
Adding a new feature to L3DGEWorld 2.3 - a
guided tour through the codebase

Chris Holman∗
Centre for Advanced Internet Architectures, Technical Report 121213B

Swinburne University of Technology
Melbourne, Australia

6963420@student.swin.edu.au

Abstract—This report gives a brief tutorial on the
L3DGEWorld 2.3 code base. We provide some example
code to add extra attributes and entities to L3DGEWorld
and then discuss the major locations of the L3DGEWorld
code within the OpenArena code.

Index Terms—CAIA, L3DGEWorld, source, code

I. INTRODUCTION

L3DGEWorld was developed on top of OpenArena.
OA uses a modified version of the idTech 3 engine,
which was created for Quake III Arnea. The engine is
already documented in various places [1]–[3], so we will
focus on L3DGEWorld specific code. This report aims to
provide a brief guide to the structure of L3DGEWorld
2.3’s code by providing a few tutorials to modify its
behavior, as well as a few notes about where to find key
parts of the L3DGEWorld code.

In 2005, the source code for the idTech 3 engine was
released under a GPLv2 license [4]. From this, two key
projects were spawned: ioQuake3 [5], which continued
to improve and expand upon the idTech 3 engine; and
OpenArena [6], which utilises ioQuake3 and created its
own GPLv2 licensed maps, models and other assets.
L3DGEWorld is a modification of these projects.

We reference the source code from L3DGEWorld 2.3
[7], which uses OpenArena 0.6.0, including ioQuake3
revision 982. Our test development environment was
Windows 7 with MingW32 [8].

For information on other aspects of L3DGEWorld, see
the L3DGEWorld Papers and Interim Results page [9].

The remainder of the report is structured as follows:
section II discusses some simple modifications that can
be made to L3DGEWorld’s source code, section III lists
where the major sections of the L3DGEWorld code

∗The author was an undergraduate engineering student undertaking
an IBL placement at the time of writing this document

modifications lie, relative to the ioQuake3 source code,
and section IV concludes the report.

II. MODIFYING L3DGEWORLD

The L3DGEWorld 2.3 source code is available in-
side the L3DGEWorld 2.3 package [7], inside the
/source/ioq3-l3dgeworld.tgz archive. Instructions to com-
pile L3DGEWorld 2.3 are in /source/README.txt.

Our modifications to the code focus on entities and
their attributes1. In L3DGEWorld, an entity is one object
with a defined set of attributes. Each entity is represented
by a single model, such as a star, phone or switch, inside
the L3DGEWorld environment. The attributes define how
the entity behaves - bounce height, spin rate and colour
are three of the 9 attributes.

A. Warning!

The idTech 3 engine has a number of hard coded limits
in place. These limits can be modified - whether or not
you will experience any adverse effects depends on a
number of factors, such as how many entities you have
in your map.

If you experience crashes or you cannot join a server
when you were previously able to, reduce some of these
constants, closer to what they originally were.

Given the changes listed in this document, a modified
client will not work with an unmodified server, and vice
versa.

B. Limitations

The data for the entities and attributes is stored in a gi-
ant array of configuration parameters, and every attribute
value for every entity has a hard coded position in this

1Attributes were previously called ’metrics’. The code still refers
to metrics, while this document uses attributes. The two terms are
interchangable.

CAIA Technical Report 121213B December 2012 page 1 of 3

mailto:6963420@student.swin.edu.au

array, as defined by \code\game\bg_public.h,
lines 103 to 111.

By increasing various constants such as
MAX_METRICS or MAX_L3DGEHOSTS, we have
increased the number of entries that need to exist in this
array. If the number exceeds MAX_CONFIGSTRINGS,
we must increase MAX_CONFIGSTRINGS such that
they can all fit.
\code\qcommon\q_shared.h:
928: #define MAX_CONFIGSTRINGS

21,000
Increasing this too far will result in the game crashing

when it attempts to join the server. We were able to
increase it to 21,000 before crashing occurred - double
its original value.

C. Adding new attributes

A colleague wanted to modify the X/Y/Z scaling of
an entity independently of each other dimension, unlike
the existing scale attribute which scales all at once. We
use this as a practical modification example.

The number of attributes in L3DGEWorld is defined
as a C constant in the file \code\qcommon\l3dge.h.
#define MAX_METRICS 10
Increasing this increases the number of attributes. As

per Section II-B, the attribute values are stored in the
configuration array. If this array fills, you will receive an
error at compile time advising as such and you should
increase MAX_CONFIGSTRINGS. See Section II-B for
how to do this.

In \code\cgame\cg_ents.c exists the function
CG_Item(). This function is called for each in-game
entity every tick. One of the functions performed by this
function is applying attributes to entities. On line 349 is:
if (item->giTag == HI_L3DGEHOST) {
Within this if block, all of the current l3dge attributes

are applied. To add our new attributes, we will add our
code in here.

First, declare a new float, one for each new attribute:
float metric10=0;
Then, retrieve the value for each new attribute in the

same manner as the original metrics:
metricstring = CG_ConfigString(

L3DGE_METRICRATE(10,
cent->currentState.hostid));
metric10=atof(metricstring) /10;
Do this for each dimension, creating metric 11 and 12

accordingly.
Entity scale changes are smoothed over a period of

time, instead of being an instant change. The code to

implement this feature is between line 431 and 474. Ap-
plying this visual nicety to each of the three dimensions
is left as an exercise for the reader. The centity_t
struct (\code\cgame\cg_local.h line 170) will
need to be modified to store state for each dimension
between ticks.

On line 620 to 622, the three dimensions are scaled
using VectorScale(). The second argument is the
factor to scale by. Modifying these three lines as below
will complete the necessary changes.
VectorScale(ent.axis[0],

cent->metric10, ent.axis[0]);
VectorScale(ent.axis[1],

cent->metric11, ent.axis[1]);
VectorScale(ent.axis[2],

cent->metric12, ent.axis[2]);
Note that the ioQuake3 engine uses currentScale

to determine if an entity is still within the player’s field of
view. If any of the individual dimension scales are larger
than currentScale, the ioQuake3 engine may decide that
it should not render the entity while the entity is still
visible, resulting in the entity suddenly disappearing
from view.

D. Increasing the number of entities

\code\qcommon\l3dge.h
#define MAX_L3DGEHOSTS 256
You will need to create or modify an existing map with

this many entities. The largest default map has around
140 entities.

There are other limits in place that require further
investigation, as only 255 entities will be in the envi-
ronment. Interestingly, the 255th does not have a label
appear above it.

III. USEFUL CODE SECTIONS

qcommon\l3dge.h

Contains constants relating to L3DGEWorld - notably
the entity limit and the branding text.

server\sv_main.c

Contains SV_ConnectionlessPacket() - the
function which chooses how to process an incoming
L3DGEWorld daemon message. All L3DGEWorld pack-
ets are considered connectionless by the Quake 3 engine
as they all begin with the Quake 3 connectionless packet
identifier, 0xFFFFFFFF.

CAIA Technical Report 121213B December 2012 page 2 of 3

server\sv_l3dge.c

Contains most of the L3DGEWorld specific code,
including functions to handle token generation and nego-
tiation, sending and receiving daemon update messages
and such.

SVC_L3DGEInput is of particular interest, in how it
processes the input l3dge messages.
Cmd_ExecuteString (va("cvarset

%s",split));
split is tilde separated set of values to set a property

of an entity - eg, ~001~1~r~40~. This is the tilde
separated string that is sent from a l3dgecomm daemon
to update an attribute.
cvarset is a custom command, only used by

L3DGEWorld-specific code. It calls SV_CVARSet_f
in server\sv_l3dge.c. This then calls
parseL3DGECommand, which inserts the values
in to the engine ConfigString, as seen in Section II-B.

Because Cmd_ExecuteString() is used to update at-
tributes in this manner, the same command can be used
from the console to alter attributes. This means that there
is no need for a l3dgecomm daemon if you only need
to see what something simple looks like. First, copy a ~
character to your clipboard - ~ is used to toggle the con-
sole, so you cannot type it while in game. Then, toggle
the console and type: cvarset ~001~3~r~40~. Use
ctrl+v to paste the ~ symbol instead of typing it. Entity
1 should now be spinning very fast.

cgame\cg_ents.c

Contains CG_Item() - as per section II-C, this function
is what is used to apply attributes to entities. It is called
on every entity once per engine ’tick’. The renderer uses
information calculated in this function to determine how
to render each entity.

cgame\cg_local.h

Defines the centity_t struct, which is what each entity
is stored as. L3DGEWorld stores a number of state
variables in this struct, including bounce height and rate,
scale and the direction an entity is facing.

q3_ui\ui_l3dgemessages.c

The details UI that appears when the “inspector” tool
is used is implemented here.

IV. CONCLUSIONS

In this report, we have briefly discussed the
L3DGEWorld 2.3 codebase, including the major modifi-
cations made to ioQuake3 to enable L3DGEWorld func-
tionality, and some example code to add extra entities
and attributes to L3DGEWorld.

REFERENCES

[1] D. Stefyn, A. Cricenti, and P. Branch, “Quake III Arena Game
Structures,” Tech. Rep. 110209A, Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia, 09 February 2011.

[2] F. Sanglard, “Quake 3 source code review.” http://fabiensanglard.
net/quake3/index.php. Accessed Nov 14th, 2012.

[3] Prometheum, “Looking at the quake 3 source –
part 1.” http://element61.blogspot.com.au/2005/08/
looking-at-quake-3-source-part-1.html. Accessed Nov 14th,
2012.

[4] id software, “id-software/quake-iii-arena.” https://github.com/
id-Software/Quake-III-Arena. Accessed Nov 14th, 2012.

[5] ioQuake3, “ioquake3.” http://www.ioquake3.org. Accessed Nov
14th, 2012.

[6] OpenArena, “Openarena.” http://www.openarena.ws. Accessed
Nov 14th, 2012.

[7] CAIA, “L3dge - downloads.” http://caia.swin.edu.au/urp/l3dge/
download.html. Accessed Nov 14th, 2012.

[8] “Mingw | minimalist gnu for windows.” http://www.mingw.org/.
Accessed Nov 14th, 2012.

[9] CAIA, “L3dge - papers and interim results.” http://caia.swin.edu.
au/urp/l3dge/papers.html. Accessed Nov 14th, 2012.

CAIA Technical Report 121213B December 2012 page 3 of 3

http://fabiensanglard.net/quake3/index.php
http://fabiensanglard.net/quake3/index.php
http://element61.blogspot.com.au/2005/08/looking-at-quake-3-source-part-1.html
http://element61.blogspot.com.au/2005/08/looking-at-quake-3-source-part-1.html
https://github.com/id-Software/Quake-III-Arena
https://github.com/id-Software/Quake-III-Arena
http://www.ioquake3.org
http://www.openarena.ws
http://caia.swin.edu.au/urp/l3dge/download.html
http://caia.swin.edu.au/urp/l3dge/download.html
http://www.mingw.org/
http://caia.swin.edu.au/urp/l3dge/papers.html
http://caia.swin.edu.au/urp/l3dge/papers.html

	Introduction
	Modifying L3DGEWorld
	Warning!
	Limitations
	Adding new attributes
	Increasing the number of entities

	Useful code sections
	Conclusions
	References

