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Abstract—This report introduces FreeBSD-MPTCP
v0.3, a modification to the FreeBSD-10 kernel that enables
support for the IETF’s emerging Multipath TCP (MPTCP)
specification. We outline the motivation for (and potential
benefits of) using MPTCP, and discuss key architectural
elements of our design.
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I. INTRODUCTION

Traditional TCP has two significant challenges – it can
only utilise a single network path between source and
destination per session, and (aside from the gradual de-
ployment of explicit congestion notification) congestion
control relies primarily on packet loss as a congestion
indicator. Traditional TCP sessions must be broken and
reestablished when endpoints shift their network con-
nectivity from one interface to another (such as when
a mobile device moves from 3G to 802.11, and thus
changes its active IP address). Being bound to a single
path also precludes multihomed devices from using any
additional capacity that might exist over alternate paths.

TCP Extensions for Multipath Operation with Multi-
ple Addresses (RFC6824) [1] is an experimental RFC
that allows a host to spread a single TCP connec-
tion across multiple network addresses. Multipath TCP
(MPTCP) is implemented within the kernel and is de-
signed to be backwards compatible with existing TCP
socket APIs. Thus it operates transparently from the
perspective of the application layer and works with
unmodified TCP applications.

As part of CAIA’s NewTCP project [2] we have
developed and released a prototype implementation of
the MPTCP extensions for FreeBSD-10 [3]. In this report
we describe the architecture and design decisions behind
our version 0.3 implementation. At the time of writing, a
Linux reference implementation is also available at [4].

The report is organised as follows: we briefly outline
the origins and goals of MPTCP in Section II. In Section
III we detail each of the main architectural changes
required to support MPTCP in the FreeBSD 10 kernel.
The report concludes with Section IV.

II. BACKGROUND TO MULTIPATH TCP (MPTCP)

The IETF’s Multipath TCP (MPTCP) working group1

is focused on an idea that has emerged in various forms
over recent years – namely, that a single transport session
as seen by the application layer might be striped or
otherwise multiplexed across multiple IP layer paths
between the session’s two endpoints. An over-arching
expectation is that TCP-based applications see the tra-
ditional TCP API, but gain benefits when their ses-
sion transparently utilises multiple, potentially divergent
network layer paths. These benefits include being able
to stripe data over parallel paths for additional speed
(where multiple similar paths exist concurrently), or
seamlessly maintaining TCP sessions when an individual
path fails or as a mobile device’s multiple underlying
network interfaces come and go. The parts of an MPTCP
session flowing over different network paths are known
as subflows.

A. Benefits for multihomed devices

Contemporary computing devices such as smart-
phones, notebooks or servers are often multihomed (mul-
tiple network interfaces, potentially using different link
layer technologies). MPTCP allows existing TCP-based
applications to utilise whichever underlying interface
(network path) is available at any given time, seamlessly
maintaining transport sessions when endpoints shift their
network connectivity from one interface to another.

When multiple interfaces are concurrently available,
MPTCP enables the distribution of an application’s

1http://datatracker.ietf.org/wg/mptcp/charter/
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traffic across all or some of the available paths in a
manner transparent to the application. Networks can
gain traffic engineering benefits as TCP connections
are steered via multiple paths (for instance away from
congested links) using coupled congestion control [5].
Mobile devices such as smartphones and tablets can be
provided with persistent connectivity to network services
as they transition between different locales and network
access media.

B. SCTP is not quite the same as MPTCP

It is worth noting that SCTP (stream control transmis-
sion protocol) [6] also supports multiple endpoints per
session, and recent CMT work [7] enables concurrent use
of multiple paths. However, SCTP presents an entirely
new API to applications, and has difficulty traversing
NATs and any middleboxes that expect to see only TCP,
UDP or ICMP packets ’in the wild’. MPTCP aims to be
more transparent than SCTP to applications and network
devices.

C. Previous MPTCP implementation and development

Most early MPTCP work was supported by the EU’s
Trilogy Project2, with key groups at University College
London (UK)3 and Université catholique de Louvain in
Louvain-la-Neuve (Belgium)4 publishing code, working
group documents and research papers. These two groups
are responsible for public implementations of MPTCP
under Linux userland5, the Linux kernel6 and a simu-
lation environment (htsim)7. Some background on the
design, rationale and uses of MPTCP can be found in
papers such as [8]–[11].

D. Some challenges posed by MPTCP

MPTCP poses a number of challenges.
1) Classic TCP application interface: The API is

expected to present the single-session socket of con-
ventional TCP, while underneath the kernel is expected
to support the learning and use of multiple IP-layer
identities for session endpoints. This creates a non-trivial
implementation challenge to retrofit such functionality
into existing, stable TCP stacks.

2http://www.trilogy-project.org/
3http://nrg.cs.ucl.ac.uk/mptcp/
4http://inl.info.ucl.ac.be/mptcp
5http://nrg.cs.ucl.ac.uk/mptcp/mptcp_userland_0.1.tar.gz
6https://scm.info.ucl.ac.be/trac/mptcp/
7http://nrg.cs.ucl.ac.uk/mptcp/htsim_0.1.tar.gz

2) Interoperability and deployment: Any new imple-
mentation must interoperate with the reference imple-
mentation. The reference implementation has not yet had
to address interoperation, and as such holes and assump-
tions remain in the protocol documents. An interoperable
MPTCP implementation, given FreeBSD’s slightly dif-
ferent network stack paradigm relative to Linux, should
assist in IETF standardisation efforts. Also, the creation
of a BSD-licensed MPTCP implementation benefits both
the research and vendor community.

3) Congestion control (CC): Congestion control (CC)
must be coordinated across the subflows making up
the MPTCP session, to both effectively utilise the total
capacity of heterogeneous paths and ensure a multipath
session does not receive “...more than its fair share
at a bottleneck link traversed by more than one of its
subflows” [12]. The WG’s current proposal for MPTCP
CC remains fundamentally a loss-based algorithm that
“...only applies to the increase phase of the congestion
avoidance state specifying how the window inflates upon
receiving an ACK. The slow start, fast retransmit, and
fast recovery algorithms, as well as the multiplicative
decrease of the congestion avoidance state are the same
as in standard TCP” (Section 3, [12]). There appears
to be wide scope for exploring how and when CC
for individual subflows ought to be tied together or
decoupled.

III. CHANGES TO FREEBSD’S TCP STACK

Our MPTCP implementation has been developed as a
kernel patch8 against revision 248226 of FreeBSD-10.

A broad view of the changes and additions between
revision 248226 and the MPTCP-enabled kernel:

1) Creation of the Multipath Control Block (MPCB)
and the repurposing of the existing TCP Control
Block (TCPCB) to act as a MPTCP subflow con-
trol block.

2) Changes to user requests (called from the socket
layer) that handle the allocation, setup and deallo-
cation of control blocks.

3) New data segment reassembly routines and data-
structures.

4) Changes to socket send and socket receive buffers
to allow concurrent access from multiple subflows
and mapping of data.

5) MPTCP option insertion and parsing code for input
and output paths.

8Implementing MPTCP as a loadable kernel module was consid-
ered, but deemed impractical due to the number of changes required.
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Figure 1. Logical MPTCP stack structure (left) versus traditional
TCP (right). User space applications see same socket API.

6) Locking mechanisms to handle additional concur-
rency introduced by MPTCP.

7) Various MPTCP support functions (authentication,
hashing etc).

The changes are covered in more detail in the following
subsections.

A. Protocol Control Blocks

The implementation adds a new control block, the
MPTCP control block (MPCB), and repurposes the TCP
Control Block (RFC 793 [13]) as a subflow control
block. The header file netinet/mptcp_var.h has been
added to the FreeBSD source tree, and the MPCB
structure is defined within.

A MPCB is created each time an application creates
a TCP socket. The MPCB maintains all information re-
quired for multipath operation and manages the subflows
in the connection. It sits logically between the subflow
TCP control blocks and the socket layer. This arrange-
ment is compared with traditional TCP in Figure 1.

At creation, each MPCB associated with a socket
contains at least one subflow (the master subflow, or
subflow 1). The subflow control block is a modified
traditional TCP control block found in netinet/tcp_var.h.

Protocol control blocks are initialised and attached
to sockets via functions in netinet/tcp_usrreq.c (user
requests). A call to tcp_connect() in netinet/tcp_usrreq.c
results in a call to mp_newmpcb(), which allocates and
initialises the MPCB.

A series of functions (tcp_subflow_*) are implemented
in tcp_usrreq.c and are used to create and attach any
additional slave subflows to the MPTCP connection.

B. Segment Reassembly

MPTCP adds a data-level sequence space above
the sequence space used in standard TCP. This al-
lows segments received on multiple subflows to be

Figure 2. Each subflow maintains a segment receive list. Segments
are placed into the list in subflow-sequence order as they arrive (data-
level sequence numbers are shown). When a segment arrives in data-
sequence order, the lists are locked and data-level re-ordering occurs.
The application is then alerted and can read in the in-order data.

ordered before delivery to the application. Modifications
to reassembly are found in netinet/tcp_reass.c and in
kern/uipc_socket.c.

In pre-MPTCP FreeBSD, if a segment arrives that is
not the next expected segment (sequence number does
not equal RCV.NXT), it is placed into a reassembly
queue. Segments are placed into this queue in sequence
order until the expected segment arrives. At this point,
all in-order segments held in the queue are appended to
the socket receive buffer and the process is notified that
data can be read in. If a segment arrives that is in-order
and the reassembly list is empty, it is appended to the
receive buffer immediately.

In our implementation, subflows do not access the
socket receive buffer directly, and instead repurpose the
traditional reassembly queue for both in-order queuing
and out-of-order reassembly. Unknown to subflows, their
individual queues form part of a larger multipath-related
reassembly data structure, shown in Figure 2.

All incoming segments on a subflow are appended to
that subflow’s reassembly queue (the t_segq member of
the TCP control block defined in netinet/tcp_var.h) in
subflow sequence order. When the head of a subflow’s
queue is in data sequence order (segment’s data level
sequence number equals ds_rcv_nxt), then data-level
reassembly is triggered (ultimately by a wakeup on
the socket which will in turn defer reassembly to the
userspace thread context, but due to unresolved bugs we
currently trigger from kernel thread context).

Data-level reassembly involves traversing each sub-
flow segment list and appending in-sequence (data-level)
segments to the socket receive buffer. This occurs in the
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mp_do_reass() function of netinet/tcp_reass.c. During
this time a write lock is used to exclude subflows from
manipulating their reassembly queues.

Subflow and data-level reassembly have been split this
way to reduce lock contention between subflows and
the multipath layer. It also allows data-reassembly to be
deferred to the application’s thread context during a read
on the socket, rather than performed by a kernel fast-path
thread.

At completion of data-level reassembly, a data-level
ACK is scheduled on whichever subflow next sends a
regular TCP ACK packet.

C. Send and Receive Socket Buffers

In FreeBSD’s implementation of standard TCP, seg-
ments are sent and received over a single (address,port)
tuple, and socket buffers exist exclusively for each TCP
session. MPTCP sessions have 1+n (where n denotes
additional addresses) subflows that must access the same
send and receive buffers. The following sections describe
the changes to the socket buffers and the addition of the
ds_map. .

1) The ds_map struct: The ds_map struct is defined
in netinet/tcp_var.h and used for both send-related and
receive-related functions. Send and receive related maps
are stored in the subflow control block lists t_txmaps
(send buffer maps) and t_rxmaps (receive buffer maps)
respectively.

On the send side, ds_maps track accounting informa-
tion related to DSN maps advertised to the peer, and
are used to mediate access between subflows and the
send socket buffer. By mediating socket buffer access in
this way, lock contention can be avoided when sending
data from a ds_map. On the receive side, ds_maps track
accounting information related to received DSN maps
and associated payload data from the peer.

Figure 3. Standard TCP Send Buffer. The lined area represents sent
bytes that have been acknowledged by the receiver.

2) Socket Send Buffer: Figure 3 illustrates how in
standard TCP, each session has exclusive access to its
own send buffer. The variables snd_nxt and snd_una

Figure 4. A MPTCP send buffer contains bytes that must be mapped
to multiple TCP-subflows. Each subflow is allocated one or more
ds_maps (DSS-MAP) that define these mappings.

are used respectively to track which bytes in the send
buffer are to be sent next, and which bytes were the last
acknowledged by the receiver.

Figure 4 illustrates how in the multipath kernel, data
from the sending application is still stored in a single
send socket buffer. However access to this buffer is
moderated by the packet scheduler in mp_get_map(),
implemented in netinet/mptcp_subr.c (see Section III-D)

The packet scheduler is run when a subflow attempts
to send data via tcp_output() without owning a ds_map
that references unsent data.

When invoked, the scheduler must decide whether the
subflow should be allocated any data. If granted, allo-
cations are returned as a ds_map that contains an offset
into the send buffer and the length of data to be sent.
Otherwise, a NULL map is returned, and the send buffer
appears ’empty’ to the subflow. The ds_map effectively
acts as a unique socket buffer from the perspective of
the subflow (i.e. subflows are not aware of what other
subflows are sending). The scheduler is not invoked
again until the allocated map has been completely sent.

This scheme allows subflows to make forward
progress with variable overheads that depend on how
frequently the scheduler is invoked i.e. larger maps
reduce overheads.

As a result of sharing the underlying send socket
buffer via ds_maps to avoid data copies, releasing
bytes becomes more complex. Firstly, data-level ACKs
rather than subflow-level ACKs mark the multipath-
level stream bytes which have safely arrived, and there-
fore control the advancement of ds_snd_una. Secondly,
ds_maps can potentially overlap any portion of their
socket buffer mapping with each other (e.g. data-level
retransmit), and therefore the underlying socket buffer
bytes (encapsulated in chained mbufs) can only be
dropped when both ds_snd_una has acknowledged them
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and all maps which reference the bytes have been
deleted.

To potentially defer the dropping of bytes from the
socket buffer without adversely impacting application
throughput requires that socket buffer occupancy be
accounted for logically rather than actually. To this end,
the socket buffer variable sb_cc of an MPTCP socket
send buffer refers to the logical number of bytes held
in the buffer without data-level acknowledgment, and a
new variable sb_actual has been introduced to track the
actual number of bytes in the buffer.

3) Socket Receive Buffer: In pre-MPTCP FreeBSD,
in-order segments were copied directly into the receive
buffer, at which time the process was alerted that data
was available to read. The remaining space in the receive
buffer was used to advertise a receive window to the
sender.

As described in Section III-B, each subflow now holds
all received segments in a segment list, even if they are in
subflow sequence order. The segment lists are then linked
by their list heads to create a larger data-level reassembly
data structure. When a segment arrives that is in data
sequence order, data-level reassembly is triggered and
segments are copied into the receive buffer. As the size of
the reassembly list is effectively unbounded, we currently
advertise a maximum receive window (TCP_MAXWIN *
scaling factor) on all subflows.

Figure 5. A future release will integrate the multipath reassembly
structure into the socket receive buffer. Segments will be read directly
from the multi-subflow aware buffer as data-level reassembly occurs.

We plan to integrate the multipath reassembly struc-
ture into the socket receive buffer in a future release.
Coupled together with deferred reassembly, an applica-
tion’s thread context would be responsible for perform-
ing data-level reassembly on the multi-subflow aware
buffer after being woken up by a subflow that received
the next expected data-level segment (see Figure 5).

D. Packet Scheduler

The packet scheduler is responsible for determining
which subflows are able to send data from the socket
send buffer, and how much data they can send. A
basic packet scheduler is implemented in the v0.3 patch,
and can be found in the mp_get_map() function of
netinet/mptcp_subr.c.

The current algorithm checks the number of unmapped
bytes (bytes not yet allocated to an existing ds_map
struct) in the buffer and the total occupancy of the buffer.
If the buffer is not full, the application is free to write
more data to the socket so we assign the current contents
of the buffer to the requesting subflow on the basis more
data will be written soon. If the buffer is full (sb_cc is
equal to the buffer’s maximum capacity sb_hiwat), the
application is stalled waiting for buffer space to become
available and subflows are competing for the unmapped
data in the buffer. In this case, we allocate an amount of
data equal to the unmapped bytes divided by the number
of active subflows, with a floor value set to the MSS of
the requesting subflow. This provides some protection
against a subflow being starved of data to transmit.

The scheduler returns an appropriate ds_map struct,
and since the length allocated can exceed oneMSS, this
mapping forms the basis of a multi-packet MPTCP DSS-
map.

The packet scheduler will be modularised and ex-
tended with congestion control hooks in future updates,
providing scope for more complex scheduling of maps.

IV. CONCLUSIONS AND FUTURE WORK

This report introduced FreeBSD-MPTCP v0.3, a mod-
ification of the FreeBSD kernel enabling Multipath TCP
[1] support. We outlined the motivation behind and
potential benefits of using multipath TCP, and discussed
key architectural elements of our design.

We expect to update and improve our MPTCP im-
plementation in the future, and documentation will be
updated as this occurs. We also plan on releasing a
detailed design document that will provide more in-
depth detail about the implementation. Code profiling
and analysis of on-wire performance are also planned.
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Our aim is to use this implementation as a basis
for further research into MPTCP congestion control, as
noted in Section II-D3.
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