in Section III that are part of the wireless script (con-
fig wifi.sh): LoadWifiModules() and SetupWifi().
LoadWifiModules() loads the Atheros-based 802.11
driver modules in FreeBSD kernel as shown below.
wifi_kernel_modules="wlan if_ath if_wi
if_ath_pci wlan_wep wlan_ccmp wlan_tkip"

# usage: LoadWifiModules $wifi_kernel_modules
LoadWifiModules() {

for wifi_module in $@
do

CAIA Technical Report 130618A June 2013 page 6 of 8



Fig. 2. A cascade (a.k.a parking-lot) network topology created in Emulab (router no=10, cascade node no=1 and max peers=1)

kldunload -v ${wifi_module}
done

for wifi_module in $@
do

kldload -v ${wifi_module}
sleep 1

done
}

Once the 802.11-related modules are loaded,
SetupWifi() function should be called to configure
the 802.11 setup on each 802.11 node.
# usage: SetupWifi(ath_interface ,
# wlan_interface ,ssid,
# ipaddr/netmask, {mode e.g. 11g},
# channel, wlanmode ,
# sleep_time, rate)
SetupWifi() {

ifconfig ${2} destroy
sleep ${8}
ifconfig ${2} create wlandev ${1} \
wlanmode ${7}
sleep ${8}
ifconfig ${2} down
sleep ${8}
ifconfig ${2} mode ${5}
sleep ${8}
ifconfig ${2} channel ${6}
sleep ${8}
ifconfig ${2} ssid ${3}
sleep ${8}
ifconfig ${2} ${4}
sleep ${8}

ifconfig ${2} up
if [ ${9}=="fixed" ]
then

ifconfig ${2} ucastrate 54
fi

}

The below example shows the usage of the above
two functions in config wifi.sh in addition to the routing
setup.
net=‘echo $ipaddr|awk ’BEGIN{FS="."}{print $1}’‘
host=‘hostname‘
case $host in

*router*)
...;;

*send*)
LoadWifiModules ${wifi_kernel_modules}
SetupWifi ${ath_interface} \
${wifi_interface} ${ssid} ${ipaddr} \
${mode} ${channel} ${sta_mode} \
${sleep_time} ${rate}
route add -net ${net}.0.0.0 APsend
...;;

*recv*)
LoadWifiModules ${wifi_kernel_modules}
SetupWifi ${ath_interface} \
${wifi_interface} ${ssid} ${ipaddr} \
${mode} ${channel} ${sta_mode} \
${sleep_time} ${rate}
route add -net ${net}.0.0.0 APrecv
...;;

*ctl*)
...;;

*cnode*)

CAIA Technical Report 130618A June 2013 page 7 of 8



...;;
esac

As shown in Section III the 802.11-related arguments
used by SetupWifi() function are declared in main ns
file.

VI. CONCLUSIONS

In this paper, we explained in details how to deploy
a multi-hop network testbed using FreeBSD nodes in
Emulab. Establishing several network topologies were
explained, starting with a basic multi-hop dumbbell
topology and extending it to a network with 802.11
wireless nodes on the edges, and a more complex topol-
ogy known as cascade (a.k.a parking-lot) were followed.
These enable researchers to establish and customize
a variety of network topologies providing a suitable
platform for evaluating networking protocols and stacks
using real-life measurements. A complete version of all
codes discussed in this paper is provided in [2].

VII. ACKNOWLEDGEMENTS

This project has been made possible in part by a gift
from the Cisco University Research Program Fund, a
corporate advised fund of Silicon Valley Community
Foundation.

REFERENCES

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An integrated
experimental environment for distributed systems and networks,”
in Proc. of the Fifth Symposium on Operating Systems Design
and Implementation. Boston, MA: USENIX Association, Dec
2002, pp. 255–270.

[2] (2013) Establishing a multi-hop network testbed with 802.11
end-nodes using FreeBSD on Emulab (code package).
[Online]. Available: http://caia.swin.edu.au/urp/newtcp/tools/
CAIA-TR-130618A-code.tgz

[3] (2012) ns-2 Network Simulator. [Online]. Available: http:
//www.isi.edu/nsnam/ns

[4] (2013) Emulab tutorial. [Online]. Available: https://wiki.emulab.
net/wiki/Tutorial

[5] (2012) TCP evaluation suite. [Online]. Available: http://tools.
ietf.org/html/draft-irtf-tmrg-tests-02

[6] (2012) Emulab. [Online]. Available: http://www.emulab.net/
[7] D. A. Hayes and G. Armitage, “Revisiting TCP Congestion

Control using Delay Gradients,,” in IFIP Networking 2011,
Valencia, Spain, 9-13 May 2011. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2008858

CAIA Technical Report 130618A June 2013 page 8 of 8

http://caia.swin.edu.au/urp/newtcp/tools/CAIA-TR-130618A-code.tgz
http://caia.swin.edu.au/urp/newtcp/tools/CAIA-TR-130618A-code.tgz
http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns
https://wiki.emulab.net/wiki/Tutorial
https://wiki.emulab.net/wiki/Tutorial
http://tools.ietf.org/html/draft-irtf-tmrg-tests-02
http://tools.ietf.org/html/draft-irtf-tmrg-tests-02
http://www.emulab.net/
http://dl.acm.org/citation.cfm?id=2008858
http://dl.acm.org/citation.cfm?id=2008858

	Introduction
	Emulab
	Network topologies

	A basic topology: dumbbell wired network
	A multi-hop network with 802.11 nodes on the edge LANs
	A multi-hop network with cascade architecture
	Customizing start-up configuration script
	Conclusions
	Acknowledgements
	References

